
http://lara.epfl.ch

Laboratory for

Automated Reasoning and Analysis

Viktor Kuncak

Assistant Professor, IC

a project: http://JavaVerification.org

ongoing class: http://RichModels.org/LAT

Spring, will be like: http://lara.epfl.ch/sav09

http://lara.epfl.ch/
http://javaverification.org/
http://richmodels.org/LAT
http://lara.epfl.ch/sav09

Automated Reasoning

General Problem Solver (Newell, Simon 1959)

– would take any problem description

theorems, chess games, …

– output a solution

GPS was too ambitious to be useful

Trend since then: look at specific domains

An important domain:

– reasoning about models of computer systems

(software, hardware, embedded systems)

– math, algorithms, software tools for this

(automatically generated
mathematical proof that)

program satisfies
the properties

error in program
(or property) !

. . .

proc remove(x : Node) {

Node p=x.prev; n=x.next;

if (p!=null) p.next = n;

else root = n;

if (n!=null) n.prev = p;

}

. . .

x.next.prev = x

tree is sorted

desired
properties

Java source code

Software Verification

Jahob Verifier

javaVerification.org

no errors, crashes

A Desired Property:

(from a BBC article)

Cryosat, a satelite worth

135m euro

October 2007

No Crashes

actual orbit

http://news.bbc.co.uk/1/hi/sci/tech/4381840.stm

Desired Properties of Data Structures

next

prev

next next

prev prev

root

“acyclicity: ~next+(x,x)”

“x.next.prev == x”

rightleft
“graph is a tree”shape not given by types,

may change over time

unbounded number of objects, dynamically allocated

rightleft

class Node {

Node f1, f2;

}

“elements are sorted”

Declaration alone admits both trees & lists – need “invariants”

More Examples of Desired Properties

next nextfirst

3

size value of size field is

number of stored objects

size = |{x. next*(first,x)}|

table

key value

node is stored in the bucket

given by the hash of node’s key

hashCode

dynamically allocated arrays

numerical quantities

instances do not share array

4

size

Specification in Jahob

public interface is simple

specs as verified comments

Verifying the addNew method

Verification steps

• generate verification condition (VC) in logic, stating

“The program satisfies its specification”

• split VC into a conjunction of smaller formulas Fi

• prove each Fi conjunct using a number of

specialized theorem provers

Jahob

List.java

SPASS

MONA

BAPA

F1 & F2 & F3

F1

F2

F3

Jahob Verifier

Nature of Research in LARA

Two kinds of activities (closely related):

– Algorithms, Decidability, and Complexity

(understand the problem we are solving)

– Making algorithms work in practice

We work with two kinds of objects:

– programs (syntax trees, as in compilers)

– logical formulas (for properties and programs)

C. pC. (A(p) (xC. A(x)))

One aspect of our work:

Algorithms for checking validity of

logical formulas that describe correctness

next0*(root0,n1)

x {data0(n) | next0*(root0,n)}

next=next0[n1:=root0]

data=data0[n1:=x]

|{data(n) | next*(n1,n)}| =

|{data0(n) | next0*(root0,n)}| + 1

formula is true

Formula in arithmetic (with +, *)

Algorithmic Difficulty for Arithmetic

prover for

arithmetic theorems

formula is falsecan loop both for
true and for false

formulas

next0*(root0,n1)

x {data0(n) | next0*(root0,n)}

next=next0[n1:=root0]

data=data0[n1:=x]

|{data(n) | next*(n1,n)}| =

|{data0(n) | next0*(root0,n)}| + 1

formula is valid

Formula in first-order logic

Algorithmic Difficulty for full FOL

first-order logic

theorem prover

formula has finite
counterexample

can loop if there
are infinite

counterexamples!

next0*(root0,n1)

x {data0(n) | next0*(root0,n)}

next=next0[n1:=root0]

data=data0[n1:=x]

|{data(n) | next*(n1,n)}| =

|{data0(n) | next0*(root0,n)}| + 1

formula is valid

formula has a
counterexample

formula in
decidable logic

Decision Procedures

Decision

Procedure

never loops!

always works

Example of Decidable Logics

• Integer arithmetic with only addition

• Integer arithmetic with only multiplication

• Real arithmetic with both addition and

multiplication

• Set algebra (without nested sets)

• First-order logic with only two variables

• Logic of sets and elements interpreted

over trees

see http://RichModels.epfl.ch/LAT

http://richmodels.epfl.ch/LAT

Our Correctness Condition Formula

next0*(root0,n1) x {data0(n) | next0*(root0,n)}

next=next0[n1:=root0] data=data0[n1:=x]

|{data(n) . next*(n1,n)}| =

|{data0(n) . next0*(root0,n)}| + 1

Expressing this VC requires a rich logic

– transitive closure * (in lists and also in trees)

– unconstraint functions (data, data0)

– cardinality operator on sets | ... |

We have a decidable logic that can express this!

“The number of stored objects has increased by one.”

One component of this logic:

Boolean Algebra with Presburger Arithmetic

Not widely known: Feferman, Vaught: 1959

Our results

– first implementation for BAPA (CADE’05)

– first, exact, complexity for full BAPA (JAR’06)

– polynomial-time fragments of QFBAPA (FOSSACS’07)

– first, exact, complexity for QFBAPA (CADE’07)

– generalizations to bags (VMCAI’08, CAV’08,CSL’08)

S ::= V | S1 [S2 | S1 Å S2 | S1 n S2

T ::= k | C | T1 + T2 | T1 – T2 | C¢T | card(S)

A ::= S1 = S2 | S1 µ S2 | T1 = T2 | T1 < T2

F ::= A | F1 Æ F2 | F1 Ç F2 | :F | 9S.F | 9k.F

Ruzica Piskac

3rd year PhD student

- MSc at the Max-Planck Institute

- Microsoft Resarch internship

(Summer 2008)

- working on algorithms for proving

formulas about sets, multisets,

function images, cardinality

Combining Theories with Shared Set Operations. Symposium on

frontiers of combining systems (FroCoS 2009)

Fractional Collections with Cardinality Bounds. Computer Science

Logic (CSL 2008)

Linear Arithmetic with Stars. Compute-Aided Verification (CAV) 2008

Decision Procedures for Multisets with Cardinality Constraints.

Verification Model-Checking, Abstract Interpretation (VMCAI 2008)

Philippe Suter

2nd year PhD student

- MSc from EPFL, while visiting MIT

- Current work: verifying executable

program specifications

(written as functional Scala code)

On Decision Procedures for Algebraic Data Types with

Abstractions. EPFL Technical report, 2009

Non-Clausal Satisfiability Modulo Theories.

Master's Thesis, EPFL, September 2008

Hossein Hojjat

2nd year PhD student

- MSc from Eindhoven, Netherlands

Current work:

• verifying (Scala) programs

• using formulas for automated verification

• building automated reasoning systems

Giuliano Losa

1st year PhD student

- MSc at EPFL

-Current work:

verifying distributed algorithms

Co-supervised w/

Prof. Rachid Guerraoui

Can we prove that “the penguins will indeed survive”,

(even in presence of evil penguins) and can

automated reasoning help in this process?

(automatically generated
mathematical proof that)

program satisfies
the properties

failing test case !

. . .

proc remove(x : Node) {

Node p=x.prev; n=x.next;

if (p!=null) p.next = n;

else root = n;

if (n!=null) n.prev = p;

}

. . .

x.next.prev = x

tree is sorted

executable
properties in
Scala, Isabelle

Java or Scala source code

Some Further Directions

verification +

test generation +

Documentation

also @ run-time, for

embedded software
no errors, crashes

http://lara.epfl.ch

Laboratory for

Automated Reasoning and Analysis

Viktor Kuncak

Assistant Professor, IC

a project: http://JavaVerification.org

ongoing class: http://RichModels.org/LAT

Spring, will be like: http://lara.epfl.ch/sav09

http://lara.epfl.ch/
http://javaverification.org/
http://richmodels.org/LAT
http://lara.epfl.ch/sav09

