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Abstract. Intermediate languages are a paradigm to separate concerns
in software verification systems when bridging the gap between (real-
world) programming languages and the logics understood by theorem
provers. While such intermediate languages traditionally only offer rather
simple type systems, this paper argues that it is both advantageous
and feasible to integrate richer type systems with features like (higher-
ranked) polymorphism and quantification over types. As a concrete so-
lution, the paper presents the type system of the Boogie 2 language,
which is used in several program verifiers. The paper gives two encod-
ings of types and formulae in simply typed (or untyped) logic such that
ordinary theorem provers and SMT solvers can be used to discharge ver-
ification conditions. Extensive empirical evidence is provided showing
that the impact of the additional typing information on the verification
performance is negligible.

1 Introduction

Building a program verifier is a complex task that requires understanding of
many domains. Designing its foundation draws from domains like semantics,
specifications, and decision procedures, and constructing its implementation in-
volves knowledge of compilers and software engineering. The task can be made
manageable by breaking it into smaller pieces, each of which is simpler to un-
derstand. A successful practice (e.g., [10, 13, 12, 4, 5]) is to make use of an inter-
mediate verification language [18, 1, 11].

The intermediate verification language serves as a thinking tool in the design
of the verifier front end for each particular source language. As such, it must
provide a level of abstraction that is high enough to give leverage to the front
end. At the same time, there is a risk that the general translations of higher-
leverage features become too cumbersome to sustain good decision procedure
performance. Some higher-leverage features, like a fancy type system, provide
safety to the front end by restricting what intermediate programs are admissible.
At the same time, there is a risk that such restrictions lead to cumbersome
encodings in the front end, especially compared to the encodings that are possible
by directly using the more coarse-grained type system of a decision procedure.

In this paper, we introduce the type system of the intermediate verification
language Boogie 2, the successor of BoogiePL [8, 1]. Unlike its untyped prede-
cessor, whose type annotations were mainly used for some consistency checks,



Boogie 2 features an actual type system. Going beyond the Hindley-Milner style
types in the intermediate verification language Why [11], Boogie 2 features poly-
morphic maps, higher-rank polymorphism, and impredicativity which are useful
in modeling the semantics of a type-safe heap (as in Spec# or Java.)

We also describe our translation of the polymorphic Boogie 2 into multi-
sorted logic, which is used by many satisfiability modulo theories (SMT) solvers
that support the SMT-LIB format [2]. Alternatively, our translation can tar-
get unsorted logic, like the input to Simplify [9]. In fact, we give two different
translations into multi-sorted logic, and we present performance figures from
substantial benchmarks that compare these. The benchmarks come from the
Spec# program verifier [1], the VCC [5] and HAVOC [4] verifiers for C, and
Dafny [16], all of which build on Boogie 2. All of the benchmarks make extensive
use of so-called triggers required for e-matching [9], and our experiments give
evidence to that the triggers are properly maintained by our translations.

The contributions of our work are: (i) An impredicative type system for an
intermediate verification language, featuring full higher-ranked polymorphism,
(ii) two translations of the verification language into multi-sorted logics suitable
for SMT solvers, (iii) experimental data comparing the performance of the two
translations with each other and with an (unsound) translation ignoring types.

2 Boogie 2 Types and Expressions

A Boogie program is a set of declarations. The language offers seven kinds of dec-
larations, which can be divided into two categories. The imperative declarations
introduce variables, procedure specifications, and procedure implementations.
The procedure implementations are in Boogie what gives rise to proof obliga-
tions. The implementations can use familiar statements like assignments, loops,
procedure calls, and gotos, as well as assert statements, which (along with loop
invariants and procedure pre- and postconditions) prescribe the proof obliga-
tions, and assume statements (that is, partial commands, which are used to
limit nondeterminism and feasible paths. Though unsuitable for execution, the
partial commands are essential to modeling the semantics of source languages.
The implementations are transformed using weakest preconditions [1] into ex-
pressions, which together with types are our main concern in this paper.

The mathematical declarations introduce types, constants, functions, and ax-
ioms. These define first-order structures that can be used in expressions and dec-
larations. All expressions in Boogie are total; that is, every well-typed expression
yields some appropriately typed value that is a function of its subexpressions.

In the rest of this section, we introduce salient features of Boogie 2’s mathe-
matical declarations, along with some motivating examples. For further details
of the language, we refer to the Boogie 2 language reference manual [15].

2.1 Type Declarations

The built-in types of Boogie 2 are booleans (bool), mathematical integers (int),
and bit-vector types of every size (bv0,bv1,bv2, . . .). In addition, there are map
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type Wicket ;
type Pair α β;

const unique a : Wicket ;
const unique b : Wicket ;
const c : Wicket ;

function Age(Wicket) returns (int);
axiom ( ∀w : Wicket • 0 6 Age(w) );
axiom Age(b) = 25;

Fig. 1. Example Boogie 2 declarations.

function Left〈α, β〉(α, β) returns (α);
axiom ( ∀ 〈α, β〉 a : α, b : β • Left(a, b) = a );

type Sequence α;
function EmptySequence〈α〉() returns (Sequence α);
function Length〈α〉(Sequence α) returns (int);
axiom ( ∀ 〈α〉 • Length(EmptySequence() : Sequence α) = 0 );

function GimmieAnything〈α〉() returns (α);

Fig. 2. Examples of polymorphic functions and quantifications over types in Boogie 2.

types, which we describe below, and user-defined type constructors. A program
can also declare parameterized type synonyms, which are essentially like macros,
thus providing syntactic convenience but not adding to the expressiveness of
the type system. A type denotes a nonempty set of individuals, and the sets
denoted by different types are disjoint. Each different parameterization of a
type constructor yields a distinct type, each denoting an uninterpreted set of
individuals. For example, the type declarations in Fig. 1 introduce a nullary type
constructor Wicket and a binary type constructor Pair . The sets of individuals
denoted by Wicket , Pair int int, and Pair Wicket int are all disjoint.

2.2 Constants and Functions

A Boogie program can introduce constants of any type and functions over types.
Properties of these constants and functions can be described using axiom decla-
rations. For example, Fig. 1 introduces a, b, and c as names of wickets and Age
as a function from wickets to integers, and postulates the age of any wicket to be
non-negative and the age of b to be 25. As a convenience, the constants declared
with unique are defined to be pairwise distinct; for example, the declarations
above imply a 6= b, but say nothing about the relation between c and the other
constants. The responsibility of making sure the axioms are logically consistent
rests with the user; for instance, axiom false; is a legal declaration that will
make all proof obligations hold trivially.

Functions can be polymorphic, that is, they can take type parameters. Anal-
ogously, the bound variables in universal and existential quantifiers can range
over both individuals (of specified types) and types. For example, a function
that retrieves the left-hand element of a pair can be declared and axiomatized
as in Fig. 2. Type parameters and bound type variables are introduced inside
angle brackets. Polymorphism is useful because it allows a user to provide an
axiomatization of, say, pairs that is independent of the pair element types, while
maintaining the type guarantee that different types of pairs are not mixed up.
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Instantiations of type parameters are inferred. Often, they can be inferred
from the types of the a function’s arguments. However, Boogie also allows a
function to declare type parameters that are used only in the return type. For
example, functions like EmptySequence in Fig. 2 are useful in many domains. In
fact, the language even allows functions like GimmieAnything in Fig. 2, which
illustrates that the type parameter can affect the result value of the function.

When type inference cannot determine type parameters uniquely, it reports
an error. To deal with such cases, the language offers a type coercion expression
e : t , which has type t , provided t is a possible typing for expression e. For ex-
ample, the expression Length(EmptySequence()) = 0 is ill-formed because of the
ambiguous type-parameter instantiation; in contrast, the axiom about Length in
Fig. 2 is well-typed and says that the length of any empty sequence is 0. Note
that this quantifier ranges only over types, not over any individuals.

2.3 Maps

In addition to functions, Boogie offers maps. Like functions, maps have a list of
domain types and a result type and can be polymorphic. The difference is that
maps are themselves expressions (they are “first class”), unlike functions, which
can appear in an expression only when applied to arguments. This means that
program variables can hold maps.

Though they may have the appearance of higher-order values, maps are but
first-order individuals, and to “apply” them to arguments, one applies Boogie’s
built-in map-select operator, written with square brackets (to be suggestive of
retrieving an element at a given index of an array) [20]. For example, if m is a
map of type [int,bool]Wicket , that is, a map type with domain types int and
bool and result type Wicket , then the expression m[5, false] denotes a wicket.

If m is an expression denoting a map, i is a list of expressions whose types
correspond to the domain types of m, and x is an expression of the result type
of m, then the map-update expression m[i := x ] denotes the map that is like
m, except that it maps i to x [20]. Using common notation for arrays, Boogie
allows the assignment statement m[i ] := x ; as a shorthand for m := m[i := x ];.

Boogie does not promise extensionality of maps, that is, the property that
maps with all the same elements are equal; for example, m and m[i := m[i ]]
are not provably equal, but they are provably equal at all values of the domains.
Where extensionality is needed, users can supply the required axioms themselves.

A key feature of maps in Boogie 2 is that they can be polymorphic. To mo-
tivate this feature, let us consider one of the most important modeling decisions
that the designer of a program verifier faces: how to model the memory operated
on by the source language. For example, for a type-safe object-oriented language,
one may choose to model the object store (the heap) as a two-dimensional map
from object references and field names to values [1, 16]. Since the result type of
such a map depends on which field name is selected, it is natural to declare the
heap to be of a polymorphic map type. For example, a source-language decla-
ration class Person { int age; bool isMarried ; } can be modeled in Boogie as
shown in Fig. 3, where Ref denotes the type of all object references and Field α
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type Ref ;
type Field α;
type HeapType = 〈α〉[Ref ,Field α]α;

const unique age : Field int;
const unique isMarried : Field bool;
var Heap : HeapType;

function IsWellFormedHeap(HeapType) returns (bool);
const unique snapshot : Field HeapType;

Fig. 3. Example of how to model object-oriented program features in Boogie 2. Type
synonym HeapType is defined as the polymorphic map type that represents the heap.

denotes the type of field names that in the heap retrieve values of type α (see
also [1, 16]). It is also common for functions to take such polymorphic maps as
parameters, like function IsWellFormedHeap in Fig. 3 (an example of a higher-
rank type). Type parameters may themselves be instantiated with polymorphic
maps, which is known as impredicativity; for example, with snapshot from Fig. 3,
the assignment Heap[o, snapshot ] := Heap; will store a copy of the entire heap
in the snapshot field of object reference o. As for functions, it is an error if the
type parameters in a map type cannot be uniquely determined from the domain
arguments and context.

Type equality among maps does not depend on the names or order of type
parameters. For example, the type 〈α, β〉[α, β]int is equal to 〈γ, δ〉[δ, γ]int. Note,
however, that polymorphism is significant. For example, the types [int]bool and
〈α〉[α]bool are not compatible.

2.4 Equality Expressions

The equality expression E = F is allowed if there is some instantiation of en-
closing type parameters that makes the types of E and F equal. Let us motivate
this type checking rule.

A common way to specify the effects of a source-language procedure is to
use a modifies clause that lists the object-field locations in the heap that the
procedure is allowed to modify. The modifies clause is then encoded into Boogie
as a procedure postcondition that specifies a relation between the procedure’s
heap on entry, written old(Heap), and its heap on return, written Heap (see,
e.g., [16]). For instance, to encode that a procedure’s effect on the heap in the
source language is limited to p.age and p.isMarried , one can in Boogie use a
postcondition like

( ∀ 〈α〉 o : Ref , f : Field α • Heap[o, f ] = old(Heap[o, f ]) ∨
(o = p ∧ f = age) ∨ (o = p ∧ f = isMarried) )

In order to type check this expression, it is necessary for the type system to
consider the possible instantiation α := int for f = age and α := bool for
f = isMarried . If the two sides of an equation evaluate to objects of different
types, the equation as a whole evaluates to false, since different types in Boogie
represent disjoint sets of individuals.
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x 7→ t ∈ V
V  x : t

V  E : t
V  E :t : t

V  Ei : σ(si) (for (Ei , si) ∈ (Ē , s̄))
f 〈ᾱ〉(s̄) returns (t) ∈ F

V  f (Ē) : σ(t)
∗

V  E : s V  F : t
σ(s) = σ(t)

V  E = F : bool

(V, x̄ 7→ t̄)  E : bool Q ∈ {∀,∃}
V  ( Q 〈ᾱ〉 x̄ : t̄ • E ) : bool

V  m : 〈ᾱ〉[s̄]t
V  Ei : σ(si) (for (Ei , si) ∈ (Ē , s̄))

V  m[Ē ] : σ(t)
∗

V  m : 〈ᾱ〉[s̄]t V  F : σ(t)
V  Ei : σ(si) (for (Ei , si) ∈ (Ē , s̄))

V  m[Ē := F ] : 〈ᾱ〉[s̄]t
∗

Fig. 4. The typing rules for Boogie 2 expressions. The context of type judgments is a
partial mapping V : X ⇀ Type that assigns types to variables. The rules marked with
‘*’ impose the side condition dom(σ) = {ᾱ}.

2.5 Matching Triggers

A common way for SMT solvers to handle universal quantifications is to se-
lectively instantiate the quantifiers. The instantiations can be based on (user-
supplied or inferred) matching triggers, which indicate which patterns of ground
terms in the prover’s state are to give rise to instantiations [9]. Boogie has sup-
port for specifying matching triggers for quantifications. For example,

axiom (∀ x : t • {f (x )} fInverse(f (x )) = x );

specifies the trigger f (x ) and says to instantiate the quantifier with any value
appearing among the ground terms as an argument to function f . (For an appli-
cation that uses quantifiers and an explanation of the design of triggers for that
application, see [17].) All Boogie front ends make heavy use of triggers.

2.6 Formalization of the Type System and Type Checking

The abstract syntactic category of types is described by the following grammar:

Type ::= α | C Type∗ | 〈α∗〉 [Type∗] Type

in which C ∈ C ranges over type constructors (with a fixed arity arity(C )) and
α ∈ A over an infinite set of type variables. We assume that C always contains the
pre-defined nullary constructors bool, int,bv0,bv1,bv2, . . .. Only those types
are well-formed in which type constructors always receive the correct number of
argument types, and in which each type parameter of a polymorphic map type
occurs in at least one of the map domain types or the result type.

For two types s, t ∈ Type, we write s ≡ t iff s and t are equal modulo
renaming or reordering of bound type parameters. A type substitution is a map-
ping σ : A → Type from type variables to types. Substitutions are canonically
extended on all types, whereby we assume that variable capture is avoided by
renaming bound type variables whenever necessary.
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Formalizing the typing of expressions, the judgment V  E : t says that in a
context with variable-type bindings V, expression E can be typed as type t . Fig-
ure 4 shows the typing rules for variables, type coercions, function applications,
equality, quantifiers, map select, and map update. All other operators are typed
as in the rule for function application. In the figure and the whole paper, the
set of functions and constants defined in the Boogie program at hand is denoted
with F , whereas X denotes an infinite set of variables.

Note that for a map m of a type like 〈α〉[int]α, the expression m[E ] can have
any type, and similarly for applications of functions like GimmieAnything in
Fig. 2. As for the type system, Boogie just requires that the context determines
a unique type for each occurrence of such expressions. As for their meaning, it is
as if the map (or function) m is really a family of maps (or functions) m̄. Thus,
semantically, mint[E ] has a different value than mbool[E ].

3 Representation of Types

Automated theorem provers and SMT solvers typically offer only untyped or
simple multi-sorted logics as their input language (with the notable exception
of Alt-Ergo [3], which provides a polymorphic type system). When using such
provers as a verification back-end, the expressions from the richer language have
to be translated into the simpler logic. That is the subject of Section 4. The
translation needs to take the richer types into account. For example, consider
the following Boogie declarations, which define function Mojo for different types:

function Mojo〈α〉(α) returns (int); axiom (∀ x : int • Mojo(x ) = x );
type GuitarPlayer ; axiom (∀ g : GuitarPlayer • Mojo(g) = 68 );

A translation that simply erases the types would not preserve the meaning of
these axioms, because one would get ( ∀ x • Mojo(x ) = x ) ∧ (∀ g • Mojo(g) =
68 ), from which one can derive false. Therefore, we encode Boogie’s types as
terms in the simpler logic, and that is the subject of this section.

To ease the presentation, from now on we impose two simplifying assumptions
on how type variables can be introduced (in Section 4.3, we discuss how to remove
these assumptions): (i) each of the type parameters ᾱ of a polymorphic function
f 〈ᾱ〉(s̄) returns (t) has to occur in the argument types s̄ (i.e., it is not enough
that a type parameter occurs in the result type); and (ii) a map type 〈ᾱ〉[s̄]t is
considered well-formed only if the parameters ᾱ occur in the index types s̄.

Preliminaries. Given two types s, t ∈ Type, we write t v s and say that t is an
instance of s iff there is a substitution σ such that σ(s) ≡ t . Observe that v is
a pre-order on types, but not a partial order because anti-symmetry is violated
for types that only differ in the names of free variables. The induced equivalence
relation is denoted with ∼=: for s, t ∈ Type, we define s ∼= t iff s v t and t v s.
Due to the definition of v, it is the case that ≡ ⊆ ∼=.

The pre-order v is canonically extended on TypeC = Type/∼= and partially
orders the set. In fact, (TypeC ,v) is a join-semi-lattice whose >-element is
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the class of type variables α. The strict order @ satisfies the ascending chain
condition (ACC): every ascending chain of types in TypeC eventually becomes
stationary. This is important, because it justifies the existence of most-general
map types that are the basis for the type encoding in Section 3.1.

Type Encoding. As a simply typed target language, we use a subset of the Boogie
expression language, restricting the available types to (i) the built-in types bool
and int (other types supported directly by the simply typed logic can be treated
analogously to int), (ii) a type U for (non-bool, non-int) individuals, and (iii) a
type T for (encoded) types. If necessary, it is rather straightforward to translate
expressions in this simply-typed language further into an untyped logic. We
introduce a function symbol type : U → T that maps individuals to their type.

We encode types so that T forms an algebraic datatype. If the target logic has
direct support for algebraic datatypes, one may be able to build on it. Here, we
encode the algebraic datatypes by functions and axioms. Each type construc-
tor C ∈ C gives rise to a function symbol C # : T arity(C ) → T , as well as an
axiomatization of a number of properties, including distinctness and injectivity.

To formalize that the images of different type-constructor functions C # are
disjoint, we introduce a function Ctor : T → int and, for each type constructor
C , a unique constant nC . Injectivity is achieved by defining inverse functions
C 1, . . . ,C n : T → T for each n-ary type constructor C :

(∀ x̄ : T • Ctor(C #(x̄ )) = nC ) ∧
arity(C )∧

i=1

(∀ x̄ : T • C i(C #(x̄ )) = xi )

These are the axioms that are practically used in the Boogie 2 implementa-
tion. Theoretically, further axioms are needed for a faithful model of the type
system, which are discussed in Section C in the appendix.

3.1 Representation of Types using Map Reduction

Besides ordinary type constructors, we must also encode Boogie’s polymorphic
map types, which is more difficult. Let MC ⊆ TypeC be the set of v-maximal
type classes whose elements start with the map type constructor, and let M be
a set of unique representatives for all classes in MC . The elements of M can
be seen as skeletons of map types and determine the binding and occurrences of
bound type variables. Examples of types in M are:

[α]β [α, β] γ [α, β, γ] δ 〈α〉[α]α 〈α〉[α]β 〈α〉[α] (C α)

The property ofM that is central for us is the following: for every type t that
starts with a map type constructor, there is a unique type m = skel(t) ∈ M
such that t v m. For example, skel(〈α〉[C α, int]bool) = 〈α〉[C α, β]γ. This
means that every map type t (also types containing free variables) can be
represented in the form σ(skel(t)), whereby the substitution σ is uniquely de-
termined for all variables that occur free in skel(t). We write flesh(t) for the
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unique substitution satisfying flesh(t)(skel(t)) = t whose domain is a subset of
{α1, . . . , αn}, where α1, . . . , αn are the free variables in skel(t). For example,
flesh(〈α〉[C α, int]bool) = (β 7→ int, γ 7→ bool).

Translation of Types to Terms. In order to encode types, for each type t ∈M
that contains the free type variables α1, . . . , αn we introduce a new n-ary func-
tion symbol m#

t : Tn → T . We will use the notation Skel#(s) := m#
skel(s) for

the skeleton symbol of an arbitrary map type s, and Skeli(s) := mi
skel(s) for the

inverses. Given a mapping µ : A → Term, types can be translated to terms:

[[α]]µ = µ(α) [[C t1 . . . tn ]]µ = C #( [[t1]]µ, . . . , [[tn ]]µ )
[[〈ᾱ〉[s̄] t ]]µ = Skel#(〈ᾱ〉[s̄] t)( [[ flesh(〈ᾱ〉[s̄] t)(β1)]]µ, . . . , [[ flesh(〈ᾱ〉[s̄] t)(βn)]]µ)

In the last equation, 〈ᾱ〉[s̄] t is a map type such that skel(〈ᾱ〉[s̄] t) contains the
free type variables β1, . . . , βn (in this order of occurrence). Some examples are:

[[C T ]]µ = C #(T #) [[ [int] T ]]µ = m#
[α]β(int#,T #)

[[ [T ] S ]]µ = m#
[α]β(T #,S#) [[〈α〉[α] S ]]µ = m#

〈α〉[α]β(S#)

3.2 Symbols and Axioms of Maps with Map Reduction

The reduction of map types to ordinary type constructors entails that also the
access functions select and store can be seen and axiomatised as ordinary func-
tions, based on the axioms of the first-order theory of arrays [20]. For each map
type m ∈M, we introduce separate symbols selectm and storem . Suppose that
m = 〈ᾱ〉[s̄] t ∈M contains the free type variables β̄ = (β1, . . . , βn) (in this order
of occurrence). Then the access functions have the following types:

selectm〈ᾱ, β̄〉(m, s̄) returns (t) storem〈ᾱ, β̄〉(m, s̄, t) returns (m)

It is necessary to include both ᾱ and β̄ as type parameters, because m is para-
metric in the latter, and s̄ and t might be parametric in both. The semantics
of maps is defined by axioms similar to the standard axioms of non-extensional
arrays [20]:

(∀ 〈ᾱ, β̄〉 h : m, x̄ : s̄, z : t • selectm(storem(h, x̄ , z ), x̄ ) = z ) ∧
(∀ 〈ᾱ, ᾱ′, β̄〉 h : m, x̄ : s̄, ȳ : [ᾱ/ᾱ′]s̄, z : t •

x̄ = ȳ ∨ selectm(storem(h, x̄ , z ), ȳ) = selectm(h, ȳ) )

4 Translation of Expressions

We define two main approaches to translating typed Boogie expressions into
equivalent simply typed expressions: one that captures type information using
logical guards, and one that encodes type parameters of polymorphic functions
as ordinary (additional) arguments. The second encoding relies on the usage of
e-matching to instantiate quantifiers (in contrast to methods like superposition
used in first-order theorem provers), because typing information is generated
such that triggers can only match on expressions of the right type (also see [6]).
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4.1 Translation using Type Guards

There is a long tradition of encoding type information using type guards, e.g.,
[19, 6, 7]. As this translation is rather naive and has the disadvantage of compli-
cating the propositional structure of formulae, it has been claimed [6] that its
performance impact is prohibitive for many applications. We are able to show
in Section 5, however, that this is no longer the case with state-of-the-art SMT
solvers. The Mojo example given in Section 3 is complemented with type guards
as follows. Because the quantified formulae are now guarded and only concern
individuals of the right types, no contradiction is introduced.

function Mojo#(U ) returns (U ); const GuitarPlayer# : T ;
axiom (∀ x : U • type(Mojo#(x )) = int# ); // function axiom
axiom (∀ x : U • type(x ) = int# ⇒ Mojo#(x ) = x );
axiom (∀ g : U • type(g) = GuitarPlayer# ⇒ Mojo#(g) = i2u(68) );

Function Axioms. In the course of the translation, typed (user-defined) Boogie
functions are replaced with U -typed functions. Suppose f ∈ F has the typing
〈α1, . . . , αm〉(s̄) returns (t). The corresponding function f # has type U n → U .
We will capture the original typing with an axiom that has the shape:

(∀ x̄ : Ū • type(f #(x̄ )) = [[t ]]µ ) (1)

Note that this axiom does not contain any quantifiers corresponding to the
type parameters α1, . . . , αm , which is advantageous for SMT solvers because
the formula does not offer good triggers for these variables. Instead, the map-
ping µ : A → Term that determines the values of type parameters plays a promi-
nent role. We define this mapping with the help of extractor terms, which are
recursively defined over types and describe how the type parameter values can
be reconstructed from the actual arguments x̄ . This is possible because, by our
simplifying assumptions, each parameter αi occurs in some argument type tj .

Suppose that α ∈ A is a type variable. Under the assumption such that the
term E encodes the type t ∈ Type, the set extractorsα(E , t) specifies terms that
compute the value of α:

extractorsα(E , β) = if α = β then {E} else ∅

extractorsα(E ,C t1 . . . tn) =
n⋃

i=1

extractorsα(C i(E ), ti) (C ∈ C)

extractorsα(E , 〈β̄〉[s̄]t) =
m⋃

i=1

extractorsα(Skeli(〈β̄〉[s̄] t)(E ), flesh(〈β̄〉[s̄] t)(γi))

In the last equation, 〈β̄〉[s̄] t is a map type such that skel(〈β̄〉[s̄] t) contains the
free type variables γ1, . . . , γm (in this order of occurrence). Examples are:

extractorsα(x ,C β α) = {C 2(x )}
extractorsα(x , 〈β〉[C β α]α) = {C 2(m1

〈β〉[C β γ] δ(x )), m2
〈β〉[C β γ] δ(x )}
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With this machinery, we can define µ : A → Term in (1) to be an arbitrary
mapping that satisfies µ(αi) ∈

⋃n
j=1 extractorsαi

(type(xj ), tj ) for i ∈ {1, . . . ,m}.

A simple optimization (that is implemented in Boogie 2 but left out from
this paper for reasons of presentation) is to keep argument or result types int
and bool of functions, instead of replacing them with U . This can reduce the
number of casts to and from U later needed in the translation.

Embedding of Built-in Types. SMT solvers offer built-in types like booleans, in-
tegers, and bit vectors, whose usage is crucial for performance. We define casts to
and from the type U in order to integrate built-in types into our framework. For
the built-in types bool and int, we introduce the cast functions i2u : int→ U ,
u2i : U → int, b2u : bool→ U , u2b : U → bool and axiomatize them as:

( ∀ x : int • type(i2u(x )) = int# ∧ u2i(i2u(x )) = x ) ∧
( ∀ x : U • type(x ) = int# ⇒ i2u(u2i(x )) = x )

and analogously for bool. The axioms imply that i2u and b2u are embeddings
into U , and that u2i and u2b are their inverses. For simplicity, in the following
translation we insert casts in each place where operators over bool or int occur,
although many of the casts could directly be eliminated using the axioms. Such
optimizations are present in the Boogie 2 implementation as well.

Translation of Expressions. The main cases of the translation are:

[[x ]]µ = x (x ∈ X )
[[f (E1, . . . ,En)]]µ = f #([[E1]]µ, . . . , [[En ]]µ)

[[E = F ]]µ = b2u([[E ]]µ = [[F ]]µ)
[[E + F ]]µ = i2u

(
u2i([[E ]]µ) + u2i([[F ]]µ)

)
· · ·

[[E ∧ F ]]µ = b2u
(
u2b([[E ]]µ) ∧ u2b([[F ]]µ)

)
· · ·

[[( ∀ 〈ᾱ〉 x̄ : t̄ • E )]]µ = ( ∀ x̄ : Ū , ȳ : T̄ • type(x̄ ) = [[t̄ ]]µ′ ⇒ [[E ]]µ′ )
[[( ∃ 〈ᾱ〉 x̄ : t̄ • E )]]µ = ( ∃ x̄ : Ū , ȳ : T̄ • type(x̄ ) = [[t̄ ]]µ′ ∧ [[E ]]µ′ )

In the last two equations, ȳ is a vector of fresh variables, and µ′ = (µ, ᾱ 7→ ū). In
the case that a type parameter αi occurs in some of the types t̄ , a more efficient
translation is possible by extracting the value of αi from the bound variables x̄ :

µ′(αi) ∈
⋃m

j=1 extractorsαi (type(xj ), tj )

The optimization is particularly relevant with e-matching-based SMT solvers,
because the formula resulting from the original translation does often not contain
good triggers for the variables ȳ : type parameters ᾱ are used only in types, which
usually do not provide a good discrimination for instantiation.

4.2 Translation using Type Arguments

Our second translation works by explicitly passing the values of type parameters
to functions. In the context of SMT solvers, this allows us to completely leave out
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type guards and leads to formulae with a simpler propositional structure, albeit
functions have a higher arity and more terms occur in the formulae. When using
type arguments, the Mojo example from Section 3 gets translated as follows:

function Mojo(T ,U ) returns (U ); axiom ( ∀ x : U • Mojo(int#, x ) = x );

const GuitarPlayer# : T ; axiom (∀ g : U • Mojo(GuitarPlayer#, g) = i2u(68) );

The Typing of Functions. A function f 〈α1, . . . , αm〉(s1, . . . , sn) returns (t) ∈ F
is in the course of the translation replaced by a corresponding function f # with
the type Tm ×U n → U , i.e., the type parameters are given the status of ordi-
nary function arguments. It is unnecessary to generate any typing axioms for f #,
since typing information is inserted everywhere in terms during the translation
and does not have to be derived by the SMT solver.

Translation of Expressions. We maintain both a map µ : A → Term from type
variables to terms and an environment V : X → Type that assigns types to vari-
ables during the translation:

[[x ]]µ,V = x (x ∈ X )
[[f (Ē )]]µ,V = f #([[σ(ᾱ)]]µ,V , [[Ē ]]µ,V)

[[E = F ]]µ,V = b2u([[E ]]µ,V = [[F ]]µ,V ∧ [[tE ]]µ = [[tF ]]µ)
[[E + F ]]µ,V = i2u

(
u2i([[E ]]µ,V) + u2i([[F ]]µ,V)

)
· · ·

[[E ∧ F ]]µ,V = b2u
(
u2b([[E ]]µ,V) ∧ u2b([[F ]]µ,V)

)
· · ·

[[( Q 〈ᾱ〉 x̄ : t̄ • E )]]µ,V = ( Q x̄ : Ū , ȳ : T̄ • [[E ]](µ, ᾱ7→ȳ),(V, x̄ 7→t̄) )

The second equation assumes f has typing 〈ᾱ〉[s̄]t and that σ is the instantiation
of the type parameters ᾱ that is inferred when applying f to Ē . The types tE , tF
in the third equation are determined by V  E : tE and V  F : tF . In the last
equation, ȳ is a vector of fresh variables, and Q ∈ {∀,∃} is a quantifier.

4.3 Extensions and Optimizations

Unrestricted Type Parameters. The simplifying assumptions made in the begin-
ning of Section 3 require that all type parameters of functions and maps occur
in the domain types. Without these restrictions, type checking of expressions
becomes somewhat more involved and sometimes needs type coercions for dis-
ambiguation (see Section 2.2). Concerning the expression translation with type
guards (Section 4.1), additional arguments have to be added to functions in
the case of type parameters that are only used in the result type. For a func-
tion f 〈ᾱ〉(s1, . . . , sn) returns (t) such that k of the type parameters ᾱ do not
occur in s̄ (but only in t), the post-translation function f # is now given the
typing T k ×U n → U . The types of the map functions select and store and the
axioms for function types have to be changed accordingly.

No changes are necessary for the translation using type arguments (Sec-
tion 4.2), which already adds arguments for all type parameters to functions.
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Type Guards Type Arguments No Types

Boogie (2598) 2002/595/1, 0.781s 2000/597/1, 0.651s 1984/613/1, 0.813s

VCC (7840) 6999/839/2, 3.447s 6999/836/5, 2.181s 6999/836/5, 2.196s

HAVOC (385) 353/16/16, 0.709s 351/18/16, 0.524s 350/17/18, 0.367s

Fig. 5. Results for the different benchmark categories. In each cell, we give the number
of times the outcome valid/invalid/timeout occurred, as well as the average time needed
for successful proof attempts (i.e., counting cases with the outcome valid or invalid).

Generated Types. The type guards introduced in Section 4.1 are sometimes valu-
able as triggers for e-matching. E.g., consider a type whose domain is generated:

type Color ; const unique R,G,B : Color ;
function f (int) returns (Color); axiom ( ∀ c : Color • c = R ∨ c = G ∨ c = B );

In this form, the domain axiom does not contain any triggers that an SMT solver
could use for e-matching. This is remedied by the translation from Section 4.1,
which adds an antecedent type(c) = Color# that provides a trigger (albeit a
very unspecific one). Using the translation from Section 4.2, however, the axiom
is translated to ( ∀ c : U • (c = R ∧ Color# = Color#) ∨ . . . ), so that no in-
stantiation can be performed. In fact, for this translation it is essential that no
instantiation is possible, because otherwise the SMT solver could conclude that
the whole type U only has three elements (see [6] for a discussion).

Two solutions to this problem might be to (i) add type guards for generated
types even when using the translation from Section 4.2; or to (ii) partially instan-
tiate the domain axiom for each declared function symbol with result type Color ,
for instance: (∀ x : int • f (x ) = R ∨ f (x ) = G ∨ f (x ) = B ).

5 Experimental Results

We quantitatively evaluate the two different translations of Boogie expressions,
together with a third unsound translation that simply erases all type information.
The third translation is close to the translation used by the Boogie 1 tool, so
that the overhead of Boogie 2 compared to Boogie 1 is measured. The Boogie
programs of the last two categories are really BoogiePL (Boogie 1) programs
and do not use polymorphism.

– The Boogie regression test suite: A collection of correct and incorrect pro-
grams written in Boogie, Spec# [1], and Dafny [16] that make use of polymor-
phism; also parts of the Boogie tool itself (a Spec# program) are included.

– Hyper-V verification conditions generated by VCC [5]: Boogie programs that
stem from a project to verify the Microsoft hypervisor Hyper-V.

– Benchmarks from the HAVOC tool [4]: Regression tests and verification con-
ditions to prove memory safety and invariants of various C programs.

For each of the three collections of programs, we used Boogie 2 to generate
verification conditions with the different translations and write them to sepa-
rate files. We then measured the performance of the state-of-the-art SMT solver
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Z3 2.03 on the altogether more than 10000 verification conditions. The prover
was run on each verification condition with a timeout of 120s (1800s for the Boo-
gie tests), measuring the average time needed over three runs. All experiments
were made on an Intel Core 2 Duo machine with 3.16GHz and 4GB.

Figure 5 summarizes the results, while more detailed diagrams about the
time differences are shown in Section A in the appendix. As can be seen in the
table, the time difference between the type argument encoding and the transla-
tion without types is always very small, the argument encoding is even faster in
two categories. The type guard encoding is close to the other translations on the
Boogie tests, but is on average about 55% slower on the VCC examples, and per-
forms similarly on the HAVOC examples. One explanation for this phenomenon
is that (in particular) VCC declares a large number of functions as part of the
generated Boogie programs, which leads to a large number of additional function
axioms when using the type guard encoding.

6 Related Work

The intermediate verification language most closely related to Boogie 2 is Why [11],
which offers ML-style polymorphism [22]. ML-style polymorphism is more lim-
ited than the higher-rank polymorphism in Boogie 2; for example, it does not
allow polymorphic map types, nor does allow general quantifications over types.

Using translations similar to ours, Couchot and Lescuyer turn formulas with
ML-style polymorphism into multi-sorted and untyped formulas [6], taking ad-
vantage of built-in theories. They have implemented their translations as mod-
ules of the Why tool [11] and report on some experiments. With Simplify [9],
they measure a 200% slow-down with their version of a Type Guard translation,
and a 300% slow-down with their other encoding. In comparison, we measure a
slow-down of at most 95% with the type guards encoding and at most 45% with
the type arguments encoding (in any of our benchmark categories).

Bobot et al. show how to incorporate ML-style polymorphism directly into
an SMT solver [3]. The machinery they present is essentially that of our Type
Arguments translation. It would be interesting to put to the test their conjecture
that building in polymorphism in the prover rather than handling it through a
translation pre-processing step.

There is a large body of work on the encoding of (typed) higher-order logic
(HOL) in first-order logic (FOL). Such translations primarily target FOL provers,
in contrast to SMT solvers as in our case. Meng and Paulson [21] enrich terms
with type annotations in the form of first-order functions and describe different
translations, some of which are sound, while others require proofs to be type-
checked and possibly rejected afterwards. Similarly, Hurd [14] describes trans-
lations from HOL to FOL in which type information can be included in the
operator for function application, which is similar to our type argument encod-
ing (and in particular the handling of map types). Translations in the same spirit
as our type guard encoding have been studied [7] for the Mizar language.
3 http://research.microsoft.com/en-us/um/redmond/projects/z3/
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Conclusions

We have introduced the type system of Boogie 2, and we have shown how to
translate its polymorphic types and expressions into first-order formulae suitable
for SMT solvers. Our experimental data support the idea that including such
advanced features in an intermediate verification language is both desirable for
verifier front ends and feasible for performance. As future work, we would like
to investigate further optimizations, such as monomorphization.
Acknowledgments. We thank Stephan Tobies and Shuvendu Lahiri for providing us
with Boogie files from VCC and HAVOC for use as benchmarks. We also thank Micha l
Moskal, Nikolaj Bjørner, and Leonardo de Moura for useful discussions and for help
with Z3, and Mike Barnett for making Boogie 2 available as a download at research.
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A Detailed Benchmark Results

A.1 Boogie Regression Tests
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A.2 Hyper-V Verification Conditions Generated by VCC

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

T
yp

e 
G

ua
rd

s 
(s

ec
on

ds
)

No Type Encoding (seconds)

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

T
yp

e 
A

rg
um

en
ts

 (
se

co
nd

s)

No Type Encoding (seconds)

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

T
yp

e 
G

ua
rd

s 
(s

ec
on

ds
)

Type Arguments (seconds)

18



A.3 HAVOC Benchmarks
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B Representation of Types using De Brujin Indices

We discuss an alternative representation of types that uses De Brujin indices4

to encode the binding of type parameters is polymorphic map types. While De
Brujin indices allow a rather concise type encoding, they also require quite com-
plicated axioms or axiom schemas. In order to finitely axiomatise the typing of
the map functions select and store, it is even necessary to describe the unifica-
tion of types as axioms, which is in principle possible but severely slows down
the theorem prover. Our implementation therefore uses the solution shown in
Section 3.1.

For each n > 0, we introduce function symbol mapn : int× Tn+1 → T to
represent map types with n arguments; the first argument of mapn states the
number of type parameters, and the last one the value type of the map. Variables
are written in De Brujin notation using the unary function tv : int→ T . For
instance:

[S ] T  map1(0,S ,T ) 〈α〉[α] T  map1(1, tv(0),T )

Translation of Types to Terms. To determine the De Brujin index of bound
variables, during the translation a mapping β : A → N of variables to natural
numbers is maintained. The translation of types is recursively defined as follows:

[[α]]β = tv(β(α)) (α ∈ A)

[[C t1 . . . tn ]]β = C #([[t1]]β , . . . , [[tn ]]β) (C ∈ C)

[[〈ᾱ〉[s̄]t ]]β = maplen(s̄)(len(ᾱ), [[s̄]]β′ , [[t ]]β′)

In the last equation, β′ is derived from β by “prepending” the bound type
variables ᾱ = (α1, . . . , αn):

β′(γ) =

{
β(γ) + n γ 6∈ {α1, . . . , αn}
i − 1 γ = αi

Type Axioms. A number of properties of types have to be stated as axioms to
ensure the adequacy of the translation: (i) only well-formed types exist (e.g.,
the arguments of tv are non-negative), (ii) proper types do not contain free
type variables, (iii) distinct type constructors construct different types, (iv) type
constructors are injective, (v) types are well-founded, and (vi) the domains of
proper types are nonempty. While some of these properties can be expressed by
pure first-order formulae, properties such as generatedness and wellfoundedness
cannot, and we therefore refer to the theory of integer arithmetic in those cases.

Due to lack of space, we do not give the axioms in this paper, but refer the
reader to a future Technical Report instead.
4 N. G. De Bruijn. Lambda Calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the Church-Rosser Theorem.
Indagationes Mathematicae, pages 381–392, 1972.
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C Axioms for the Type Representation with Map
Reduction

Distinct and Injective Constructors. The first group specifies that types that
start with distinct type constructors are distinct. To this end, we assume an arbi-
trary but fixed enumeration of the countably infinitely many symbols {C # : C ∈ C}
in which each symbol C # occurs at the nC ’th position, starting with 0. The
numbers nC are identified with the literals 0, 1, 2, . . .

TA1 = (∀ x : T • Ctor(x ) ≥ 0 )

∧
∧
C∈C

(∀ x : T • (Ctor(x ) = nC ) = ( ∃ ȳ : T̄ • C #(ȳ) = x ))

The second group of axioms ensures that all type constructors are injective:

TA2 =
∧
C∈C

arity(C )∧
i=1

(∀ x̄ : T̄ • C i(C #(x̄ )) = xi )

Nonempty Domains. The third axiom ensures that the domains of types are
nonempty:

TA3 = ( ∀ x : T • (∃ y : U • type(y) = x ))

Type Casts. We define casts to and from the type U in order to integrate built-in
types into our framework:

TA4 = ( ∀ x : int • type(i2u(x )) = int# ∧ u2i(i2u(x )) = x )

∧ (∀ x : U • type(x ) = int# ⇒ i2u(u2i(x )) = x )

∧ (∀ x : bool • type(b2u(x )) = bool# ∧ u2b(b2u(x )) = x )

∧ (∀ x : U • type(x ) = bool# ⇒ b2u(u2b(x )) = x )

Well-founded Types. The fifth group of axioms ensures that types are well-
founded, e.g., for each n-ary type constructor C there is some type that cannot
be reached by applying C to n other types. This is done by assigning a non-
negative depth to every type (and to every non-type) that grows when type
constructors are applied.

TA5 = (∀ x : T • depth(x ) ≥ 0 ) ∧

∧
∧
C∈C

arity(C )∧
i=1

(∀ x̄ : T̄ • depth(C #(x̄ )) > depth(xi) )
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