
ON CANONICAL REPRESENTATIONS OF CONVEX
POLYHEDRA

PAPER: RO 2003 09 26

DAVID AVIS

School Of Computer Science, MGill University, Canada
E-mail: avis@cs.mcgill.ca

KOMEI FUKUDA

School Of Computer Science, MGill University, Canada
E-mail: fukuda@cs.mcgill.ca

STEFANO PICOZZI

Institute of Mathematics, EPFL, Switzerland
E-mail: stefano.picozzi@epfl.ch

Every convex polyhedron in the Euclidean space Rd admits both H-representation
and V-representation. When working with convex polyhedra, in particular large-
scale ones in high dimensions, it is useful to have a canonical representation that
is minimal and unique up to some elementary operations. Such a representation
allows one to compare two H-polyhedra or two V-polyhedra efficiently. In this
paper, we define such representations that are simple and can be computed in
polynomial time. The key ingredients are redundancy removal for linear inequality
systems and affine transformations of polyhedra.

1 Introduction

A convex polyhedron or simply polyhedron in Rd is the set of solutions to a
finite system of inequalities with real coefficients in d real variables. For a
matrix A ∈ Rm×d and a vector b ∈ Rm, a pair (b, A) is said to be an H-
representation of a convex polyhedron P if P = {x ∈ Rd | b + Ax ≥ 0}.
Motzkin’s decomposition theorem (see, e.g. 4,6) states that every polyhedron
has another representation called a V-representation. For matrices V ∈ Rp×d

and R ∈ Rq×d, a pair (V,R) is said to be a V-representation of a polyhedron
P if P = conv(V) + cone(R), where conv(M) (cone(M), respectively) de-
notes the convex hull (the nonnegative hull) of the row vectors of the matrix
M . In each of representations, there are trivial transformations that preserve
the represented polyhedron. For an H-representation, each inequality can be
multiplied with any positive numbers. For a V-representation, each row of
R can be scaled by any positive number. Also, any permutation of inequal-
ities and the row vectors within V and R does not modify the polyhedron.

afp˙crcp˙RO20020815: submitted to World Scientific on August 10, 2004 1

Two representations are considered equal if they are the same up to these
transformations.

One can easily see that neither V- nor H-representations are unique for
a given polyhedron. First of all both V- and H-representations can have
an unlimited number of redundant vectors or inequalities. Furthermore, even
without redundancy, representations are not unique. Namely there are infinite
many nonredundant V-representations of polyhedra without extreme points,
and infinite many nonredundant H-representation of polyhedra that are not
full-dimensional, see Figure 1 .

aff.hull(P)

P

a

(a) (b)

Lin.space(P)

0

Char.cone(P)

P

r
1

lin.space (P)

p
2

1
p

p
2

r
2

PP

b+ax=0

Figure 1. (a) A 2-dimensional H-polyhedron P in R3, and its affine hull aff (P). One
has infinite many possible choices for vector a which preserve the polyhedron P . Re-
quiring that a belongs to the linear subspace parallel aff (P) leads to the representa-
tion discussed in the book of Schrijver. (b) A 3-dimensional non pointed polyhedron
P = conv(p1, p2) + cone(r1, r2) + lin.space(P), and its characteristic cone char .cone(P) =
cone(r1, r2)+lin.space(P). The V-representation of P is clearly not unique. As discussed by
Schrijver, requiring that p1, p2, r1 and r2 belong to lin.space(P)⊥ ensures the uniqueness
of the representation.

The main objective of the present paper is to define a unique V-
representation (H-representation, respectively) of a polyhedron that can be
computed in polynomial time from any V-representation (H-representation).
We shall review the unique polyhedral representations discussed in the book
of Schrijver 4, and propose a variation that is computationally simpler and
guaranteed to have certain sparsity property. As a consequence, it is possible
to check in polynomial time whether two H- (or V-) representations define the
same polyhedron or not. We also show that redundancy removal is polyno-
mially equivalent to the linear programming. This justifies the use of linear
programming algorithms for redundancy removal.

afp˙crcp˙RO20020815: submitted to World Scientific on August 10, 2004 2

Our main motivation arises from the continuing effort by the first two
authors to develop polyhedral computation codes, such as cddlib 2 and lrslib
1, that perform basic transformations of polyhedral representations. While
the main transformation of these codes is the conversion between H- and V-
representations, it is increasing important to make an efficient implementation
of algorithms to compute canonical representations. This would allow users to
compare two H-polyhedra (or two V-polyhedra) quickly without applying the
(often too) expensive conversion. In addition, the computation of a canon-
ical representation can be considered as a preprocessing step for the main
transformation, which in some cases results in a drastic speed up.

Due to space limitations, many of the proofs are omitted, and will be
included in the full version of the paper.

2 Representations of Convex Polyhedra

In this section, we present basic results on representations of convex poly-
hedra. Most of the results are classical and not very hard to prove. How-
ever there is no thorough treatment of this subject for both V- and H-
representations and in particular no study with computational considerations.
Throughout this section, P is a non-empty polyhedron in Rd.

The notation for H-representation and V-representation given in the last
section, although standard, hides the underlying duality of polyhedral cones.
A natural way to unify the two representations is through homogenization.
We encode a V-representation (V,R) as a pair of a vector and a matrix([

e
0

]
,

[
V
R

])
, where e is the column vector of all 1’s. In this representation

written as (b, A), each row index i with bi = 1 indicates that the correspond-
ing ith row vector Ai of A is a convex hull generator, and each bi = 0 indicates
Ai is a cone generator. This way, both representations are of the same form.
Actually we must go even further to define a unique representation of any
given polyhedron, in both V and H formats.

Let A be an m × d matrix, b an m-dimensional vector and {I, L} be a
partition of [m] := {1, . . . ,m}. We define a quadruple (b, A, I, L) to be an
H-representation of the polyhedron

PH = {x ∈ Rd | bI + AIx ≥ 0, bL + ALx = 0}.

We define a quadruple (b, A, I, L) to be a V-representation of the polyhedron

PV = {x ∈ Rd | x = AT y, yI ≥ 0, bT y = 1}.

afp˙crcp˙RO20020815: submitted to World Scientific on August 10, 2004 3

The set L is called the linearity of the representation. Two representations
(b, A, I, L) and (b′, A′, I ′, L′) are said to be equivalent if the represented poly-
hedra are equal. Each row index i ∈ [m] is called redundant in a representation
(b, A, I, L) if the represented polyhedron stays unchanged after deleting the
ith data, namely removing bi, Ai, i from I or L whichever contains i, and
shifting the rest of the data accordingly. A representation is nonredundant
if it has no redundant row index. For technical reasons, if the zero vector
appears in a V-representation it will be considered non redundant.

A V-representation (b, A, I, L) is called standard if b is binary (i.e. bi ∈
{0, 1}) and bL = 0. A V-representation can be transformed to an equivalent
standard V-representation in quadratic time. For this reason, we assume for
the rest of the paper that any V-representation is standard. Each vector Ai

in a representation is called a generator . It is a point generator if bi = 1, a
ray generator if bi = 0 and i 6∈ L, and a line generator if bi = 0 and i ∈ L.

We say two representations (b, A, I, L) and (b′, A′, I ′, L′) equal if bL +
ALx = 0 ⇔ bL′ + AL′x = 0 and if there is a permutation π of I such that
π(I) = I ′ and each (b′i, A

′
i) is a positive multiple of (bπ(i), Aπ(i)) for any i ∈ I.

Clearly, if two representations of the same type are equal, they are equivalent
and thus define the same polyhedron. In particular for V-representation,
bL = 0 and then the first equivalence coincides with the statement {x ∈
Rd | x = (AL)T y} = {x ∈ Rd | x = (AL′)T y}.

While the equivalence of two representations is nontrivial to check, the
equality is easy to check using Gaussian elimination. Our main goal is to dis-
cuss an efficient procedure to reduce any representation to a uniquely defined
equivalent representation. In particular, we want to extend the definition of
the representation discussed in the book of Schrijver 4 in order to get a canon-
ical representation guaranteeing a certain sparsity property. Extending this
definition uses the notion of compatible and complementary linear subspaces
of Rd.

2.1 Compatible and Complementary linear subspaces

We say two linear subspaces S1 and S2 of Rd having same dimension are com-
patible if the orthogonal projection of S1 onto S2 is S2 itself, or, equivalently,
if the orthogonal projection of S2 onto S1 is S1 itself. We say two linear sub-
spaces S1 and S2 of Rd are complementary if any basis of S1 and any basis
of S2 form, together, a basis of Rd. It follows from elementary linear algebra
that S1 and S2 are complementary if and only if dim(S1) + dim(S2) = d and
S1 ∩ S2 = {0}. Similarly any r ∈ Rd can be written uniquely as r = r1 + r2,
where r1 ∈ S1 and r2 ∈ S2. For any two complementary linear subspaces S1

afp˙crcp˙RO20020815: submitted to World Scientific on August 10, 2004 4

and S2 of Rd, we let PS1S2 denote the projector onto S1 along S2 defined as

PS1S2 : Rd −→ S1

r 7−→ PS1S2(r) = r1.

It is easy to see that PS1S2 is a projector in the sense of the linear algebra.
By linearity, this definition can be extended to any subset of Rd.

2.2 Canonical V-Representation

To define a unique V-representation of a general (non-pointed) polyhedron we
need a few more definitions. The linearity space lin.space(P) of P is defined
as

lin.space(P) = {z ∈ Rd | x + αz ∈ P for all x ∈ P and α ∈ R}.

The characteristic cone char .cone(P) of P is

char .cone(P) = {z ∈ Rd | x + αz ∈ P for all x ∈ P and α ≥ 0}.

The following defines the V-representation discussed in the book of Schrijver:
Lemma 2.1. A nonredundant V-representation (b, A, I, L) of polyhedron P
satisfying the following exists and is unique:

(1) lin.space(P) = {z ∈ Rd | z = (AL)T yL}, and

(2) all row vectors Ai (i ∈ I) are orthogonal to lin.space(P).

This lemma gives a theoretically satisfactory definition of the canonical
representation. Its weakness is that it tends to make the resulting represen-
tation dense. The next theorem gives more general criteria which allows one
to look for unique V-representations satisfying certain sparsity properties.
Theorem 2.2. A nonredundant V-representation (b, A, I, L) of polyhedron P
satisfying the following exists and is unique:

(1) lin.space(P) = {z ∈ Rd | z = (AL)T yL}, and

(2) all row vectors Ai (i ∈ I) are orthogonal to S,

where S is any fixed subspace of Rd compatible with lin.space(P).
The V-representation of Lemma 2.1 is the special case of Theorem 2.2

when S is chosen to be lin.space(P) itself.

afp˙crcp˙RO20020815: submitted to World Scientific on August 10, 2004 5

2.3 Canonical H-Representation

In this section, we use the notion of compatible spaces to find a general canon-
ical H-representation. We denote by aff (P) the affine hull of P . The H-
representation discussed in the book of Schrijver is:
Lemma 2.3. A nonredundant H-representation (b, A, I, L) of a nonempty
polyhedron satisfying the following exists and is unique:

(1) aff (P) = {x ∈ Rd | bL + ALx = 0}, and

(2) each row of AI is the linear space parallel to aff (P).

Again this representation might be computationally inconvenient. The
next theorem gives more flexible notion of canonical H-representations which
allows one to look for those satisfying additional favourable properties such
as sparsity.
Theorem 2.4. A nonredundant H-representation (b, A, I, L) of polyhedron P
satisfying the following exists and is unique:

(1) aff (P) = {x ∈ Rd | bL + ALx = 0}, and

(2) each row of AI is in S,

where S is any linear subspace compatible with the linear space parallel to
aff (P).

3 Computing Canonical Representations

Given any V- (resp. H-) representation (b, A, I, L) of a polyhedron P in
Rd, our goal is to compute efficiently the unique equivalent representation
(b′, A′, I ′, L′) satisfying the following :

(1) it is nonredundant;

(2) lin.space(P) = {x ∈ Rd | x = (A′
L′)T y} (resp. aff (P) = {x ∈ Rd | b′L′ +

A′
L′x = 0});

(3) the rows of A′
I′ are orthogonal to a subspace S compatible with

lin.space(P) (resp. are contained in a subspace S compatible with P0).

Let P̄0 denote lin.space(P) in V-format, and aff (P) in H-format, and let S̄
denote S⊥ in V-format, and S in H-format. Then, (3) can be replaced by :

(3’) the rows of A′
I′ are the projections onto S̄ along P̄0 of any equivalent set

of generators of P .

afp˙crcp˙RO20020815: submitted to World Scientific on August 10, 2004 6

We now discuss two special choices for the linear subspace S.
Any linear subspace is compatible with itself. Choosing S̄ as P̄0 itself

leads to the orthogonal representation discussed in the book of Schrijver 4. In
this case, the projector PS̄P̄0

onto S̄ along P̄0 coincides with the orthogonal
projector PS̄ onto S̄. This representation is perhaps mathematically the most
natural but it tends to lead to a very dense representation, (see e.g. Section 6).

Let us consider another natural choice for S. A coordinate subspace is
any vector subspace of Rd generated by some unit vectors ej (j = 1, . . . , d).
Selecting S̄ as a coordinate subspace guarantees a certain sparsity of the
projected vectors. Moreover, selecting S̄ as the lexicographically smallest
subspace complementary with (P̄0) guarantees that the nonzero coordinates
are indexed by indices as small as possible. The resulting representation will
be called the lexicographically smallest or lexico-smallest representation.

Computationally, the orthogonal representation requires the computa-
tion of orthogonal basis of a linear subspace, which amounts to doing the
Gram-Schmidt orthogonalization procedure. The lexico-smallest representa-
tion needs only to check whether a unit ej is linearly independent of a given
set of chosen vectors, which amounts to applying Gaussian eliminations.

4 Redundancy Removal

4.1 Redundancy Removal in V-representation

The techniques used for solving redundancy removal are very similar in both V
and H formats. Therefore, the discusssion in H-representation will be omitted.
A complete description of the redundancy removal techniques in both H- and
V-respresentation can be found in the Polyhedral Computation FAQ 3 of K.
Fukuda.

For any given V-representation (b, A, I, L) of a polyhedron P , we let I0 =
{i ∈ I | bi = 0} and I1 = {i ∈ I | bi = 1}. It follows from the definitions,

that P = conv(AI1) + cone(R), where R :=
[

AI0

A±
L

]
and A±

L :=
[

+AL

−AL

]
. Let

(b, A, I, L) be any V representation of polyhedron P . The definitions of point,
ray and line generators of P imply that,

(1) k ∈ I0 is redundant if and only if Ak is redundant in cone(R);
(2) k ∈ L is redundant if and only if Ak and −Ak are redundant in cone(R).
(3) k ∈ I1 is redundant if and only if Ak is redundant in conv(V) + cone(R).

afp˙crcp˙RO20020815: submitted to World Scientific on August 10, 2004 7

For any row index k ∈ I ∪ L, we define the linear program R.LPV(bk, Ak) as

max 0
s.t. (Ak)T = bk

∑
i 6=k(Ai)T xi +

∑
l 6=k(Rl)T yl, i ∈ I1, l ∈ IR

bk = bk

∑
i 6=k xi, i ∈ I1

xi ≥ 0, yl ≥ 0, ∀i ∈ I, ∀l ∈ IR

where IR is the index set of the rows of matrix R.
Theorem 4.1. Let (b, A, I, L) be any V-representation P . Then,

(1) k ∈ I is redundant if and only if R.LPV(bk, Ak) has optimal value zero,

(2) k ∈ L is redundant if and only if both R.LPV(0, Ak) and R.LPV(0,−Ak)
have optimal value zero.

Removing sequentially the redundancies from any representation
(b, A, I, L) of a polyhedron P using this theorem leads to a nonredundant
representation (b′, A′, I ′, L′) in O(m×LP(m, d)) time, where m = |I∪L|. The
size of the LPs can be reduced to that of the resulting nonredundant system
by using the techniques given by Ottmann et al. 5

4.2 Computing lin.space(P) and aff (P)

The canonical V- (resp. H-) representation of polyhedron P is defined so that
the rows of the matrix AL form a basis of S(AL). In this section, we present
how one can decide efficiently whether any given row index k ∈ I∪L from any
nonredundant representation (b, A, I, L) of P belongs to the linearity of the
canonical representation of P . Solving this decision problem for every k ∈ I∪L
leads to a set of indices, say L′′, such as (AL′′)T yL ∈ lin.space(P) (resp. such
as bL′′ + AL′′x = 0). The linearity L′ of the canonical representation of P
then arises from L′′ by removing the redundancies.

This decision problem can be easily reduced to linear programming. But
it may also be (equivalently) solved using the redundancy recognition. This
latter method has a nice and simple geometric interpretation in both H and
V formats.

We first consider V-representations. Clearly, we only have to discuss the case
of the ray generators of P . Any ray generator Ak of P belongs to lin.space(P)
if and only if both Ak and −Ak belong to lin.space(P). In other words,
Theorem 4.2. Let (b, A, I, L) be any V-representation of polyhedron P =
conv(AI1) + cone(R), where I1 and R are defined as in Section 4.1. Then,
any row Ak of matrix A belongs to lin.space(P) if and only if k ∈ L ∪ LI ,
where LI = {i ∈ I0 | Ak is redundant in cone(−R)}.

afp˙crcp˙RO20020815: submitted to World Scientific on August 10, 2004 8

Now, consider H-representations. One has to decide whether {x ∈ Rd | bk +
Akx = 0} ⊇ aff (P). It is clearly the case if and only if P ⊆ {x ∈ Rd | bk +
Akx = 0}. In other words,
Theorem 4.3. Let (b, A, I, L) be any H-representation of polyhedron P .
Then, any row Ak of matrix A is such as {x ∈ Rd | bk + Akx = 0} ⊇ aff (P)
if and only if k ∈ L ∪ LI , where LI = {i ∈ I | − bi − Aix ≥ 0 is redundant
with {bI + AIx ≥ 0} ∪ {bL + ALx = 0}}.

5 Computational Equivalence of Problems

The results of the last section show how a canonical representation may be
computed efficiently. The following theorem, which directly follows from the
preceding results, characterizes the complexity of this computation.
Theorem 5.1. Redundancy removal and the computation of a canonical rep-
resentation are polynomially equivalent problems.

As we saw in Section 4, redundancy removal has complexity
O(m×LP(m, d)), where m = |I ∪ L|. Solving these linear programs is expen-
sive in time. The natural question that arises concerns the necessity of solving
linear programs to remove redundancies. It is well known that checking fea-
sibility of a linear system is polynomially equivalent to linear programming.
The following lemma then states the polynomial equivalence of redundancy
removal and the linear programming.
Lemma 5.2. Let Ax + b ≥ 0, where A ∈ Rm×d and b ∈ Rd, be any linear
system of inequalities. Then, Ax+b ≥ 0 is feasible if and only if the inequality
{x0 ≤ 1} is not redundant with Ax + bx0 ≥ 0.

Proof. Consider the homogenized system Ax + bx0 ≥ 0. Clearly, Ax + b ≥ 0
is feasible if and only if it exist a vector x̄ ∈ Rd such that the pair (x0 =
1;x = x̄) is a feasible solution of bx0 + Ax ≥ 0. This is the case if and only
if (x = αx̄;x0 = α) is a feasible solution of bx0 + Ax ≥ 0 for any α ≥ 0. In
particula, b + Ax ≥ 0 is feasible if and only if it exist an x ∈ Rd such that
(x;x0 > 1) is a feasible solution of bx0 + Ax ≥ 0. On the other hand, the
system bx0 + Ax ≥ 0, x0 ≤ 1 is feasible. Then, one may check whether the
inequality {x0 ≤ 1} is redundant with bx0 + Ax ≥ 0 or not. In particular, it
is not hard to see that bx0 +Ax ≥ 0, x0 > 1 is feasible if and only if {x0 ≤ 1}
is redundant with bx0 + Ax ≥ 0.

It follows from the above results that we may check the feasibility of any
linear system Ax ≤ b in polynomial time by performing redundancy removal.
As a direct consequence one has the argued result that,

afp˙crcp˙RO20020815: submitted to World Scientific on August 10, 2004 9

Theorem 5.3. Redundancy removal, the computation of a canonical repre-
sentation and linear programming are polynomially equivalent problems.

6 Some Examples

We start by illustrating the difference between the two canonical repre-
sentations described in Section 6. Consider the following (b, A, I, L) V-
representation:

b =

241
1
1

35 , A =

240 1 1 1 1 0
1 0 1 1 0 1
1 1 0 0 1 1

35 , I = {1, 2, 3}, L = ∅.

(This corresponds to the three hamiltonian circuits for the complete graph
on four vertices.) An orthogonal H-representation in this case is given by:

b =

266666664

−2
−2
−2
−2
1/3
1/3
1/3

377777775
, A =

266666664

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

−1/3 1/6 1/6 1/6 1/6 −1/3
1/6 −1/3 1/6 1/6 −1/3 1/6
1/6 1/6 −1/3 −1/3 1/6 1/6

377777775
, I = {5, 6, 7}, L = {1, 2, 3, 4}.

Note that apart from the linearity space, the matrix is completely dense. The
lexico-smallest H-representation is given by:

b =

266666664

−2
−2
−2
−2
1
1
−1

377777775
, A =

266666664

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
−1 0 0 0 0 0
0 −1 0 0 0 0
1 1 0 0 0 0

377777775
, I = {5, 6, 7}, L = {1, 2, 3, 4}.

This polytope is two dimensional, and so the second representation is quite
sparse and contains a square 3 by 4 submatrix of zeroes in the rows indexed
by I. (These inequalities have the natural interpretation x12 ≤ 1, x13 ≤
1, x12 + x13 ≥ 1 for the travelling salesman problem).

Redundancy removal can have a significant effect in speeding up the run-
ning time of vertex enumeration algorithms. This is particularly pronounced
on algorithms which enumerate bases, such as pivot based algorithms, and
other algorithms that use symbolic perturbation to resolve degeneracy. How-
ever improvement is also noticeable for double description algorithms. Here
we give a few examples, using lrs 1 as an example of a pivot based method,
and cdd 2 as an example of a double description based method.

Consider the metric cone which for any integer n ≥ 3 is a polyhedron in
Rn(n−1)/2 defined by the triangle inequalities xij−xik−xjk ≥ 0 for all distinct
1 ≤ i, j, k ≤ n, where x = (xij) 1 ≤ i < j ≤ n. The metric cone is extremely

afp˙crcp˙RO20020815: submitted to World Scientific on August 10, 200410

degenerate. Vectors x satisfying these inequalities are known as semimetrics:
they are nonnegative and satisfy all triangle inequalities. Often the nonnega-
tivity condition xij ≥ 0 is explicitly specified although these inequalities are in
fact redundant. The program lrs has a nonnegative option for specifying these
additional inequalities, but using it here causes a big increase in the running
time. For example, with n = 6 and without the redundant constraints, lrs
generates 203,956 bases to find the 296 extreme rays. With the nonnegative
option, it generates 1,960,411 bases and so the running time is nearly 10 times
longer. The effect on cdd is not so pronounced but still noticeable: including
the redundant inequalities nearly doubles the computation time.

An other way redundancy occurs is when the programs are used to gener-
ate rays lying on lower dimensional faces. This is easily performed in both lrs
and cdd by including a linearity option which specifies that certain inequalities
should be treated as equations. This normally results in some of the original
inequalities becoming redundant. Taking one such linearity causes all rays on
a facet to be generated. For the metric cone with n = 6, a facet contains 113
extreme rays. Without removing redundant inequalities, lrs generates 121,215
bases. There are 14 redundant inequalities, and after there removal lrs gener-
ates 38,119 bases, a speed up of a factor of about 4. Choosing two linearities
causes ray enumeration on a ridge. Here the effect of redundancy removal
is much more pronounced, as 30 of the original constraints are redundant.
lrs runs more than 50 times faster after redundancy removal. The effect of
redundancy removal on cdd is also noticeable, with speed ups of the order of
about 3 1/2 and 6 times respectively.

References

1. D. Avis. lrs Homepage, 2001. School of Computer Science, McGill Uni-
versity, Canada. http://cgm.cs.mcgill.ca/˜avis/C/lrs.html.

2. K. Fukuda. cddlib reference manual, cddlib Version 092a.
Swiss Federal Institute of Technology, Switzerland, 2001.
http://www.ifor.math.ethz.ch/˜fukuda/cdd home/cdd.html.

3. K. Fukuda. Frequently Asked Questions in Polyhedral Compu-
tation Swiss Federal Institute of Technology, Switzerland, 2000
http://www.ifor.math.ethz.ch/̃fukuda/polyfaq/polyfaq.html

4. A. Schrijver. Theory of Linear and Integer Programming. John Wiley &
Sons, New York, 1986.

5. Th. Ottmann and S. Schuierer and S. Soundaralakshmi. Enumerating
extreme points in higher dimensions. STACS 95: 12th Annual Sympo-
sium on Theoretical Aspects of Computer Science. Springer-Verlag,1995.

afp˙crcp˙RO20020815: submitted to World Scientific on August 10, 200411

6. G.M. Ziegler. Lectures on polytopes. Graduate Texts in Mathematics
152. Springer-Verlag, 1994.

afp˙crcp˙RO20020815: submitted to World Scientific on August 10, 200412

