# Programming Principles Midterm Solution

Friday, April 17 2015

# Exercise 1: Associativity (10 points)

## Definition (1 pt)

Give the definition of associativity. What does it mean for an operator f to be associative?

Answer

$$\forall x, y, z : f(x, f(y, z)) = f(f(x, y), z)$$

## Associativity and commutativity (1 pt)

Give an example operator that is associative but that is *not* commutative.

#### Answer

Possible answers are:

- Matrix multiplication
- String/list concatenation
- $\bullet \ f(x,y) = x$

## An associative operator (8 pt)

Given two types A and B, and two associative operators f and g with the following signatures:

- f: (A, A) => A
- g: (B, B) => B

Define a third operator h with the following signature:

• h: 
$$((A, B), (A, B)) \Rightarrow (A, B)$$

such that h is associative. (1 pt)

Then, prove that h is indeed associative. (7 pt)

Be very precise in your proof. At each step, specify which axiom, hypothesis, or previous result you use.

#### Answer

We define h as:

$$h((x_1, x_2), (y_1, y_2)) = (f(x_1, y_1), g(x_2, y_2))$$

We know that

$$\forall x, y, z : f(x, f(y, z)) = f(f(x, y), z)$$

$$\forall x, y, z : g(x, g(y, z)) = g(g(x, y), z)$$

We have to prove that

$$\forall x, y, z : h(x, h(y, z)) \stackrel{?}{=} h(h(x, y), z)$$

Replacing x by  $(x_1, x_2)$ , and similarly for y and z:

$$\forall x_1, x_2, y_1, y_2, z_1, z_2 : h((x_1, x_2), h((y_1, y_2), (z_1, z_2))) \stackrel{?}{=} h(h((x_1, x_2), (y_1, y_2)), (z_1, z_2))$$

From here on, I will assume implicitly the  $\forall$  quantification.

Replacing h by its definition, in the inner invocation, on both sides, yields:

$$h((x_1, x_2), (f(y_1, z_1), g(y_2, z_2))) \stackrel{?}{=} h((f(x_1, y_1), g(x_2, y_2)), (z_1, z_2))$$

Replacing h by its definition a second time, on both sides, yields:

$$(f(x_1, f(y_1, z_1)), g(x_2, g(y_2, z_2))) \stackrel{?}{=} (f(f(x_1, y_1), z_1), g(g(x_2, y_2), z_2))$$

Separating the equality of tuples into equality of their members:

$$f(x_1, f(y_1, z_1)) \stackrel{?}{=} f(f(x_1, y_1), z_1)$$

$$g(x_2, g(y_2, z_2)) \stackrel{?}{=} g(g(x_2, y_2), z_2)$$

Which is true because of f and g are associative.

QED

## Exercise 2: Parallel Merge Sort (10 points)

In this exercise, you are required to design and analyze a parallel version of the merge sort algorithm. Consider the function msort shown below that implements a *sequential* merge sort algorithm for sorting a list of objects of type T. Recall that a merge sort algorithm partitions the input list in two parts (whose sizes differ by at most one), sorts each of the parts independently, and finally assembles the two sorted parts into a single sorted list.

```
def msort[T](less: (T, T) => Boolean)(1: List[T]): List[T] = {
   if (1.length <= 1) {
        l
      } else {
      val (first, second) = partition(1)
      merge(less)(msort(less)(first), msort(less)(second))
   }
}</pre>
```

The parameter less defines an ordering on the instances of type T, and takes *constant time*. Given below are the implementations of the function merge that combines two sorted lists into a single sorted list, and the function partition.

```
def merge[T](less: (T, T) => Boolean)(xs: List[T], ys: List[T]): List[T] = {
    (xs, ys) match {
        case (Nil, _) => ys
        case (_, Nil) => xs
        case (x :: xtail, y :: ytail) =>
        if (less(x, y))
            x :: merge(less)(xtail, ys)
        else
            y :: merge(less)(xs, ytail)
    }
}

def partition[T](1: List[T]): (List[T], List[T]) = {
    val n = l.length / 2;
    (1 take n, 1 drop n)
}
```

You are given a parallel construct that can execute two function calls in parallel:

```
def parallel[A, B](taskA: => A, taskB: => B): (A, B)
```

- (a) Which one of the above three functions can you parallelize to obtain a span of O(n) for the function msort, where n is the size of the input list? You are allowed to introduce one or more parallel constructs but you are not allowed to use a different data structure (other than the linked list). Recall that span is (informally) the time taken by an algorithm when the number of parallel processors is unlimited. See below for a more formal definition.
- (b) Implement the parallel version of the function that you identified in part (a).

(c) Prove that the span of the merge sort algorithm is O(n) when the implementation you gave for part (b) is used?

For your reference, a brief formal definition of span, which was explained in the lectures, is given below. For an expression  $f(e_1, \dots, e_n)$ , where f is a function or a primitive operation,  $S(f(e_1, \dots, e_n)) = S(e_1) + \dots + S(e_n) + S(f)(v_1, \dots, v_n)$ , where  $v_i$  denotes the values of  $e_i$ . If f is a primitive operation on integers, then S(f) is constant, regardless of  $v_i$ . If f is a user-defined function, then  $S(f)(v_1, \dots, v_n)$  is equal to the span of the body of f when the values of the parameters are  $v_1, \dots, v_n$ . For the parallel construct,  $S(\text{parallel(c1, c2)}) = c_p + \max(S(c1), S(c2))$ , where  $c_p$  is a constant. For the if-then-else construct, S(if(e1) e2 else e3) = S(e1) + S(e2) + c if the condition e1 holds, otherwise is equal to S(e1) + S(e3) + c, where C is a constant. Since the match construct can be reduced to if-then-else, its span can be derived using the span of if-then-else.

#### Answers

```
(a) msort
```

(b)

```
def msort[T](less: (T, T) => Boolean)(1: List[T]): List[T] = {
   if (1.length <= 1) {
        l
        } else {
        val (first, second) = partition(1)
        val (sortedFirst, sortedSecond) =
            parallel(msort(less)(first), msort(less)(second))
        merge(less)(sortedFirst, sortedSecond)
    }
}</pre>
```

The then part of the if is trivially O(1).

For the else part, informally we have:

```
S(\text{else part}) = S(\text{partition}) + \max(S(\text{msort}(\text{first})), S(\text{msort}(\text{second}))) + S(\text{merge}) + c
```

Defining n to be the length of the list l:

$$S(n) = O(n) + \max(S(\lceil n/2 \rceil), S(\lceil n/2 \rceil)) + O(n) + c$$
 
$$S(n) = O(n) + \max(S(\lceil n/2 \rceil), S(\lceil n/2 \rceil))$$
 
$$S(n) = O(n) + S(\lceil n/2 \rceil)$$
 
$$S(n) = O(n)$$