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Theorem Provers for
Static Checking
d require little or no user interaction

d produce counterexamples

* Should support various theories

— EUF, linear arithmetic, theory of arrays

— quantifiers, if possible

* Efficiency is more important than completeness



Theorem Provers using
Cooperating Decision Procedures
* |ntroduced by Nelson and Oppen [TOPLAS 1979]

* Combines decision procedures for a set of disjoint
theories, producing a procedure for their union
* Key ideas

— introduce auxiliary variables to remove mixed application of
function symbols

— theories propagate discovered equalities to each other



Example

e Suppose we want to check satisfiability of
(x=y) A (f(x)<f(y))

* Introduce auxiliary variables v, w

x=y) A (Vv < w)
A (v=1x) A (w=t(y))



Checking (x=y) A (f(x) <f(y))
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Checking (x=y) A (f(x) <f(y))
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Backtracking in Nelson-Oppen

e Consider
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Inconsistency detected by the EUF procedure.
So backtrack, and try other branch.
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Backtracking in Nelson-Oppen

e Consider
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Backtracking in Nelson-Oppen

e Consider
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Backtracking in Nelson-Oppen

e Consider

This assignment is also inconsistent with EUF.
There are no branches left, so the formula is unsatisfiable.
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Simplify

» Written by Greg Nelson, Dave Detlefs and Jim Saxe

e Supports

— EUF (using the E-graph data structure)
— rational linear arithmetic (using the Simplex algorithm)
— quantified formulae involving 3 and YW (using matching)

* Very successful: used as the engine in many checkers
- ESC/Modula-3, ESC/Java, SLAM, ...
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Experience with Simplify

* Backtracking search is too slow
— Far surpassed by recent advances in SAT solving
* |Inconsistencies reveal only one bit of information

— Theory modules repeatedly rediscover the “same”
inconsistencies

16



A Prover using Lazy Proof Explication

* Key ideas

— use a fast SAT solver to find candidate truth assignments to
atomic formulae

— have theory modules produce compact “proofs” that are
added to the SAT problem to reject all truth assignments
containing the “same” inconsistency

* Requires

— proof-explicating theory modules
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Example using lazy proof explication
e Suppose we want to check satisfiability of
(@=b) A (f@)#f(b) v b=c) A (f(a)#f(c))
* Encode it in propositional logic
o A ([ 0 Vo r) A S

where p denotes (a=b), and so on
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Example using lazy proof explication

Theory Manager

PA(QVI)AS

Equality
Decision
Procedure

SAT Solver

Mapping
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Example using lazy proof explication

PA@VI)AS
Theory Manager SAT Solver
) P, q, T, S
Mapping
p: a=b
q: f(a)=f(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure
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Example using lazy proof explication

PA@VI)AS
Theory Manager SAT Solver
a=b B
) ) _Ir1 S
f(a)=(b) i -
b=C ; Zp_%'ng
f(a)#f(c S
(@)= q. f(a)zf(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure
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Example using lazy proof explication

PA@VI)AS
Theory Manager SAT Solver
a=b B
) !_Iris
f(a)(b) P-4 -
- Inconsistent: p: Z[)—%ng
f(a)=f(c | 9T
el azb = f(a)={(b) g: f(a)zf(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure




Example using lazy proof explication

PA(QVTI)AS
A\ p = _Iq
Theory Manager " SAT Solver
Mapping
Inconsistent: p: a=b
a=b = f(a)=f(b) q: f(a)=f(b)
Equallty r b=c
Decision g f(a)zf(c)
Procedure
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Example using lazy proof explication

PA(QVI)AS
A P=70
Theory Manager " SAT Solver
) p,q, T, S
Mapping
p: a=b
q: f(a)=f(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure
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Example using lazy proof explication

PA(QVI)AS
A\ p = _Iq
Theory Manager " SAT Solver
a=b D
) 1 ) r! S
f(a):f(b/ P, = |
Mapping
= p: a=b
il q: f(a)zf(b)
Equallty r b=c
Decision g f(a)zf(c)
Procedure
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Example using lazy proof explication

Theory Manager

a=b

f(a)=1(b)
f(at;;?(c) Inconsistent:
a=b A b=c = f(a)=f(c)

Equality
Decision
Procedure

PAQVI)AS
A P="(Q
SAT Solver
) p,q,r,S
Mapping
p: a=b
q: f(a)=f(b)
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Example using lazy proof explication

PA(QVI)AS
A Pp=7Q
A (p A= —s)
Theory Manager " SAT Solver
Mapping
/nconsistent: p: a=b
a=b A b=c = f(a)=f(c) q: f(a)zf(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure
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Example using lazy proof explication

PA(QVI)AS
AN p=7Q
AN PATr= ﬁs)>
Theory Manager SAT Solver
i Unsatisfiable
Mapping
p: a=b
q: f(a)=f(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure
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Definitions

* Aliteral is an atomic formula or its negation, e.g, (a<b)

* A quantified formula is either a \7-formula or its negation
e.g., ~y.F where F is a formula (we also write this as 3y.—F)

* A formula is an arbitrary boolean combination of
atomic formulae and quantified formulae,
e.g, (b>0 = Wx.(PXx) Vv Iy.—~Q(xy)))

* A monome is a set of literals and quantified formulae,
e.g., {b>0,-Q(ab), ¥x.(P(x) Vv Iy.-~Q(xy)) }
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Two key procedures

* satisfyProp(F)
— returns either UNSAT, or

— amonome m representing a satisfying boolean assignment to
the atomic formulae and outermost quantified formulae in F

* satisfyTheories(m)

— returns either SAT, or

— aformula F such that
F is a tautology wrt the underlying theories, and
(F Am) is propositionally unsatisfiable
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Algorithm for quantifier-free formulae

* satisfy(F) { /* returns UNSAT or a monome satisfying F */
E :=true
while (true) {
m := satisfyProp(F A E)
If (m = UNSAT) {return UNSAT }
else {
R := satisfyTheories(m)
If (R =SAT) {returnm }
else{E.=E AR}
}
}
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Algorithm for formulae with quantifiers

* satisfy(F) { /* returns UNSAT or a monome satisfying F */
E :=true
while (true) {
m := satisfyProp(F A E)
If (m = UNSAT) {return UNSAT }
else {
R := checkMonome(m)
If (R =SAT) {returnm }
else{E.=E AR}
}
}
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Procedure checkMonome(..)

* checkMonome(m) { /* returns SAT or an explicated proof */
R := satisfyTheories(m)
If (R #SAT){ returnR }
if m contains 3x.F(x)
such that (m A =F(V_)) is propositionally satisfiable
{return (IxF(x) = FV )}
if m contains Wx.F(x) such that for some substitution o,
(m A —o(F)) is propositionally satisfiable
{return (Vx.F(x)) = o(F)}
return SAT
}

where VF is a fresh, unique variable for given formula F
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Quantified formula example

e Suppose we want to check satisfiability of

b>1
Ab>0 = Vx(PX Vv 3Iy.-Qxy))
A —P(a)
A Vz.Q(a,2)
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Quantified formula example

Suppose that the SAT solver assigns true to the green atomic
formulae, and false to the red atomic formulae
b > 1
Ab>0 = Wx(PX Vv 3Iy.-Qxy))
A —P(a)
A Vz.Q(a,2)

But this is inconsistent with arithmetic
Suppose satisfyTheories(..) explicates the proof
b>=1= b>0)
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Quantified formula example

» We add the explicated proof to the original problem, and invoke
the SAT solver again. It assigns true to all atomic formulae:
b > 1
Ab>0 = Vx(PX Vv 3Iy.-Qxy))
A —P(a)
A Vz.Q(a,2)
Ab=1= b>0)

The theories do not detect any inconsistency, and there is no
existentially quantified formula, so we invoke the matcher.
Suppose the matcher produces the instance x:=a
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Quantified formula example

* We add the new instance to the problem as a tautology:
b>1
Ab>0 = Wx(Px) Vv Iy—Qxy))
A —P(a)
A YVz.Q(a,2)
Ab=1= b>0)
A Vx(P(X) v Iy.-Qxy)) = P@ v Ty.-Qay)
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Quantified formula example

* |nvoking the SAT solver now yields the following assignment
b > 1
Ab>0 = Wx(Px) Vv Iy—Qxy))
A —P(a)
A YVz.Q(a,2)
Ab=1= b>0)
A Vx(P(x) vV 3y-Qxy) = P@) v 3y.-Q@ay)
The theories detect no inconsistency, so we assert y.—Q(a,y)
This leads to creation of a skolem constant V_and explication of

dy.-Q@y) = —Qfav)
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Quantified formula example

* \We add the explicated proof
b > 1
Ab>0 = Vx(PX Vv 3Iy.-Q(xy))
A —P(a)
A Vz.Q(a,2)
Ab=1= b>0)
A VX(P(X) Vv -Vy.QKxy) = P@) v 3y.-Q@ay)
A dy—Qay) = -Q@Vv)
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Quantified formula example

* |nvoking the SAT solver now yields the following assignment
b > 1
Ab>0 = Vx(PX Vv 3Iy.-Q(xy))
A —P(a)
A Vz.Q(a,2)
Ab=1= Db>0)
A Yx(PX) v Jy.—Q(xy) = P@) v Iy.-Q(a,y)
A dy—Qay) = -Q@Vv)
This Is also consistent with the theories, so we invoke the
matcher, which instantiates Vz.Q(a,z) with z .= V_
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Quantified formula example

* This results in the following formula
b > 1
Ab>0 = Vx(PX Vv 3Iy.-Q(xy))
A —P(a)
A Vz.Q(a,2)
Ab=1= Db>0)
A Vx(P(X) vV 3Iy.-Qxy) = P@) v 3y.-Qay)
A dy—Qay) = -Q@Vv)
A VzQaz) = QaV,)
which is propositionally unsatisfiable
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Verifun

* |Intended to be a replacement for Simplity

* Written in Java (~10,500 lines) and in C (~800 lines)
e Supports

e equality with uninterpreted function symbols (implemented
using the E-graph data structure)

* rational linear arithmetic (based on Nelson' @daptation of the
Simplex algorithm; extended with proof-generation by
summer intern Xinming Ou, Princeton)

e quantifiers (based on matching upto equivalence)
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Verifun performance

e Benchmark suite:

— 38 processor & cache verification problems (provided by the
UCLID group at CMU)

- 41 timed automata verification problems in the postoffice suite
(provided by the Math-SAT designers)

* None of the benchmarks included quantified formulae
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Verifun vs. Simplify
on the UCLID benchmarks
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CvC

Verifun vs. CVC
on the UCLID benchmarks
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SVC

Verifun vs. SVC
on the UCLID benchmarks
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SVC

Verifun vs. SVC
on the Math-SAT benchmarks
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Design choices in Verifun

Laziness in theory invocation
Complete vs. partial truth assignments
Detecting multiple inconsistencies
Incremental SAT solving
Backtrackable theories

Eager proof introduction
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Laziness in Theory Invocation

* |n Verifun, theories are invoked only after the SAT
solver has found a candidate assignment

* An alternative is to invoke theories eagerly, as the SAT
solver makes choices in its backtracking search

(cf. CVC, Simplify)

* An advantage of the Verifun approach is the ability to
use any off-the-shelf SAT solver (zChaff, Berkmin,...)
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Complete vs. partial truth assignments

* Assignment returned by SAT solver assigns truth
values to all atomic formulae

* Asserting all these formulae might cause theories to do
unnecessary work

* An optimisation in Verifun is to determine a minimal
subset of literals which suffices to satisfy the SAT
problem, and assert only these literals to the theories
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Results with partial assignments
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Detecting multiple inconsistencies

* Useful when used with lazy theory invocation

* Given an assignment from the SAT solver, detect as
many inconsistencies as possible

* Can reduce number of round-trips to the SAT solver
* Best done with backtrackable theories

* Verifun asserts all the equalities first, then checks
each disequality in turn for inconsistency
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Incremental SAT solving

* The sequence of CNF formulae given to the SAT
solver forms a strengthening chain

* Any assignment that does not satisfy the current
problem can safely be rejected in the future

* Verifun used a simple naive hack to zChaff;
now zChaff supports incremental solving
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Results with naive incremental SAT
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Backirackable Theories

* With incremental SAT, consecutive assignments
returned by the SAT solver would differ only in the
assignment to a small suffix of literals

* So it would be advantageous to design theories that do
not have to infer the consequences of the common
prefix all over again

* Forinstance: assert literals to theories in increasing
order of “decision depth” assigned by the SAT solver
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Eager Proof Introduction

* |nspired by the work of Bryant, German and Velev
TOCL 2000]

* |dea: Augment initial SAT problem with additional
clauses that encode appropriate inference rules from
the theories

* |n the extreme case, one can encode enough rules so
that only one invocation of the SAT solver is required —
the “purely eager” approach
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Eager Proof Introduction

* Reduces the number of round-trips to the SAT solver

* But, it is non-trivial to design a procedure that
generates a sufficient set of clauses without producing
too many clauses

* |t seems unlikely that one could deal with arbitrary
quantifiers using a purely eager approach
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Verifun experiment with eager transitivity
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Granularity of Proof Explication

* Suppose the equality decision theory is given
a=b A b=c A f(a) # f(c)

* The theory of equality could generate the proof
(a=b A b=c) = f(a) = f(c)
* Alternatively, it could generate two proofs
(a=b A b=Cc) = a=c (transitivity)
a=C = f(a) = f(c) (congruence)

59



Granularity of Proof Explication

» Smaller proofs could reduce the number of rounds

* Forinstance, the proof
a=c = f(a) = f(c)
might be useful when a=c holds for a different reason
(say we had a=k A k=C)

* One complication is that finer-grained explication
introduces new atomic formulae
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Verifun's proof explication

* Somewhat fine-grained proof explication

e Given (a=b A b=c A c=d A f(a) # f(d)),
Verifun produces (a=b A b=c A c=d = a=d)
and (a=d = f(a)=f(d))
instead of
(a=b Ab=c = a=Cc) (a=c Ac=d = a=d)
and (a=d = f(a)=f(d))

61



Coarse- vs fine-grained proofs
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62



Aside: Checking Verifun's proofs

* The “proofs” explicated by Verifun's theories are
universally valid (in the context of the theories)

* Checking each such proof is easy, since the steps are
quite small

* We have used Simplify to check Verifun's proofs, in
order to find bugs
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e CVC [Dill, Stump, Barrett], CVC-Lite [Barrett, Berezin]
ICS [de Moura, Ruess, Shankar, ]

Math-SAT [Audemard, Bertoli, Cimatti, Kornilowicz, Sebastiani]
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_(T) [Ganzinger, Hagen, Nieuwenhius,Oliveras, Tinelli]
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Further Information

* Theorem Proving Using Lazy Proof Explication
Flanagan, Joshi, Ou, Saxe
CAV 2003

 An Explicating Theorem Prover for Quantified Formulas
Flanagan, Joshi, Saxe
HP Tech Report (in preparation)
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Additional Material
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Quantifier Instantiation using matching

* Associate with each quantified formula a pattern,
e.g, Vx.(f(x)= f(f(x)) )
* Produce quantifier instances for terms that match the
pattern (match upto equivalence)
* Example
a=b A f(a)=b A f(b) # f(a)
A Yx.(f(x) = f(f(x)) )

* Matcher produces instantiation x := a
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Procedure checkMonome(..)

* checkMonome(m) { /* returns SAT or an explicated proof */
R := satisfyTheories(m)
If (R # SAT){ return R }
if m contains Ax.F(x)
such thatm A —-F(x < V) is propositionally satisfiable

{return (3xF(x) = FV )}

if m contains Wx.F(x) for some matching substitution o
such that m A —o(F) is propositionally satisfiable
{return (Vx.F(x)) = o(F)} z\

return SAT requires calls to
) satistyProp(..)
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Procedure checkMonome(..)

* checkMonome(m) { /* returns SAT or an explicated proof */
R := satisfyTheories(m)
If (R # SAT){ return R }
if m contains Ax.F(x)
such thatm A —-F(x < V) is propositionally satisfiable

{return (3xF(x) = FV )}

if m contains Wx.F(x) for some matching substitution o

such that m A —o(F) is proposmonallziisfiable

{return (VXx.F(X)) = o(F)}
return SAT Note that these guards
} can be weakened
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A simpler checkMonome(..)

* checkMonome(m) { /* returns SAT or an explicated proof */
R := satisfyTheories(m)
If (R #SAT){ returnR }
if m contains 3x.F(x)
such that 3x.F(x) is not in E
{add IxF(x) to E ; return (3xF(x) = F(V)}
if m contains Vx.F(x) for some matching substitution o
such that (o,¥x.F(x)) is notin A
{add (o, VXx.F(x))to A; return (Vx.F(x)) = o(F)}
return SAT
}

where E,A record the instantiated quantified formulae
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