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Abstract

One of the most time consuming parts of debugging is
trying to locate a bug. In this context, there are two pow-
erful debugging aids which shorten debug time consider-
ably: reverse execution and dynamic slicing. Reverse exe-
cution eliminates the need for repetitive program restarts
every time a bug location is missed. Dynamic slicing, on
the other hand, isolates code parts that influence an erro-
neous variable at a program point. In this paper, we present
an approach which provides assembly level reverse execu-
tion along a dynamic slice. In this way, a programmer not
only can find the instructions relevant to a bug, but also can
obtain runtime values of variables in a dynamic slice while
traversing the slice backwards in execution history.

Reverse execution along a dynamic slice skips recover-
ing unnecessary program state; therefore, it is potentially
faster than full-scale reverse execution. The experimental
results with four different benchmarks show a wide range of
speedups from 1.3X for a small program with few data in-
puts to six orders of magnitude (1,928,500X) for 400x400
matrix multiply. Furthermore, our technique is very mem-
ory efficient. Our benchmark measurements show between
3.4X and 2240X memory overhead reduction as compared
to our implementation of the same features using traditional
approaches.

1. Introduction
Debugging is almost always an inevitable part of soft-

ware development. Many programmers spend as much or
more time on debugging a program as they spend on writ-
ing the program. Therefore, to increase software develop-
ment efficiency, it is essential to cut down the time spent on
debugging.

Debugging can be effectively performed by a runtime
interaction with the program under consideration. In this
way, a programmer can see how a program actually be-
haves given a set of inputs and thus can evaluate the anoma-
lies faster. One of the most time consuming parts of interac-

tive debugging is trying to locate a bug. A major contribut-
ing factor to this time loss is extra re-executions program-
mers have to go through if they (by executing the program
too far) lose the program context which leads to a bug.

In our previous work [3, 4], we introduced an assem-
bly instruction level reverse execution methodology for de-
bugging. By this methodology, a programmer can execute
a program backwards at the assembly instruction level to
any point in the program’s execution history without hav-
ing to restart the program. This potentially reduces the de-
bugging time significantly.

Assembly level reverse execution of a program is real-
ized by executing a reverse version of that program. This re-
verse version recovers the states the original program mod-
ifies. In short, our algorithm, which we name the reverse
code generation (RCG) algorithm, generates a reverse ver-
sion of a program by constructing the inverses of the as-
sembly instructions in the program. Typically, the RCG al-
gorithm constructs the inverse of an instruction such that
the constructed inverse regenerates the state destroyed by
that instruction without requiring any state saving. In occa-
sional cases where a state regeneration is not possible, how-
ever, the RCG algorithm resorts to state saving. Therefore,
the RCG algorithm not only provides reverse execution at
the assembly level, but also saves considerable memory.

Reverse execution at the assembly instruction level en-
ables an extremely fast backup when the target point at
which the programmer wants to recover the state is close
to the current program point. However, if the target point is
far away from the current program point in execution, undo-
ing each and every instruction inbetween might be tedious.
In such a case, it might be useful to undo only those instruc-
tions that are related to the bug(s) in the program.

In this paper, we extend the RCG algorithm with a pow-
erful debugging aid which is called dynamic slicing [2, 12].
Dynamic slicing isolates the statements that influence the
value of a variable at a program point in a specific execution
instance of the program. When the programmer realizes that
a variable has an incorrect value at a certain program point,
he or she can reverse execute the program along the corre-



sponding dynamic slice only. Thus, instructions that are ir-
relevant to the bug(s) in the program are skipped and a faster
return to the suspicious location can be achieved. Most de-
signers do not know which dynamic slice is needed until
the bug appears. In this case, our approach is faster than re-
running the application with the dynamic slice specified.

The contribution of this paper is two-fold. Our technique
not only provides a faster reverse execution via dynamic
slicing, but also contains an advantage which is not offered
by traditional dynamic slicing methods [2, 12]. The tradi-
tional dynamic slicing methods require runtime control flow
information from the execution of a program to remove the
redundant instructions that are irrelevant to a slice. How-
ever, the RCG algorithm can dynamically reconstruct this
control flow information during reverse execution. This is
achieved by the control flow predicates in the reverse pro-
gram. The instructions irrelevant to a dynamic slice are sim-
ply skipped by these control flow predicates.

The outline of the paper is as follows. Section 2 describes
the related work. Section 3 introduces the basics behind dy-
namic slicing and gives an overview of the RCG algorithm.
Section 4 explains how we extend the RCG algorithm to
provide assembly instruction level reverse execution along
a dynamic slice. Section 5 presents the experimental results.
Finally, Section 6 concludes the paper.

2. Related Work
Program slicing was first proposed by Weiser [19]. His

approach statically determines the program statements that
potentially affect a variable at a certain statement. Later, the
concept of dynamic slicing was introduced by Korel and
Laski [12]. Their approach incorporates runtime informa-
tion to find the statements that actually affect a variable at a
program point. Thus, the resulting slices are more compact
and precise than the program slices proposed by Weiser.

However, none of these approaches provide a way to
obtain the runtime values of variables in a program slice
without at least re-executing the slice. Agrawal et al. added
an execution backtracking approach to their debugger tool
SPYDER which also supports dynamic program slicing [1].
This backtracking approach statically associates with each
assignment statement a set of variables, called a change-
set, which is modified by that statement. Then, during pro-
gram execution, the associated variables in the change-set
are recorded for rollback. However, as opposed to what we
propose in this paper, the backtracking is not performed
along a dynamic slice but along the whole program. More-
over, this approach may cause large memory and time over-
heads during program execution, especially with programs
which modify the state frequently.

For the purpose of obtaining previously destroyed pro-
gram states, there have been many other techniques pro-
posed in literature [7, 8, 9, 15]. However, these techniques

also lack a reverse execution capability along a dynamic
program slice.

The most relevant work was carried out in the domain
of functional languages [6]. Booth and Jones associate each
variable in a program with a story tag which includes the
history information about how the variable is computed.
When a variable is used in a computation, its story is added
to the story of the computed variable. At the end of a partic-
ular execution, the programmer can trace back how a vari-
able is computed by observing the story of the variable only.
However, this approach may again cause large memory us-
age as the variable stories are built by pure state saving.

In terms of extraction of a dynamic slice, our method is
similar to forward dynamic slicing algorithms [5, 13]. In a
forward dynamic slicing technique, a dynamic slice is ob-
tained during execution of the program, which is similar to
our approach where a dynamic slice is extracted during re-
verse execution. Therefore, the runtime trace information
is kept bounded as in the case of our technique. However,
since forward slicing does not start from the instruction in
the slicing criterion, it calculates all possible dynamic slices
for all variables in a program. Therefore, forward dynamic
slicing algorithms are usually slow. On the contrary, our al-
gorithm extracts a dynamic slice for the selected instruction
only, which potentially results in faster calculation of a dy-
namic slice.

In dynamic slicing techniques that depend on an execu-
tion history, the processing of a complete program trace also
constitutes a large memory usage. Zhang et al. indicate in
their paper that this memory usage may go up to 9GB for
134.perl in the Specint95 suite. To reduce this memory us-
age, Zhang et al. present an algorithm which keeps a record
of the complete execution history and then processes only
the necessary information in that record for the purpose of
generating a particular dynamic slice [21]. In this sense, our
approach is orthogonal to the approach of Zhang et al. In our
approach, the information required to build a dynamic slice
is not extracted from an execution history, but is mainly re-
constructed by our RCG algorithm.

3. Background
In order to understand the benefits of dynamic slic-

ing for assembly level reverse execution, we need to first
understand what program slicing performs and how our
instruction-level reverse execution method works. The fol-
lowing two subsections give overviews of dynamic slicing
and the RCG algorithm, respectively.

3.1. Program Slicing

There are two major types of program slices proposed in
the literature. These are static program slices [10, 18, 19]
and dynamic program slices [2, 12].



Definition 3.1 Static slice: A static slice of a program is a
set of program statements which may influence the value
of a variable V at a statement S. Variable V and state-
ment S comprise the slicing criterion which we designate
as C = (V ,S). 2

Definition 3.2 Dynamic slice: A dynamic slice of a program
is a set of program statements which affect the value of a
variable V at a specific execution instance q of a statement
S given a set of program inputs X. We designate a dynamic
slicing criterion as C = (X, V , Sq). 2

Since we are interested in assembly level reverse execu-
tion, a dynamic slice of a program should be at the assem-
bly level as well. Thus, we can alter the definition of a dy-
namic slice to apply to an assembly level program as fol-
lows:

Definition 3.3 Assembly level dynamic slice: An assem-
bly level dynamic slice of a program is a set of assembly in-
structions which affect the value of a register or a memory
location (L) at a specific execution instance q of an instruc-
tion I given a set of program inputs X. We show an as-
sembly level dynamic slicing criterion as C = (X, L, Iq).
2

An instruction influences the value of a register or a
memory location another instruction modifies if there is a
direct or an indirect (i.e., transitive) dependency between
those two instructions. A direct dependency between two
instructions can be either a data dependency or a control
dependency. If an instruction Ik uses a register or a mem-
ory location L that is defined by another instruction Ij and
L is not subsequently overwritten before being used by Ik,
then Ik is data dependent on Ij . If the execution of Ik de-
pends on the boolean outcome of Ij , then Ik is control de-
pendent on Ij . On the other hand, an indirect dependency
between two instructions Ik and Ij happens if Ik is directly
dependent on another instruction Im and Im is directly de-
pendent on Ij . Therefore, the transitive closure of depen-
dencies of an instruction Ik gives all the instructions that
may influence the value of L and thus constitutes a static
slice with respect to L [11, 18].

Although any static slice of a program can be extracted
by a pure static analysis, the extraction of a dynamic slice
requires runtime information of a program. This informa-
tion captures what control flow path the program follows
to reach the specific instance of the instruction in the slic-
ing criterion. It may very well be the case that some instruc-
tions, although part of the static slice with respect to a static
slicing criterion C = (L, I), cannot influence the value in L

due to a lack of a dynamically taken path between those in-
structions and I . Therefore, dynamic slicing removes such
instructions from a static slice producing a more compact
and precise slice.

3.2. Overview of the RCG algorithm
The RCG algorithm is an assembly level algorithm. It

analyzes a program instruction by instruction and gener-
ates the reverses of the instructions to build a reverse pro-
gram. For ease of analysis, multi-procedure programs are
first chopped off into single-entry single-exit program re-
gions, which we call program partitions, and each program
partition is analyzed and reversed separately. Then, program
partitions are connected using a state saving method [4].
Due to space limitation, this section explains reverse code
generation within program partitions only. Interested reader
can find details of reverse code generation across program
partitions in [4]. Please note that in the rest of this paper, the
word “instruction” refers to an assembly instruction.

We call the reverse of an instruction a reverse instruction
group (RIG). We use the term “group” because a RIG may
be composed of multiple assembly instructions. A RIG re-
verses the effect of an instruction by recovering the values
that are overwritten by that instruction. For this purpose, we
use data and control flow information to figure out where
a value is defined, where it is used and how it reaches a
particular instruction before being destroyed. Once we have
that information, we can recover a value by using a com-
bination of three methods: (i) the value can be recalculated
during reverse execution by re-executing the original defi-
nition, which we call the redefine technique; (ii) the value
can be extracted from a previous use during reverse execu-
tion, which we call the extract-from-use technique; and (iii)
the value can be saved during forward execution and then
restored during reverse execution, which we call the state
saving technique.

Note that the recovery of a value may require the recov-
ery of other values. For example, this would happen if the
value of a register were to be regenerated using the value of
another register which is also overwritten. Therefore, the re-
define and extract-from-use techniques are usually applied
recursively where the values in the dependency chain are re-
covered one after another.

Please also note that the current implementation of the
RCG algorithm assumes sequential input programs running
on a single processor only. Moreover, all operations requir-
ing external input such as file I/O are reversed by the state
saving technique explained above.

The following example illustrates how a reverse program
is built from individual RIGs. For a detailed explanation
of the RCG algorithm, we refer the reader to our previous
work [3, 4].

Example 3.1 Figure 1 shows an example program and the
corresponding reverse program. Each instruction (except
control flow instructions and the instructions shown in bold)
in the original program and the corresponding RIG in the re-
verse program are marked with the same index. Note that
the instructions that are shown in bold are extra instructions



 (b) (a) 

index   
   8 cmpwi  r10, 100 
 bg  L1 
 addi r12, r10, 1 

 b  L2 
 L1: xori  rt, r3, 2 
  add  r12, r11, rt 
 L2: cmpwi r10, 100 
 ble   L3 
   7 xori  r3, r3, 2 
   6 li   r11, 3 
 b   L4 
   5 L3: sub  r12, r3, r11 
   4 li   r11, 3 
   3 L4: restore r10 
   2 restore r3 
   1 restore r11  

 

index  
 save r11  

  1 li  r11, 3 // r11 = 3 
 save r3   

  2 addi r3, r12, 15 // r3 = r12 + 15 
 save r10  

  3 divw r10, r3, r11 // r10 = r3 / r11 
 cmpwi r10, 100 // if r10 > 100 
 bg  L1 // goto L1 
4 sub r11, r3, r12 // r11 = r3 – r12 

5 addi r12, r10, 1 // r12 = r10 + 1 

 b  L2 // goto L2 
  6   L1: sub r11, r12, r3 // r11 = r12 – r3 
  7   xori r3, r3, 2 // r3 = r3 ⊕ 2 
  8 L2:  mullw r12, r11, r10 // r12 = r11 × r10 

          blr  // exit 
 

Figure 1. (a) A program in PowerPC assembly
(b) The corresponding reverse program

that are inserted to the original program for state saving;
thus, these instructions do not have associated RIGs. In ad-
dition, control flow is reversed by control flow predicates in-
serted into the reverse code; therefore, the control flow in-
structions also do not have associated RIGs in the gener-
ated reverse program. Consequently, we assign indices nei-
ther to the control flow instructions in the original program
nor to the state saving instructions inserted in the original
program to enable reverse execution. Throughout this ex-
ample, we use the notation ix to refer to an instruction with
index x and the notation RIGx to refer to a RIG for the in-
struction with index x.

Let us have a close look at some generated RIGs. Con-
sider RIG7 for instance. RIG7 can be seen in Figure 1(b)
in the rectangle enclosing “xori r3, r3, 2” to the right of in-
dex 7. RIG7 recovers the value of r3 that is overwritten by i7.
For this purpose, RIG7 employs the extract-from-use tech-
nique which extracts the overwritten value of r3 from the use
by i7.

As another example, consider RIG8. In RIG8, we want to
restore r12 to the value it held prior to execution of i8 in Fig-
ure 1(a). There are two possible values that r12 might have
carried before being overwritten by i8. One of these values is
defined at i5 and the other value is defined prior to this sec-
tion of code but is used in i6. Each of these values reaches
i8 along a different path. Therefore, in RIG8, we generate
two sets of instructions where the first set (the third instruc-
tion in RIG8) recovers r12 by re-executing i5 and the other
set (the last two instructions in RIG8) recovers r12 by ex-
tracting its value from i6. Then, we combine these sets using
a conditional branch which determines along which path i8
is dynamically reached. Note that the extraction of the value
of r12 from i6 is handled in two steps: we first recover the
value of r3 used in i6 into a temporary register rt and then
use rt to recover the value of r12.

Finally, consider i1. The value i1 overwrites (the value of
r11) is input to the program (i.e., defined outside) and is not
used anywhere before being overwritten. This implies that

this value can be recovered neither by the redefine tech-
nique nor by the extract-from use technique. Thus, the RCG
algorithm resorts to state saving which is performed by the
inserted save instruction before i1. Then, the generated RIG,
RIG1, simply restores the value from the saved record.

As seen in the figure, RIGs are placed in bottom-up or-
der in the reverse program. In other words, the RIG for the
first instruction goes to the very bottom of the reverse pro-
gram, the RIG for the second instruction goes on top of the
previous RIG and so on. This follows intuitively from the fact
that an instruction that is executed first should be undone
last. Another interesting note is that the RIGs are combined
by conditional branch instructions which establish a control
flow in the reverse program according to the control flow of
the original program. For instance, i8 can be reached in two
ways: either from i7 or from i5 (via the branch “b L2”) de-
pending on the predicate calculated by “cmpwi r10, 100”.
Therefore, after RIG8, the RCG algorithm uses the same
predicate to direct the control either to the reverse of i7,
RIG7, or to the reverse of i5, RIG5. However, note that if
r10 in “cmpwi r10, 100” were also modified before i8, then
we would first have to recover r10 in the same way we re-
cover any other register. 2

4. Methodology
Assembly level reverse execution along a dynamic slice

can be defined as a partial reverse execution method which
visits only the instructions that are in the dynamic slice and
which recovers those values that are relevant to the dynamic
slice instructions (i.e., the values that are used or generated
by the dynamic slice instructions). In this section, we ex-
plain our methodology to achieve such a partial and poten-
tially faster reverse execution.

While trying to implement assembly level reverse exe-
cution along a dynamic slice, one could ask the following
question: “If the RCG algorithm gives us the reverse of any
code that is input to it and if we want to reverse execute
along a dynamic slice only, why not just extract the desired
dynamic slice from a program first and then use the RCG al-
gorithm to generate the reverse of that slice?” Although, at
first sight, this approach seems to provide a trivial solution
to our problem, it does not serve our purpose. This is be-
cause some values that are relevant to the slice instructions
can only be recovered by undoing the instructions that are
out of the slice. Therefore, reversing the instructions within
a slice only is not sufficient to provide reverse execution
through that slice. Consider the following example.

Example 4.1 Figure 2 shows a PowerPC assembly code
piece with five instructions. The instructions that re-
side in the dynamic slice according to the slicing criterion
C = (r1 = 0, r3, (addi r3, r3, 1)1) are enclosed in rectan-
gles. Thus, the enclosed instructions are the instructions
that influence the value of r3 at the first instance of in-
struction “addi r3, r3, 1” when r1 initially contains value



�

addi�� r2,�r1,�2� //�r2�=�r1�+�2�

mulli� r3,�r2,�4� //�r3�=�r2�×�4�

addi� r4,�r1,�1� //�r4�=�r1�+�1�

divw� r2,�r1,�r4� //�r2�=�r1�/�r4�

addi� r3,�r3,�1� //�r3�=�r3�+�1�

P1�

P2�

P3�

P4�

P5�

Figure 2. A code piece and a dynamic slice

‘0’. Suppose that the program counter is currently at posi-
tion P5 and we would like to reverse execute the program
back to point P1 by following the dynamic slice under con-
sideration. This implies we first need to jump to P2 and then
jump to P1 bypassing points P3 and P4. These points are by-
passed because the third and the fourth instructions are not
within the dynamic slice. While reverse executing the pro-
gram through this path, we expect to retrieve the val-
ues relevant to the instructions on the path. For instance,
when we reach point P1, we should have retrieved the val-
ues of r2 and r1 because both of these values are rele-
vant to the first instruction in the dynamic slice. On the other
hand, at point P1 we do not care about the value of r4 be-
cause this value is neither used nor generated by the
instructions in the dynamic slice.

However, if we were to undo only the instructions within
the dynamic slice to reverse execute through that slice, we
would not have retrieved the value of r2 at point P1 because
r2 is overwritten by the fourth instruction which is outside the
slice. Therefore, while trying to obtain the values relevant to
the instructions within the slice, we might have to undo in-
structions that are outside the slice. 2

As Example 4.1 illustrates, we should extend the RCG
algorithm to take into account all the instructions in a pro-
gram in order to determine which instructions to undo and
which instructions to skip. In doing so, we choose to re-
move from a complete reverse program the instructions that
are unnecessary for reverse execution along a particular dy-
namic slice. The next section presents the extensions we
make to the RCG algorithm following this instruction re-
moval approach. Hereafter, we refer to the RCG algorithm
with dynamic slicing support RCG with Slicing or RCGS.

4.1. The extensions to the RCG algorithm

The extension to the RCG algorithm for dynamic slicing
support consists of two parts. The first part is a static anal-
ysis part. The second part is debugger support which incor-
porates dynamic information.

Figure 3 shows a high level view of our methodology.
Given an input program compiled to assembly, we first gen-
erate the corresponding complete reverse program using the
RCG algorithm we presented in our previous work. Then,
the programmer can start debugging the program with full-
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Figure 3. A diagram of the RCGS algorithm

scale reverse execution support. When the programmer de-
cides to obtain a dynamic slice, the RCGS algorithm per-
forms its extended static analysis. This static analysis, when
combined with the runtime debugger support, enables the
user to reverse execute the program along the desired dy-
namic slice. Therefore, reverse execution along a dynamic
slice can be achieved without having to restart the program
under consideration. However, once a dynamic slice is cho-
sen, the programmer may have to wait for several seconds
or longer (depending on the size of the input program) for
the execution of static analysis required for the chosen dy-
namic slice. Nevertheless, this waiting time is still negligi-
ble compared to the overall time spent on debugging.

The extended static analysis is performed to generate a
reduced reverse program and a dynamic slicing table both
of which provide reverse execution along a particular dy-
namic slice (Figure 3). The reduced reverse program is a re-
verse program which excludes the instructions that are defi-
nitely known to be unnecessary for reverse execution along
the dynamic slice under consideration. When executed, the
reduced reverse program recovers the program state rele-
vant to the corresponding dynamic slice.

On the other hand, the debugger support reveals the con-
trol flow along the chosen dynamic slice in the input pro-
gram. The debugger uses the dynamic slicing table to map
the position in the reduced reverse program to the position
in the input program at runtime. This is achieved by us-
ing the correspondence between the input program and the
reduced reverse program. Since the reduced reverse pro-
gram undoes only those instructions that are actually exe-
cuted during forward execution (the remaining instructions
are bypassed by the control flow predicates in the reverse
code), the runtime information required for building a dy-
namic slice is reconstructed during reverse execution rather
than being collected during forward execution.

The RCGS algorithm performs the extended static anal-
ysis over a derivative of a value graph [17] which we call
the modified value graph (MVG)–see Figure 3. The MVG



is a replacement for the directed acyclic graph (DAG) pre-
sented in our previous work [3]. An MVG is generated only
once during the generation of the complete reverse program.
Afterwards, the generated MVG can be used for the gener-
ation of different reduced reverse programs each of which
enables reverse execution along a different dynamic slice.
Given a dynamic slicing criterion C = (X , L, Iq), we first
use the MVG to statically find the definitions which might
influence L at I . We call such definitions the potentially in-
fluencing definitions.

Ideally, the reduced reverse program should be com-
posed of only the RIGs that recover the potentially influ-
encing definitions. However, as explained in Section 3.2, to
recover a definition, we might have to use some other defi-
nitions as well. Therefore, the reduced reverse program also
includes those RIGs that recover these extra definitions. We
collectively call the potentially influencing definitions and
their recovering definitions the essential definitions.

In the following subsections, we introduce the MVG and
the details of its usage to extract a reduced reverse program.

4.2. The modified value graph (MVG)

The modified value graph is a directed graph G = (N ,E)
where N is a set of nodes and E is the set of edges be-
tween these nodes. The details related to the construction of
an MVG that are common to the construction of a DAG can
be found in [3, 4] and thus will not be explained here.

Figures 4(a) and 4(b) show a sample program and its
MVG, respectively. Each node in an MVG represents a defi-
nition in static single assignment (SSA) form [17]. The SSA
form distinguishes each distinct definition of a register or a
memory location by giving a different name to that defini-
tion. Figure 4(b) shows these names in the form of (r|m)y

x

where r indicates a register, m indicates a memory location,
x (x = 0, 1, 2, ...) is an index that distinguishes the physi-
cal location and y (y = 0, 1, 2, ...) indicates the distinct name
given to a definition of that location. For instance, r0

1
is the

name given to the initial definition of register r1. Also, in
Figure 4(b), we mark a definition with the number of the in-
struction by which the definition is made.

 

1 lwz r2, 0(r1) // r2 = mem(r1) 
2      cmpwi r2, 0 // if r2 � 0 
3 bge L1 // goto L1 
4    addi r3, r3, 1 // r3 = r3 + 1 

5 b L2 // goto L2 
6 L1:  subi r3, r3, 1 // r3 = r3 - 1 
7 L2:  stw r3, 0(r1) // mem(r1) = r2 
 

(a) (b) 

r1 
0 

m0 
0 

r3 
1 

r3 
2 

r3 
3 

m0 
1 r2 

1 

φ 

r3 
0 

1 

 

7 

4 6 

Figure 4. (a) An example program (b) The cor-
responding MVG

If more than one definition reaches a confluence point
of edges in a program’s control flow graph, the SSA form
generates a pseudo definition which combines these reach-
ing definitions at the confluence point. A pseudo defini-
tion generated at a confluence point selects one of the com-
bined definitions depending on the predicate which deter-
mines on which path the confluence point is dynamically
reached. In an MVG, we designate with µ the pseudo def-
initions that are generated at loop entrances and with φ the
pseudo definitions that are generated at any other conflu-
ence point. For instance, in Figure 4(b), similar to SSA
form, we say r3

3
= φ(r1

3
, r2

3
) meaning that r3

3
is a pseudo

φ-definition which selects either r1

3
or r2

3
(depending on the

predicate r2 ≥ 0). Note that since each definition is repre-
sented by a single node in an MVG, the size of an MVG is
bounded by the number of static definitions in a program. A
dynamic dependence graph which is used by Agrawal and
Horgan for dynamic slicing [2], on the other hand, can be
extremely large as it may contain different nodes for differ-
ent instances of a statement.

The information required to find the essential definitions
in a program is obtained from the edges of an MVG. There
are three kinds of edges in an MVG:

1. Use-definition edges: These edges designate a data de-
pendency between two values in the graph. Figure 4(b)
shows these edges as solid thin lines. There is a di-
rected use-definition edge eij ∈ E from node ni ∈ N

to node nj ∈ N if ni and nj are the values for tar-
get and source operands of an instruction α, respec-
tively, or (2) ni is a memory value and nj is a regis-
ter value determining the location of ni, or (3) ni is
a pseudo definition node and nj is one of the defini-
tions being combined under that pseudo definition.

2. Pseudo definition-predicate variable edges: These
edges are used for extracting the control depen-
dency information between the nodes. As explained
above, the µ nodes and the φ nodes select one of their
combined definitions according to a predicate. A di-
rected pseudo definition-predicate variable edge ex-
tends from a µ node or a φ node to the values in the
controlling predicate expression. For example, the dot-
ted line in Figure 4(b) is a pseudo definition-predicate
variable edge which connects the pseudo defini-
tion r3

3
to the value r1

2
used in the controlling predicate

expression for r3

3
.

3. Definition-recovering edges: These edges help us de-
termine the definitions that are required for recovering
the potentially influencing definitions. As the name in-
dicates, a definition-recovering edge combines a defi-
nition δi to the definition δj that is used to recover δi.
The solid thick lines in Figure 4(b) are examples of
these kind of edges. For instance, since memory value



m0

0
is equal to r1

2
, this memory value can be recovered

by using r1

2
. Assuming that we choose to recover m0

0

from r1

2
, we place a definition-recovering edge from

m0

0
to r1

2
.

4.3. Generating a reduced reverse program using
an MVG

As mentioned in Section 4.1, we generate a reduced re-
verse program by using an MVG. This section explains the
details behind this process.

Listing 1 shows the pseudo code for the reduced re-
verse code generation. The notation outgoing dep edge(n,i)
designates the ith outgoing use-definition and/or pseudo
definition-predicate variable edge of node n. Similarly, out-
going def-recover edge(k,j) designates the jth outgoing
definition-recovering edge of node k. Follow edge(n, e) re-
turns the node connected to node n via edge e.

Given a dynamic slicing criterion C = (X , L, Iq), the
RCGS algorithm first determines the node that corresponds
to the definition of location L at instruction I (i.e., the node
with respect to which we would like to take the slice)–
line 1 of Listing 1. Let us designate the found node with n.
As mentioned in the previous subsection, the use-definition
edges and the pseudo definition-predicate variable edges in
an MVG designate the data and control dependencies, re-
spectively. Moreover, as explained in Section 3.1, the defi-
nitions that might influence n are the definitions on which n

is either directly or indirectly data and/or control dependent.
Therefore, the RCGS algorithm follows the use-definition
and pseudo definition-predicate variable edges starting from
n and adds each newly visited node to the set of essential
definitions as defined in Section 4.1 (lines 5, 6, 10 and 11).
On the other hand, when each such node m is added to
the essential definitions set, the RCGS algorithm also finds
the nodes that are connected to m via definition-recovering
edges (lines 13 and 14). The found nodes correspond to the
definitions that are required for recovering m. Therefore,
these nodes, if not already added, are also added to the set
of essential definitions (lines 15 and 16). After finding all
essential definitions, we pick from the reverse program the
RIGs that recover the essential definitions (line 22).

After the RIGs needed to generate the reduced reverse
program are determined, there are some optimizations we
can carry out in the reduced reverse program. One optimiza-
tion is that if the body of a loop becomes empty after the
RIGs are removed from the reverse program, then the loop
no longer remains necessary in the reverse program. There-
fore, in this case, we remove the loop from the reverse code
as well. The same is true for a conditional branch instruc-
tion whose branch targets become empty (line 23). Note that
when RIGs are removed, some instructions may shift in the
reverse program; therefore, in such a case, we also update
the branch target addresses accordingly (line 24).

Listing 1 Generate a Reduced Reverse Program
Inputs: A complete reverse program T and its MVG

A dynamic slicing criterion C =(X, L, Iq)
Output: A reduced reverse program
begin

1 Find node n which corresponds to definition of L at I
2 worklist = n
3 repeat
4 n = worklist
5 for i = 1 to | outgoing dep edges(n) | do
6 k = follow edge(n, outgoing dep edge(n,i))
7 if k /∈ worklist then
8 worklist += k
9 end if

10 if k /∈ essential defs then
11 essential defs += k
12 end if
13 for j = 1 to | outgoing def-recover edges(k) | do
14 m = follow edge(k, outgoing def-recover edge(k,j))
15 if m /∈ essential defs then
16 essential defs += m
17 end if
18 end for
19 worklist -= n
20 end for
21 until worklist = φ
22 Pick from T the RIGs which recover essential defs
23 Remove loops with empty bodies and branches with empty targets
24 Update the target addresses of the remaining branches if necessary
end

The following example illustrates how we generate a re-
duced reverse program by using an MVG.

Example 4.2 Figures 5(a) and 5(b) show an exam-
ple program and the corresponding MVG, respectively. For
clarity, we do not show definition-recovering edges in Fig-
ure 5(b). Instead, definition-recovering relationships be-
tween the nodes are shown by the table in Figure 5(e).
As in Example 3.1, we use indices to refer to the instruc-
tions of the program under consideration. Suppose that we
would like to take the slice with respect to r5 at the instruc-
tion marked with index 9 in Figure 5(a). This instruction de-
fines the value r1

5. Therefore, we start with the node r1

5 and
follow the use-definition and pseudo definition-predicate
variable edges while adding each visited node and its re-
covering definitions to the essential definitions set. The re-
sulting nodes in the essential definitions set are shaded in
Figure 5(b).

After the essential definitions and their corresponding
RIGs are determined, the remaining task is to remove the
rest of the RIGs from the reverse program to generate the
reduced reverse program. The complete reverse program
and the resulting reduced reverse program are shown in Fig-
ures 5(c) and 5(d), respectively. An instruction in the origi-
nal program and the RIG which reverses that instruction are
again marked with same index. For explanation purposes,
we annotate each destroyed definition in Figure 5(b), with
the RIG that recovers it. For instance, RIG9 restores the
initial value of r5 which is named as r0

5. Therefore, in Fig-
ure 5(b), we annotate the node of r0

5 with “RIG9” (note that
some nodes in Figure 5(b) do not have associated RIGs be-
cause these nodes either are not destroyed at all or do not
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      9  restore r5 

  b  L3 // goto L3  
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  beq L5 // goto L5 
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   beq L5 // goto L5 
   b L4 
   6 L5: sub r1, r1, r3 // r1 = r1 – r3 
   5 L4: cmpwi r3, 0 // if r3 � 0 
   bne L2 // goto L2 
   addi r2, r1, 1 // r2 = r1 + 1 
   b L3 // goto L3 
 L2: subi rt, r3, 1 // rt = r3 - 1 
  rlwinm r2, rt, -1 // r2 = rt >> 1 
 L3: cmpwi r3, 0 // if r3 � 0 
   bne L1 // goto L1 
 

µ 

Figure 5. (a) An example program (b) The corresponding MVG (c) The complete reverse program
(d) The reduced reverse program (e) Table showing definition-recovering relationships

represent real definitions but only pseudo definitions). As
seen from Figures 5(c) and 5(d), the reduced reverse pro-
gram includes only those RIGs that correspond to the es-
sential definitions. 2

5. Experimental Results
This section presents the measurements we performed.

For experimentation, we used an evaluation board with a
PowerPC (MPC860) processor and 4MB of memory. We
used this board because the base RCG algorithm was imple-
mented for the PowerPC target. The board is connected to
a PC via a Background Debug Mode (BDM) interface [16].
The PC which runs Windows 2000 also hosts our debug-
ger tool [3, 4] supporting instruction-level forward and re-
verse execution via a graphical user interface. The PC has
dual 600Mhz Pentium III processors and 1GB of memory.

The benchmarks we used are matrix multiply, selection
sort, an adaptive differential pulse code modulation (AD-
PCM) encoder from Media Bench [14] and a data com-
pression utility (Compress). We could not use much larger
benchmarks such as those in SPEC suite mainly due to
memory limitation of the PowerPC board. However, this
should not imply any scalability limitations for the RCG al-

gorithm. As mentioned in Section 3.2, the RCG algorithm
partitions the subject program and operates on each parti-
tion separately. Thus, rather than the number of partitions
in a program, instead the characteristics of the partitions
(e.g., the percentage of the instructions that require state
saving for being reversed) play an important role in deter-
mining the efficiency of the RCG algorithm. Nevertheless,
even though the static instruction count of our benchmarks
is small (up to 4000), the number of dynamically executed
instructions is quite large. This number ranges between 500
instructions (for selection sort with 10 inputs) and 896 mil-
lion instructions (for 400x400 matrix multiply).

We first compared full-scale reverse execution against re-
verse execution over a dynamic slice in terms of overall exe-
cution time. In this experiment, the matrix multiply was per-
formed over two 4x4 matrices, the selection sort was per-
formed over an array of 10 integers and the ADPCM en-
coder and Compress were run over 128KB input data. We
experimented over three different dynamic slices for each
benchmark. For matrix multiply and ADPCM encoder, we
took the slices for two different registers, while for selec-
tion sort and Compress, each slice was taken for a single
register. The execution time measurements were performed
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Figure 6. (a) Reverse execution time comparison (b) Reverse execution time comparison of matrix
multiply with different matrix sizes (c) Reverse execution time comparison of selection sort with dif-
ferent input array sizes (d) Runtime memory requirement comparison

via the decrementer counter of the PowerPC processor in a
nonintrusive way. Figure 6(a) shows the results for the four
benchmark programs. The average speedups achieved for
matrix multiply, selection sort, ADPCM encoder and Com-
press are 35X, 2X, 1.3X and 2.7X, respectively. The reason
matrix multiply gives much larger speedup than the other
benchmarks is that RCGS can remove many RIGs from the
nested loop in reverse of matrix multiply, while it can re-
move fewer RIGs from the loops in reverses of the other
benchmarks. The average code size reduction from the com-
plete reverse program to the reduced reverse program is the
biggest for matrix multiply with a factor of 6.6, while the
code size reduction factors for selection sort, ADPCM en-
coder and Compress are 3.1, 1.4 and 1.5, respectively.

In order to better evaluate the advantage of reverse exe-
cution along a dynamic slice in terms of reverse execution

time, we performed another set of measurements. We in-
creased the input data sizes for matrix multiply and selec-
tion sort to increase the running time of these benchmarks.
We experimented with the same three slices for each bench-
mark and took the average of the reverse execution times.
The results are shown in Figures 6(b) and 6(c). For instance,
with 400x400 matrix multiply, the full-scale reverse execu-
tion takes around 4.5 minutes in average, while the reverse
execution along a dynamic slice takes only an average of
141 microseconds.

The RCGS algorithm provides important debugging sup-
port by implementing reverse execution along a dynamic
slice with little runtime trace information. To show this,
we compared the RCGS algorithm with one of the most
common reverse execution techniques, the incremental state
saving technique (ISS) [20] in terms of the average run-



time memory requirement. Moreover, we measured the av-
erage runtime memory requirement of an execution trajec-
tory (ET) which is usually used to obtain dynamic slices
in traditional way [2, 12, 21] (Please note that, as observed
by [21], forward dynamic slicing [5, 13], does not contain
any explained results for us to compare against our results).
Figure 6(d) shows the results from the benchmarks. In this
experiment, the input sizes of the benchmarks were cho-
sen to be the same as the sizes in our first experiment. The
results indicate that compared to ISS+ET, the RCGS algo-
rithm achieves approximately 15.2X, 3.4X, 3.8X and 548X
reduction in memory overheads for matrix multiply, selec-
tion sort, ADPCM encoder and Compress, respectively. Due
to loop effects, these figures become even larger with in-
creasing input data sizes. For instance, for 400x400 matrix
multiply, while ISS+ET requires 1.37GB of memory, RCGS
requires only 626KB. For selection sort with 1000 inputs,
while ISS+ET requires 2.5MB of memory, the memory re-
quirement of RCGS is only 98KB. Note that due to the lim-
ited memory on the PowerPC board, we performed these
last set of measurements using circular buffers.

The static analysis of RCGS takes less than five seconds
on the host PC for any of the benchmarks. Considering the
total time spent on debugging, this time is negligible. On
the other hand, the runtime computation overhead of slicing
which mainly consists of the determination of actual control
flow paths is included within the timing results presented.

6. Conclusion
In this paper, we have introduced a new approach to re-

verse execution along a dynamic slice. Specifically, our ap-
proach skips recovering the program state not required for
reverse execution along a dynamic slice. Therefore, our ap-
proach provides a fast reverse execution at the assembly in-
struction level. Our technique does not require prior knowl-
edge of the dynamic slicing criterion. Therefore, the pro-
grammer can start reverse executing a program along the de-
sired dynamic slice without having to restart the program.
Moreover, our approach does not require an execution tra-
jectory to extract a dynamic slice from a program. Instead,
the necessary runtime information is mainly reconstructed
during reverse execution by the control flow predicates in
the reverse program. This property coupled with the regen-
eration of runtime values on the fly makes our technique
very memory efficient.
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