
School of Computer and
Communication Sciences

M. Garcia,T. Gvero,H. Hojjat,V. Kuncak,M. Odersky,R. Piskac, L.Rytz

August 2008

• Scala.NET targets all .NET platforms

• desktop & server

• mobile

• game console

• Programs using only Scala SDK

are cross-platform (JVM and .NET)

• Additionally, a migration tool (jdk2ikvm) ports

JDK-based Scala sources to .NET

http://lamp.epfl.ch/~magarcia/ScalaNET/

A Workbench for Ensuring Software Quality and Reliability

InSynth: Interactive Synthesis of Code

Eldarica: Predicate Abstraction for

Concurrent Programs

Huge state space in a

concurrent program

- unknown number of processes

- unbounded variables

Side-Effect Analysis .Net Translation

• ProgLab.Net: programming environment equipped with a set of program analysis tools

• Improve the productivity of software development with rapid feedbacks from the system

• Increase the reliability of software by formal verification (sequential and concurrent)

• Aid the programmer by automatic generation of code snippets

Finite manageable state space

- locate error in abstract space

- generalize counter example in

original program

Predicate Abstraction
concrete space abstract space

Abstract with respect to

‘important’ features
(critical messages, shared variables,…)

[front(actor2)=1]

actor2 ! 1

actor1 ! 0

dequeue(actor1)

dequeue(actor2)

[front(actor1)=0]

actor1 ! 0

Control Flow Graph

[front(actor1)=0]

Reachability Tree

p0: (front(actor1)=0), p1: (front(actor2)=1)

{p0}

actor1 ! 0

{p0}

{p0,p1}

actor2 ! 1

{p1}

dequeue(actor1)

{p1}

[front(actor2)=1]

{p0,p1}

actor1 ! 0

dequeue(actor2)

• Reachability Tree: unfolding the

control flow graph in an abstract

domain

• Iterative process: refine the

abstraction until:

 - detect genuine error

 - establish correctness

• Using Scala API classes and methods is hard

• Solution: Interactive Synthesis

• Input: desired type and declarations visible in context

• Encodes them to FOL formulas:
• Desired type – goal

• Declarations – axioms

• Assigns them weights

• Runs resolution algorithm modified to find solutions with

 smallest weights

• Output: ranked expressions that have desired type – code snippets

• Supports: Generic types, higher order functions, sub-typing

• Uses machine learning

• Uses source code corpus to learn weights

• Higher the method frequency, smaller the weight

• Evaluation – 83 real-world API examples

• Recreates expected snippet in 72 examples (87%)

• Expected snippet has highest rank in 38 examples (46%)

Context

Desired Type

class Set[A] {

 def add(a: A): Unit @mod(this) = { ... }

 def map[B](f: A => B): Set[B] @pc(f.apply(_)) =

 { ... }

}

def singletonSet[A](a: A): Set[A] @mod() = {

 val s = new Set[A]()

 s.add(a)

 s}

Non-observable side-effects can be masked

Lightweight syntax for effect-polymorphism: the
effect of map depends on the effect of f.apply

Methods declare their

side-effects
A compiler-plugin checks the

actual side-effects of the code

http://lamp.epfl.ch/~magarcia/ScalaNET/
http://lamp.epfl.ch/~magarcia/ScalaNET/

