Verifun : A Theorem Prover Using
Lazy Proof Explication

Rajeev Joshi

s

NASA/JPL Laboratory for Reliable Software

Joint work done at Compag/HP SRC with
Cormac Flanagan, Jim Saxe and Xinming Ou

e Shou

e Shou

Theorem Provers for
Static Checking
d require little or no user interaction

d produce counterexamples

* Should support various theories

— EUF, linear arithmetic, theory of arrays

— quantifiers, if possible

* Efficiency is more important than completeness

Theorem Provers using
Cooperating Decision Procedures
* |ntroduced by Nelson and Oppen [TOPLAS 1979]

* Combines decision procedures for a set of disjoint
theories, producing a procedure for their union
* Key ideas

— introduce auxiliary variables to remove mixed application of
function symbols

— theories propagate discovered equalities to each other

Example

e Suppose we want to check satisfiability of
(x=y) A (f(x)<f(y))

* Introduce auxiliary variables v, w

x=y) A (Vv < w)
A (v=1x) A (w=t(y))

Checking (x=y) A (f(x) <f(y))

Theory
Manager
X=y
V<W
EUF Arithmetic
Decision Decision
Procedure Procedure

Checking (x=y) A (f(x) <f(y))

Theory
Manager
X=y
V<W
EUF Arithmetic
Decision V=W ~ Decision
Procedure Procedure

Checking (x=y) A (f(x) <f(y))

Theory
Manager

EUF
Decision
Procedure

\co ntradiction

X=y
V<W

Arithmetic
Decision
Procedure

Backtracking in Nelson-Oppen

e Consider

Backtracking in Nelson-Oppen

e Consider

Backtracking in Nelson-Oppen

e Consider

10

Backtracking in Nelson-Oppen

e Consider

U \
\
\
\
\
\
\

azb Vo @) #fc)

fla)2fl) b=c

Inconsistency detected by the EUF procedure.
So backtrack, and try other branch.

11

Backtracking in Nelson-Oppen

e Consider

12

Backtracking in Nelson-Oppen

e Consider

13

Backtracking in Nelson-Oppen

e Consider

This assignment is also inconsistent with EUF.
There are no branches left, so the formula is unsatisfiable.

14

Simplify

» Written by Greg Nelson, Dave Detlefs and Jim Saxe

e Supports

— EUF (using the E-graph data structure)
— rational linear arithmetic (using the Simplex algorithm)
— quantified formulae involving 3 and YW (using matching)

* Very successful: used as the engine in many checkers
- ESC/Modula-3, ESC/Java, SLAM, ...

15

Experience with Simplify

* Backtracking search is too slow
— Far surpassed by recent advances in SAT solving
* |Inconsistencies reveal only one bit of information

— Theory modules repeatedly rediscover the “same”
inconsistencies

16

A Prover using Lazy Proof Explication

* Key ideas

— use a fast SAT solver to find candidate truth assignments to
atomic formulae

— have theory modules produce compact “proofs” that are
added to the SAT problem to reject all truth assignments
containing the “same” inconsistency

* Requires

— proof-explicating theory modules

17

Example using lazy proof explication
e Suppose we want to check satisfiability of
(@=b) A (f@)#f(b) v b=c) A (f(a)#f(c))
* Encode it in propositional logic
o A ([0 Vo r) A S

where p denotes (a=b), and so on

18

Example using lazy proof explication

Theory Manager

PA(QVI)AS

Equality
Decision
Procedure

SAT Solver

Mapping

19

Example using lazy proof explication

PA@VI)AS
Theory Manager SAT Solver
) P, q, T, S
Mapping
p: a=b
q: f(a)=f(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure

20

Example using lazy proof explication

PA@VI)AS
Theory Manager SAT Solver
a=b B
)) _Ir1 S
f(a)=(b) i -
b=C ; Zp_%'ng
f(a)#f(c S
(@)= q. f(a)zf(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure

21

Example using lazy proof explication

PA@VI)AS
Theory Manager SAT Solver
a=b B
) !_Iris
f(a)(b) P-4 -
- Inconsistent: p: Z[)—%ng
f(a)=f(c | 9T
el azb = f(a)={(b) g: f(a)zf(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure

Example using lazy proof explication

PA(QVTI)AS
A\ p = _Iq
Theory Manager " SAT Solver
Mapping
Inconsistent: p: a=b
a=b = f(a)=f(b) q: f(a)=f(b)
Equallty r b=c
Decision g f(a)zf(c)
Procedure

23

Example using lazy proof explication

PA(QVI)AS
A P=70
Theory Manager " SAT Solver
) p,q, T, S
Mapping
p: a=b
q: f(a)=f(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure

24

Example using lazy proof explication

PA(QVI)AS
A\ p = _Iq
Theory Manager " SAT Solver
a=b D
) 1) r! S
f(a):f(b/ P, = |
Mapping
= p: a=b
il q: f(a)zf(b)
Equallty r b=c
Decision g f(a)zf(c)
Procedure

25

Example using lazy proof explication

Theory Manager

a=b

f(a)=1(b)
f(at;;?(c) Inconsistent:
a=b A b=c = f(a)=f(c)

Equality
Decision
Procedure

PAQVI)AS
A P="(Q
SAT Solver
) p,q,r,S
Mapping
p: a=b
q: f(a)=f(b)

26

Example using lazy proof explication

PA(QVI)AS
A Pp=7Q
A (p A= —s)
Theory Manager " SAT Solver
Mapping
/nconsistent: p: a=b
a=b A b=c = f(a)=f(c) q: f(a)zf(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure

27

Example using lazy proof explication

PA(QVI)AS
AN p=7Q
AN PATr= ﬁs)>
Theory Manager SAT Solver
i Unsatisfiable
Mapping
p: a=b
q: f(a)=f(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure

28

Definitions

* Aliteral is an atomic formula or its negation, e.g, (a<b)

* A quantified formula is either a \7-formula or its negation
e.g., ~y.F where F is a formula (we also write this as 3y.—F)

* A formula is an arbitrary boolean combination of
atomic formulae and quantified formulae,
e.g, (b>0 = Wx.(PXx) Vv Iy.—~Q(xy)))

* A monome is a set of literals and quantified formulae,
e.g., {b>0,-Q(ab), ¥x.(P(x) Vv Iy.-~Q(xy)) }

29

Two key procedures

* satisfyProp(F)
— returns either UNSAT, or

— amonome m representing a satisfying boolean assignment to
the atomic formulae and outermost quantified formulae in F

* satisfyTheories(m)

— returns either SAT, or

— aformula F such that
F is a tautology wrt the underlying theories, and
(F Am) is propositionally unsatisfiable

30

Algorithm for quantifier-free formulae

* satisfy(F) { /* returns UNSAT or a monome satisfying F */
E :=true
while (true) {
m := satisfyProp(F A E)
If (m = UNSAT) {return UNSAT }
else {
R := satisfyTheories(m)
If (R =SAT) {returnm }
else{E.=E AR}
}
}

31

Algorithm for formulae with quantifiers

* satisfy(F) { /* returns UNSAT or a monome satisfying F */
E :=true
while (true) {
m := satisfyProp(F A E)
If (m = UNSAT) {return UNSAT }
else {
R := checkMonome(m)
If (R =SAT) {returnm }
else{E.=E AR}
}
}

32

Procedure checkMonome(..)

* checkMonome(m) { /* returns SAT or an explicated proof */
R := satisfyTheories(m)
If (R #SAT){ returnR }
if m contains 3x.F(x)
such that (m A =F(V_)) is propositionally satisfiable
{return (IxF(x) = FV)}
if m contains Wx.F(x) such that for some substitution o,
(m A —o(F)) is propositionally satisfiable
{return (Vx.F(x)) = o(F)}
return SAT
}

where VF is a fresh, unique variable for given formula F

33

Quantified formula example

e Suppose we want to check satisfiability of

b>1
Ab>0 = Vx(PX Vv 3Iy.-Qxy))
A —P(a)
A Vz.Q(a,2)

34

Quantified formula example

Suppose that the SAT solver assigns true to the green atomic
formulae, and false to the red atomic formulae
b > 1
Ab>0 = Wx(PX Vv 3Iy.-Qxy))
A —P(a)
A Vz.Q(a,2)

But this is inconsistent with arithmetic
Suppose satisfyTheories(..) explicates the proof
b>=1= b>0)

35

Quantified formula example

» We add the explicated proof to the original problem, and invoke
the SAT solver again. It assigns true to all atomic formulae:
b > 1
Ab>0 = Vx(PX Vv 3Iy.-Qxy))
A —P(a)
A Vz.Q(a,2)
Ab=1= b>0)

The theories do not detect any inconsistency, and there is no
existentially quantified formula, so we invoke the matcher.
Suppose the matcher produces the instance x:=a

36

Quantified formula example

* We add the new instance to the problem as a tautology:
b>1
Ab>0 = Wx(Px) Vv Iy—Qxy))
A —P(a)
A YVz.Q(a,2)
Ab=1= b>0)
A Vx(P(X) v Iy.-Qxy)) = P@ v Ty.-Qay)

37

Quantified formula example

* |nvoking the SAT solver now yields the following assignment
b > 1
Ab>0 = Wx(Px) Vv Iy—Qxy))
A —P(a)
A YVz.Q(a,2)
Ab=1= b>0)
A Vx(P(x) vV 3y-Qxy) = P@) v 3y.-Q@ay)
The theories detect no inconsistency, so we assert y.—Q(a,y)
This leads to creation of a skolem constant V_and explication of

dy.-Q@y) = —Qfav)

38

Quantified formula example

* \We add the explicated proof
b > 1
Ab>0 = Vx(PX Vv 3Iy.-Q(xy))
A —P(a)
A Vz.Q(a,2)
Ab=1= b>0)
A VX(P(X) Vv -Vy.QKxy) = P@) v 3y.-Q@ay)
A dy—Qay) = -Q@Vv)

39

Quantified formula example

* |nvoking the SAT solver now yields the following assignment
b > 1
Ab>0 = Vx(PX Vv 3Iy.-Q(xy))
A —P(a)
A Vz.Q(a,2)
Ab=1= Db>0)
A Yx(PX) v Jy.—Q(xy) = P@) v Iy.-Q(a,y)
A dy—Qay) = -Q@Vv)
This Is also consistent with the theories, so we invoke the
matcher, which instantiates Vz.Q(a,z) with z .= V_

40

Quantified formula example

* This results in the following formula
b > 1
Ab>0 = Vx(PX Vv 3Iy.-Q(xy))
A —P(a)
A Vz.Q(a,2)
Ab=1= Db>0)
A Vx(P(X) vV 3Iy.-Qxy) = P@) v 3y.-Qay)
A dy—Qay) = -Q@Vv)
A VzQaz) = QaV,)
which is propositionally unsatisfiable

41

Verifun

* |Intended to be a replacement for Simplity

* Written in Java (~10,500 lines) and in C (~800 lines)
e Supports

e equality with uninterpreted function symbols (implemented
using the E-graph data structure)

* rational linear arithmetic (based on Nelson' @daptation of the
Simplex algorithm; extended with proof-generation by
summer intern Xinming Ou, Princeton)

e quantifiers (based on matching upto equivalence)

42

Verifun performance

e Benchmark suite:

— 38 processor & cache verification problems (provided by the
UCLID group at CMU)

- 41 timed automata verification problems in the postoffice suite
(provided by the Math-SAT designers)

* None of the benchmarks included quantified formulae

43

Verifun vs. Simplify
on the UCLID benchmarks

fEa TR T T W W L N
2 '\.ﬁ.-' ..’A‘A"h’. 3 .a
[

0.01 0.10 1.0 10.00 100.001000.00
Verifun

44

CvC

Verifun vs. CVC
on the UCLID benchmarks

1 BB X X XRKX
X X
100.00 X X
)g(xx.'
10.00 XX X X
x;

1.00 .

0.10

0.01

0.01 0.10 1.0 10.00 100.001000.00
Verifun

45

SVC

Verifun vs. SVC
on the UCLID benchmarks

1HBBIEL %

100.00

10.00

1.00

0.10

0.01

0.01 0.10 1.00 10.00 100.001000.00
Verifun

46

SVC

Verifun vs. SVC
on the Math-SAT benchmarks

| bR XX XX

100.00

10.00

1.00

0.10

0.01

0.01 0.10 1.00 10.00 100.001000.00
Verifun

47

Design choices in Verifun

Laziness in theory invocation
Complete vs. partial truth assignments
Detecting multiple inconsistencies
Incremental SAT solving
Backtrackable theories

Eager proof introduction

48

Laziness in Theory Invocation

* |n Verifun, theories are invoked only after the SAT
solver has found a candidate assignment

* An alternative is to invoke theories eagerly, as the SAT
solver makes choices in its backtracking search

(cf. CVC, Simplify)

* An advantage of the Verifun approach is the ability to
use any off-the-shelf SAT solver (zChaff, Berkmin,...)

49

Complete vs. partial truth assignments

* Assignment returned by SAT solver assigns truth
values to all atomic formulae

* Asserting all these formulae might cause theories to do
unnecessary work

* An optimisation in Verifun is to determine a minimal
subset of literals which suffices to satisfy the SAT
problem, and assert only these literals to the theories

50

Results with partial assignments

TBHEE

XX
Sl

100.0
10.0

1.0

Complete truth assignment

0.1

0.1 1.0 10.0 100.0 1000.0

Partial truth assignment

51

Detecting multiple inconsistencies

* Useful when used with lazy theory invocation

* Given an assignment from the SAT solver, detect as
many inconsistencies as possible

* Can reduce number of round-trips to the SAT solver
* Best done with backtrackable theories

* Verifun asserts all the equalities first, then checks
each disequality in turn for inconsistency

52

Incremental SAT solving

* The sequence of CNF formulae given to the SAT
solver forms a strengthening chain

* Any assignment that does not satisfy the current
problem can safely be rejected in the future

* Verifun used a simple naive hack to zChaff;
now zChaff supports incremental solving

53

Results with naive incremental SAT

Lime=sok
10000 — i B
- W
g 1000 — H}E'i i
= X,
-l
E i ® oL
% 10D — -
: e
= i
= 1o o
I:I.l . LI IIIIIII I 1 IIIII1 M1 IIIIIII | N | IIIII1
0.l 1.0 oo 1000 10oa0
O nline SAT solver

54

Backirackable Theories

* With incremental SAT, consecutive assignments
returned by the SAT solver would differ only in the
assignment to a small suffix of literals

* So it would be advantageous to design theories that do
not have to infer the consequences of the common
prefix all over again

* Forinstance: assert literals to theories in increasing
order of “decision depth” assigned by the SAT solver

55

Eager Proof Introduction

* |nspired by the work of Bryant, German and Velev
TOCL 2000]

* |dea: Augment initial SAT problem with additional
clauses that encode appropriate inference rules from
the theories

* |n the extreme case, one can encode enough rules so
that only one invocation of the SAT solver is required —
the “purely eager” approach

56

Eager Proof Introduction

* Reduces the number of round-trips to the SAT solver

* But, it is non-trivial to design a procedure that
generates a sufficient set of clauses without producing
too many clauses

* |t seems unlikely that one could deal with arbitrary
quantifiers using a purely eager approach

57

Verifun experiment with eager transitivity

HBEs"

100.0

10.0

1.0

Kager explication of transitivity

0.1
0.1 1.0 10.0 100.0 1000.0

Lazy explication of transitivity

58

Granularity of Proof Explication

* Suppose the equality decision theory is given
a=b A b=c A f(a) # f(c)

* The theory of equality could generate the proof
(a=b A b=c) = f(a) = f(c)
* Alternatively, it could generate two proofs
(a=b A b=Cc) = a=c (transitivity)
a=C = f(a) = f(c) (congruence)

59

Granularity of Proof Explication

» Smaller proofs could reduce the number of rounds

* Forinstance, the proof
a=c = f(a) = f(c)
might be useful when a=c holds for a different reason
(say we had a=k A k=C)

* One complication is that finer-grained explication
introduces new atomic formulae

60

Verifun's proof explication

* Somewhat fine-grained proof explication

e Given (a=b A b=c A c=d A f(a) # f(d)),
Verifun produces (a=b A b=c A c=d = a=d)
and (a=d = f(a)=f(d))
instead of
(a=b Ab=c = a=Cc) (a=c Ac=d = a=d)
and (a=d = f(a)=f(d))

61

Coarse- vs fine-grained proofs

Towe"

100.0

10.0

Coarse-grain explication
5
)

0.1
0.1 1.0 10.0 100.0 1000.0

Fine-grain explication

62

Aside: Checking Verifun's proofs

* The “proofs” explicated by Verifun's theories are
universally valid (in the context of the theories)

* Checking each such proof is easy, since the steps are
quite small

* We have used Simplify to check Verifun's proofs, in
order to find bugs

63

Related Work

e CVC [Dill, Stump, Barrett], CVC-Lite [Barrett, Berezin]
ICS [de Moura, Ruess, Shankar,]

Math-SAT [Audemard, Bertoli, Cimatti, Kornilowicz, Sebastiani]

DP
JC

_(T) [Ganzinger, Hagen, Nieuwenhius,Oliveras, Tinelli]

D [Bryant, Velev, Strichman, Seshia, Lahiri]

* Zapato [Ball,Cook,Lahiri,Zhang]

* TSAT++ [Armando,Castellini,Giunchiglia,dini,Maratea]

64

Further Information

* Theorem Proving Using Lazy Proof Explication
Flanagan, Joshi, Ou, Saxe
CAV 2003

 An Explicating Theorem Prover for Quantified Formulas
Flanagan, Joshi, Saxe
HP Tech Report (in preparation)

65

Additional Material

66

Quantifier Instantiation using matching

* Associate with each quantified formula a pattern,
e.g, Vx.(f(x)= f(f(x)))
* Produce quantifier instances for terms that match the
pattern (match upto equivalence)
* Example
a=b A f(a)=b A f(b) # f(a)
A Yx.(f(x) = f(f(x)))

* Matcher produces instantiation x := a

67

Procedure checkMonome(..)

* checkMonome(m) { /* returns SAT or an explicated proof */
R := satisfyTheories(m)
If (R # SAT){ return R }
if m contains Ax.F(x)
such thatm A —-F(x < V) is propositionally satisfiable

{return (3xF(x) = FV)}

if m contains Wx.F(x) for some matching substitution o
such that m A —o(F) is propositionally satisfiable
{return (Vx.F(x)) = o(F)} z\

return SAT requires calls to
) satistyProp(..)

68

Procedure checkMonome(..)

* checkMonome(m) { /* returns SAT or an explicated proof */
R := satisfyTheories(m)
If (R # SAT){ return R }
if m contains Ax.F(x)
such thatm A —-F(x < V) is propositionally satisfiable

{return (3xF(x) = FV)}

if m contains Wx.F(x) for some matching substitution o

such that m A —o(F) is proposmonallziisfiable

{return (VXx.F(X)) = o(F)}
return SAT Note that these guards
} can be weakened

69

A simpler checkMonome(..)

* checkMonome(m) { /* returns SAT or an explicated proof */
R := satisfyTheories(m)
If (R #SAT){ returnR }
if m contains 3x.F(x)
such that 3x.F(x) is not in E
{add IxF(x) to E ; return (3xF(x) = F(V)}
if m contains Vx.F(x) for some matching substitution o
such that (o,¥x.F(x)) is notin A
{add (o, VXx.F(x))to A; return (Vx.F(x)) = o(F)}
return SAT
}

where E,A record the instantiated quantified formulae

/70

