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Abstract. In this article1, we present a small, complete, and efficient
SAT-solver in the style of conflict-driven learning, as exemplified by
CHAFF. We aim to give sufficient details about implementation to enable
the reader to construct his or her own solver in a very short time. This
will allow users of SAT-solvers to make domain specific extensions or
adaptions of current state-of-the-art SAT-techniques, to meet the needs
of a particular application area. The presented solver is designed with
this in mind, and includes among other things a mechanism for adding
arbitrary boolean constraints. It also supports solving a series of related
SAT-problems efficiently by an incremental SAT-interface.

1 Introduction

The use of SAT-solvers in various applications is on the march. As insight on how
to efficiently encode problems into SAT is increasing, a growing number of prob-
lem domains are successfully being tackled by SAT-solvers. This is particularly
true for the electronic design automation (EDA) industry [BC+99, Lar92]. The
success is further magnified by current state-of-the-art solvers being adapted to
meet the specific characteristics of these problem domains [AR+02, ES03].

However, modifying an existing solver, even with thorough knowledge of both
the problem domain and of modern SAT-techniques, can be a time consuming
journey into the inner workings of a ten-thousand-line software package. Like-
wise, writing a solver from scratch often means spending much time rediscovering
the intricate details of a correct and efficient solver. The problem is that although
the techniques used in a modern SAT-solver are well documented, the details
necessary for an implementation have not been adequately presented before.

In the fall of 2002, the authors implemented the solvers SATZOO and SAT-
NIK. In order to sufficiently understand the implementation tricks needed for a
modern SAT-solver, it was necessary to consult the source-code of previous im-
plementations.2 We find that the material contained therein can be made more
accessible, which is desirable for the SAT-community. Thus, the principal goal of
this article is to bridge the gap between existing descriptions of SAT-techniques
and their actual implementation.

1 Extended version available at http://www.cs.chalmers.se/~een
2 LIMMAT at http://www.inf.ethz.ch/personal/biere/projects/limmat

ZCHAFF at http://www.ee.princeton.edu/~chaff/zchaff
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We will do this by presenting the code of a minimal SAT-solver MINISAT,
based on the ideas for conflict-driven backtracking [MS96], together with watched
literals and dynamic variable ordering [MZ01]. The original C++ source code
(downloadable from http://www.cs.chalmers.se/~een) for MINISAT is under
600 lines (not counting comments), and is the result of rethinking and simplifying
the designs of SATZOO and SATNIK without sacrificing efficiency. We will present
all the relevant parts of the code in a manner that should be accessible to anyone
acquainted with either C++ or Java.

The presented code includes an incremental SAT-interface, which allows for
a series of related problems to be solved with potentially huge efficiency gains
[ES03]. We also generalize the expressiveness of the SAT-problem formulation by
providing a mechanism for defining arbitrary constraints over boolean variables.

From the documentation in this paper we hope it is possible for you to
implement a fresh SAT-solver in your favorite language, or to grab the C++
version of MINISAT from the net and start modifying it to include new and
interesting ideas.

2 Application Programming Interface

We start by presenting MINISAT’s external interface, with which a user appli-
cation can specify and solve SAT-problems. A basic knowledge about SAT is
assumed (see for instance [MS96]). The types var , lit , and Vec for variables,
literals, and vectors respectively are explained in more detail in section 4.

class Solver – Public interface
var newVar ()
bool addClause (Vec〈lit〉 literals)
bool add. . . (. . .)
bool simplifyDB ()
bool solve (Vec〈lit〉 assumptions)

Vec〈bool〉 model – If found, this vector has the model.

The “add . . .” method should be understood as a place-holder for additional
constraints implemented in an extension of MINISAT.

For a standard SAT-problem, the interface is used in the following way: Vari-
ables are introduced by calling newVar(). From these variables, clauses are built
and added by addClause(). Trivial conflicts, such as two unit clauses {x} and {x}
being added, can be detected by addClause(), in which case it returns False.
From this point on, the solver state is undefined and must not be used further.
If no such trivial conflict is detected during the clause insertion phase, solve()
is called with an empty list of assumptions. It returns False if the problem is
unsatisfiable, and True if it is satisfiable, in which case the model can be read
from the public vector “model”.

The simplifyDB() method can be used before calling solve() to simplify the
set of problem constraints (often called the constraint database). In our imple-
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mentation, simplifyDB() will first propagate all unit information, then remove
all satisfied constraints. As for addClause(), the simplifier can sometimes detect a
conflict, in which case False is returned and the solver state is, again, undefined
and must not be used further.

If the solver returns satisfiable, new constraints can be added repeatedly to
the existing database and solve() run again. However, more interesting sequences
of SAT-problems can be solved by the use of unit assumptions. When passing
a non-empty list of assumptions to solve(), the solver temporarily assumes the
literals to be true. After finding a model or a contradiction, these assumptions
are undone, and the solver is returned to a usable state, even when solve() return
False, which now should be interpreted as unsatisfiable under assumptions.

For this to work, calling simplifyDB() before solve() is no longer optional.
It is the mechanism for detecting conflicts independent of the assumptions –
referred to as a top-level conflict from now on – which puts the solver in an
undefined state. For an example of the use if unit assumptions, see [ES03].

An alternative interface would be for solve() to return one of three values:
satisfiable, unsatisfiable, or unsatisfiable under assumptions. This is indeed a less
error-prone interface as there is no longer a pre-condition on the use of solve().
The current interface, however, represents the smallest modification of a non-
incremental SAT-solver.

3 Overview of the SAT-solver

This article will treat the popular style of SAT-solvers based on the DPLL al-
gorithm [DLL62], backtracking by conflict analysis and clause recording (also
referred to as learning) [MS96], and boolean constraint propagation (BCP) us-
ing watched literals [MZ01]. We will refer to this style of solver as a conflict-
driven SAT-solver. The components of such a solver, and indeed a more general
constraint solver, can be conceptually divided into three categories:

• Representation. Somehow the SAT-instance must be represented by inter-
nal data structures, as must any derived information.

• Inference. Brute force search is seldom good enough on its own. A solver
also needs some mechanism for computing and propagating the direct im-
plications of the current state of information.

• Search. Inference is almost always combined with search to make the solver
complete. The search can be viewed as another way of deriving information.

A standard conflict-driven SAT-solver can represent clauses (with two literals or
more) and assignments. Although the assignments can be viewed as unit-clauses,
they are treated specially, and are best viewed as a separate type of information.

The only inference mechanism used by a standard solver is unit propagation.
As soon as a clause becomes unit under the current assignment (all literals except
one are false), the remaining unbound literal is asserted, possibly making more
clauses unit. The process continues until no more information can be propagated.
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The search procedure of a modern solver is the most complex part. Heuristi-
cally, variables are picked and assigned values (assumptions are made), until the
propagation detects a conflict (all literals of a clause have become false). At that
point, a so called conflict clause is constructed and added to the SAT problem.
Assumptions are then canceled by backtracking until the conflict clause becomes
unit, at which point it is propagated and the search process continues.

MINISAT is extensible with arbitrary boolean constraints. This will affect the
representation, which must be able to store these constraints; the inference,
which must be able to derive unit information from these constraints; and the
search, which must be able to analyze and generate conflict clauses from the
constraints. The mechanism we suggest for managing general constraints is very
lightweight, and by making the dependencies between the SAT-algorithm and
the constraints implementation explicit, it adds to the clarity of the solver.

Propagation. The propagation procedure of MINISAT is largely inspired by
that of CHAFF [MZ01]. For each literal, a list of constraints is kept. These are
the constraints that may propagate unit information (variable assignments) if
the literal becomes True. For clauses, no unit information can be propagated
until all literals except one have become False. Two unbound literals p and q of
the clause are therefore selected, and references to the clause are added to the
lists of p and q respectively. The literals are said to be watched and the lists of
constraints are referred to as watcher lists. As soon as a watched literal becomes
True, the constraint is invoked to see if information may be propagated, or to
select new unbound literals to be watched.

An effect of using watches for clauses is that on backtracking, no adjustment
to the watcher lists need to be done. Backtracking is therefore cheap. However,
for other constraint types, this is not necessarily a good approach. MINISAT
therefore supports the optional use of undo lists for those constraints; storing
what constraints need to be updated when backtracking unbinds a variable.

Learning. The learning procedure of MINISAT follows the ideas of Marques-
Silva and Sakallah in [MS96]. The process starts when a constraint becomes
conflicting (impossible to satisfy) under the current assignment. The conflicting
constraint is then asked for a set of variable assignments that make it con-
tradictory. For a clause, this would be all the literals of the clause (which are
False under a conflict). Each of the variable assignments returned must be ei-
ther an assumption of the search procedure, or the result of some propagation
of a constraint. The propagating constraints are in turn asked for the set of
variable assignments that made the propagation occur, continuing the analysis
backwards. The procedure is repeated until some termination condition is met,
resulting in a set of variable assignments that implies the conflict. A clause pro-
hibiting that particular assignment is added to the clause database. This learnt
(conflict) clause will always be implied by the original problem constraints.

Learnt clauses serve two purposes: they drive the backtracking and they
speed up future conflicts by “caching” the reason for the conflict. Each clause
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will prevent only a constant number of inferences, but as the recorded clauses
start to build on each other and participate in the unit propagation, the accu-
mulated effect of learning can be massive. However, as the set of learnt clauses
increase, propagation is slowed down. Therefore, the number of learnt clauses is
periodically reduced, keeping only the clauses that seem useful by some heuristic.

Search. The search procedure of a conflict-driven SAT-solver is somewhat im-
plicit. Although a recursive definition of the procedure might be more elegant,
it is typically described (and implemented) iteratively. The procedure will start
by selecting an unassigned variable x (called the decision variable) and assume
a value for it, say True. The consequences of x=True will then be propa-
gated, possibly resulting in more variable assignments. All variables assigned as
a consequence of x is said to be from the same decision level, counting from 1
for the first assumption made and so forth. Assignments made before the first
assumption (decision level 0) are called top-level.

All assignments will be stored on a stack in the order they were made; from
now on referred to as the trail. The trail is divided into decision levels and is
used to undo information during backtracking. The decision phase will continue
until either all variables have been assigned, in which case we have a model, or a
conflict has occurred. On conflicts, the learning procedure will be invoked and a
conflict clause produced. The trail will be used to undo decisions, one level at a
time, until precisely one of the literals of the learnt clause becomes unbound (they
are all False at the point of conflict). By construction, the conflict clause cannot
go directly from conflicting to a clause with two or more unbound literals. If the
clause is unit for several decision levels, it is advantageous to chose the lowest
level (referred to as backjumping or non-chronological backtracking [MS96]).

loop
propagate() – propagate unit clauses
if not conflict then

if all variables assigned then
return Satisfiable

else
decide() – pick a new variable and assign it

else
analyze() – analyze conflict and add a conflict clause
if top-level conflict found then

return Unsatisfiable
else

backtrack() – undo assignments until conflict clause is unit

Activity heuristics. One important technique introduced by CHAFF [MZ01] is
a dynamic variable ordering based on activity (referred to as the VSIDS heuris-
tic). The original heuristic imposes an order on literals, but borrowing from
SATZOO, we make no distinction between p and p in MINISAT.
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Each variable has an activity attached to it. Every time a variable occurs in
a recorded conflict clause, its activity is increased. We refer to this as bumping.
After the conflict, the activity of all the variables in the system are multiplied
by a constant less than 1, thus decaying the activity of variables over time.

Activity is also used for clauses. When a learnt clause takes part in the conflict
analysis, its activity is bumped. Inactive clauses are periodically removed.

Constraint removal. The constraint database is divided into two parts: the
problem constraints and the learnt clauses. The set of learnt clauses is period-
ically reduced to increase the performance of propagation. This may result in
a larger search space, as learnt clauses are used to crop future branches of the
search tree. The balance between the two forces is delicate, and there are SAT-
instances for which a big learnt clause set is advantageous, and others where
a small set is better. MINISAT’s default heuristic starts with a small set and
gradually increases the size.

Problem constraints can also be removed if they are satisfied at the top-
level. The API method simplifyDB() is responsible for this. The procedure is
particularly important for incremental SAT-problems.

Top-level solver. The pseudo-code for the search procedure presented above
suffices for a simple conflict-driven SAT-solver, but a solver strategy can improve
the performance. A typical strategy applied by modern conflict-driven SAT-
solvers is the use of restarts to prevent from getting stuck in a futile part of
the search tree. In MINISAT we also vary the number of learnt clauses kept at
a given time. Furthermore, the solve() method of the API supports incremental
assumptions, not handled by the above pseudo-code.

4 Implementation

The following conventions are used in the code. Atomic types start with a lower-
case letter and are passed by value. Composite types start with a capital letter
and are passed by reference. Blocks are marked by indentation level. The bottom
symbol ⊥ always mean undefined ; False is used to denote the boolean false.

We will use, but not specify an implementation of, the following abstract data
types: Vec〈T 〉 an extensible vector of type T ; lit the type of literals containing
a special literal ⊥lit; lbool for the lifted boolean domain containing elements
True⊥, False⊥, and ⊥; Queue〈T 〉 a queue of type T . We also use var as
a type synonym for int (for implicit documentation) with the special constant
⊥var. The literal data type has an index () method which converts a literal to a
“small” integer suitable for array indexing.

4.1 The Solver State

A number of things need to be stored in the solver state. Figure 2 shows the
complete set of member variables of the solver type of MINISAT. A number
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of trivial, one-line functions will be assumed to exist, such as nVars() for the
number of variables etc. The interface of VarOrder is given in Figure 1, and is
further explained in section 4.6. Note that the state does not contain a boolean
“conflict” to remember if a top-level conflict has been reached. Instead we impose
as an invariant that the solver must never be in a conflicting state.

4.2 Constraints

MINISAT can handle arbitrary constraints over boolean variables through the
abstraction presented in Figure 3. Each constraint type needs to implement
methods for constructing, removing, propagating and calculating reasons. In
addition, methods for simplifying the constraint and updating the constraint on
backtrack can be specified. The contracts of these methods are as follows:

Constructor. The constructor may only be called at the top-level. It must create and
add the constraint to appropriate watcher lists after enqueuing any unit informa-
tion derivable under the current top-level assignment. Should a conflict arise, this
must be communicated to the caller.

Remove. The remove method supplants the destructor by receiving the solver state
as a parameter. It should dispose the constraint and remove it from the watcher
lists.

Propagate. The propagate method is called if the constraint is found in a watcher
list during propagation of unit information p. The constraint is removed from the
list and is required to insert itself into a new or the same watcher list. Any unit
information derivable as a consequence of p should be enqueued. If successful, True
is returned; if a conflict is detected, False is returned. The constraint may add
itself to the undo list of var(p) if it needs to be updated when p becomes unbound.

Simplify. At the top-level, a constraint may be given the opportunity to simplify
its representation (returns True) or state that the constraint is satisfied under
the current assignment (returns False). A constraint must not be simplifiable to
produce unit information or to be conflicting; in that case the propagation has not
been correctly defined.
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Fig. 1. Assisting ADT for the dynamic variable ordering of the solver. The
constructor takes references to the assignment vector and the activity vector
of the solver. The method select() will return the unassigned variable with the
highest activity.
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Fig. 2. Internal state of the solver.
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Fig. 3. Abstract base class for constraints.

Undo. During backtracking, this method is called if the constraint added itself to the
undo list of var(p) in propagate(). The current variable assignments are guaranteed
to be identical to that of the moment before propagate() was called.

Calculate Reason. This method is given a literal p and an empty vector. The con-
straint is the reason for p being true, that is, during propagation, the current
constraint enqueued p. The received vector is extended to include a set of assign-
ments (represented as literals) implying p. The current variable assignments are
guaranteed to be identical to that of the moment before the constraint propagated
p. The literal p is also allowed to be the special constant ⊥lit in which case the
reason for the clause being conflicting should be returned through the vector.

The code for the Clause constraint is presented in Figure 4. It is also used for
learnt clauses, which are unique in that they can be added to the clause database
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Fig. 4. Implementation of the Clause constraint.
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Fig. 5. Constructor function for clauses. Returns False if top-level conflict is
detected. ’out clause’ may be set to Null if the new clause is already satisfied
under the current top-level assignment. Post-condition: ’ps’ is cleared. For
learnt clauses, all literals will be false except ‘lits[0]’ (by design of analyze()).
For the propagation to work, the second watch must be put on the literal which
will first be unbound by backtracking.

while the solver is not at top-level. This makes the constructor code a bit more
complicated than it would be for a normal constraint.

Implementing the addClause() method of the solver API is just a matter of
calling Clause new() and pushing the new constraint on the “constrs” vector,
storing the list of problem constraints. The newVar() method of the API has a
trivial implementation.
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Fig. 6. propagate(): Propagates all enqueued facts. If a conflict arises, the
conflicting clause is returned, otherwise Null. enqueue(): Puts a new fact
on the propagation queue, and immediately updates the variable’s value in the
assignment vector. If a conflict arises, False is returned and the propagation
queue is cleared. ’from’ contains a reference to the constraint from which ’p’ was
propagated (defaults to Null if omitted).

4.3 Propagation

Given the mechanism for adding constraints, we now move on to describe the
propagation of unit information on these constraints.

The propagation routine keeps a set of literals (unit information) that is to
be propagated. We call this the propagation queue. When a literal is inserted into
the queue, the corresponding variable is immediately assigned. For each literal
in the queue, the watcher list of that literal determines the constraints that may
be affected by the assignment. Through the interface described in the previous
section, each constraint is asked by a call to its propagate() method if more unit
information can be inferred, which will then be enqueued. The process continues
until either the queue is empty or a conflict is found.

An implementation of this procedure is displayed in Figure 6. It starts by
dequeuing a literal and clearing the watcher list for that literal by moving it to
“tmp”. The propagate method is then called for each constraint of “tmp”. This
will re-insert watches into new lists. Should a conflict be detected during the
traversal, the remaining watches will be copied back to the original watcher list.

The method for enqueuing unit information is relatively straightforward.
Note that the same fact can be enqueued several times, as it may be propa-
gated from different constraints, but it will only be put on the queue once.
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4.4 Learning

We describe the basic conflict-analysis algorithm by an example. Assume the
database contains the clause {x, y, z} which just became unsatisfied during prop-
agation. This is our conflict. We call x ∧ y ∧ z the reason set of the conflict.
Now x is false because x was propagated from some constraint. We ask that
constraint to give us the reason for propagating x (the calcReason() method).
It will respond with another conjunction of literals, say u ∧ v . These were the
variable assignment that implied x. The constraint may in fact have been the
clause {u, v, x}. From this little analysis we know that u ∧ v ∧ y ∧ z must also
lead to a conflict. We may prohibit this conflict by adding the clause {u, v, y, z}
to the clause database. This would be an example of a learnt conflict clause.

In the example, we picked only one literal and analyzed it one step. The pro-
cess of expanding literals with their reason sets can be continued, in the extreme
case until all the literals of the conflict set are decision variables. Different learn-
ing schemes based on this process have been proposed. Experimentally the First
UIP heuristic has been shown effective [ZM01]. We will not give the definition
here, but just state the algorithm: In a breadth-first manner, continue to expand
literals of the current decision level, until there is just one left.

In the code for analyze(), displayed in Figure 7, we make use of the fact
that a breadth-first traversal can be achieved by inspecting the trail backwards.
Particularly, the variables of the reason set of p is always before p in the trail.
In the algorithm we initialize p to ⊥lit, which makes calcReason() return the
reason for the conflict. Besides returning a conflict clause, analyze() sets the
backtracking level, which is the lowest decision level the conflict clause is unit.

4.5 Search

The search method in Figure 8 works basically as the pseudo-code presented in
section 3 but with the following additions:

Restarts. The first argument of the search method is “nof conflicts”. The search for a
model or a contradiction will only be conducted for this many conflicts. If failing
to solve the SAT-problem within the bound, all assumptions will be canceled and
⊥ returned. The surrounding solver strategy will then restart the search.

Reduce. The second argument, “nof learnts”, sets an upper limit on the number of
learnt clauses that are kept. Once this number is reached, reduceDB() is called.
Clauses that are currently the reason for a variable assignment are said to be locked
and cannot be removed by reduceDB(). For this reason, the limit is extended by the
number of assigned variables, which approximates the number of locked clauses.

Parameters. The third argument groups some tuning constants. In the current version
of MINISAT, it only contains the decay factors for variables and clauses.

Root-level. To support incremental SAT, the concept of a root-level is introduced. The
root-level acts a bit as a new top-level. Above the root-level are the incremental
assumptions passed to solve() (if any). The search procedure is not allowed to
backtrack above the root-level, as this would change the incremental assumptions.
If we reach a conflict at root-level, the search will return False.
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Fig. 7. Analyze a conflict and produce a reason clause. Pre-conditions: (1)
’out learnt’ is assumed to be cleared. (2) Current decision level must be greater
than root level. Post-conditions: (1) ’out learnt[0]’ is the asserting literal at
level ’out btlevel’. Effect: Will undo part of the trail, but not beyond last deci-
sion level. record(): records a clause and drives backtracking; ’clause[0]’ must
contain the asserting literal.

A problem with the approach presented here is conflict clauses that are unit. For
these, analyze() will always return a backtrack level of 0 (top-level). As unit clauses
are treated specially, they are never added to the clause database. Instead they are
enqueued as facts to be propagated (see the code of Clause new()). There would be
no problem if this was done at top-level. However, the search procedure will only
undo until root-level, which means that the unit fact will be enqueued there. Once
search() has solved the current SAT-problem, the surrounding solver strategy will
undo any incremental assumption and put the solver back at the top-level. By this
the unit clause will be forgotten, and the next incremental SAT problem will have
to infer it again. There are many possible solutions to this problem. In practice we
have not seen any performance difference in our applications [ES03, CS03].
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Simplify. Provided the root-level is 0 (no assumptions were passed to solve()) the
search will return to the top-level every time a unit clause is learnt. At that point
it is legal to call simplifyDB() to simplify the problem constraints according to the
top-level assignment. If a stronger simplifier than presented here is implemented,
a contradiction may be found, in which case the search should be aborted. As our
simplifier is not stronger than normal propagation, it can never reach a contradic-
tion, so we ignore the return value of simplify().

4.6 Activity Heuristics and Constraint Removal

In the VarOrder data type of MINISAT, the list of variables is kept sorted on
activity at all time. The search will always accurately choose the most active
variable. The original suggestion for the VSIDS dynamic variable ordering was
to sort periodically. MINISAT implements variable decay by bumping with larger
and larger numbers. Only when the limit of what is representable by a floating
point number is reached need activities be scaled down.

Activity for conflict clauses are also maintained. The method for reducing the
set of learnt clauses based on this activity, as well as the top-level simplification
procedure can be found in Figure 9.

4.7 Top-Level Solver

The method implementing MINISAT’s top-level strategy can be found in Fig-
ure 8. It is responsible for making the incremental assumptions and setting
the root level. Furthermore, it completes the simple backtracking search with
restarts, which are performed less and less frequently. After each restart, the
number of allowed learnt clauses is increased.

5 Conclusions and Related Work

By this paper, we have provided a minimal reference implementation of a mod-
ern conflict-driven SAT-solver. We have tested MINISAT against ZCHAFF and
BERKMIN 5.61 on 177 SAT-instances. These instances were used to tune SATZOO
for the SAT 2003 Competition. As SATZOO solved more instances and series of
problems, ranging over all three categories (industrial, handmade, and random),
than any other solver in the competition, we feel that this is a representative
test-set. No extra tuning was done in MINISAT; it was just run once with the
constants presented in the code. At a time-out of 10 minutes, MINISAT solved
158 instances, while ZCHAFF solved 147 instances and BERKMIN 157 instances.

Another approach to incremental SAT and non-clausal constraints was pre-
sented by Aloul, Ramani, Markov, and Sakallah in their work on SATIRE and PBS
[WKS01, AR+02]. Our implementation differs in that it has a simpler notion of
incrementality, and that it contains an interface for non-clausal constraints.

Finally, a set of reference implementations of modern SAT-techniques is
present in the OPENSAT project. However, the project aim for completeness
rather than minimal exposition, as we have chosen in this paper.
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Fig. 8. search(): assumes and propagates until a conflict is found, from which
a conflict clause is learnt and backtracking performed until search can continue.
Pre-condition: root level == decisionLevel(). solve(): Pre-condition: If as-
sumptions are used, simplifyDB() must be called right before using this method.
If not, a top-level conflict (resulting in a non-usable internal state) cannot be
distinguished from a conflict under assumptions. assume(): returns False if
immediate conflict. Pre-condition: propagation queue is empty. undoOne():
unbinds the last variable on the trail. cancel(): reverts to the state before last
push(). Pre-condition: propagation queue is empty. cancelUntil(): cancels
several levels of assumptions.
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Fig. 9. reduceDB(): Remove half of the learnt clauses minus some locked
clauses. A locked clause is a clauses that is reason to a current assignment.
Clauses below a threshold activity are also be removed. simplifyDB(): Top-
level simplify of constraint database. Will remove any satisfied constraint and
simplify remaining constraints under current (partial) assignment. If a top-level
conflict is found, False is returned. Pre-condition: Decision level must be zero.
Post-condition: Propagation queue is empty.
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