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Builders

Builders are used in sequential collection methods:



Builders

Builders are used in sequential collection methods:

trait Builder[T, Repr] {
def +=(elem: T): this.type
def result: Repr



Combiners

trait Combiner[T, Repr] extends Builder[T, Repr] {
def combine(that: Combiner[T, Repr]): Combiner[T, Repr]



Combiners

trait Combiner[T, Repr] extends Builder[T, Repr] {
def combine(that: Combiner[T, Repr]): Combiner[T, Repr]
}

How can we implement the combine method efficiently?
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Combiners

» when Repr is a set or a map, combine represents union

> when Repr is a sequence, combine represents concatenation
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time, where n and m are the sizes of two input combiners.



Combiners

The combine operation must be efficient, i.e. execute in O(log n + log m)
time, where n and m are the sizes of two input combiners.

Question: |s the method combine efficient?

def combine(xs: Array[Int], ys: Array[Int]): Array[Int] = {
val r = new Array[Int](xs.length + ys.length)
Array.copy(xs, @, r, @, xs.length)
Array.copy(ys, @, r, xs.length, ys.length)
r

> Yes.
» No.



Array Concatenation

Arrays cannot be efficiently concatenated.
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Sets

Typically, set data structures have efficient lookup, insertion and deletion.

> hash tables — expected O(1)
» balanced trees — O(log n)
> linked lists — O(n)

Most set implementations do not have efficient union operation.
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Sequences

Operation complexity for sequences can vary.

» mutable linked lists — O(1) prepend and append, O(n) insertion
» functional (cons) lists — O(1) prepend operations, everything else

O(n)

> array lists — amortized O(1) append, O(1) random accesss, otherwise
O(n)

Mutable linked list can have O(1) concatenation, but for most sequences,
concatenation is O(n).
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construction.
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Two-Phase Construction

Most data structures can be constructed in parallel using two-phase
construction.

The intermediate data structure is a data structure that:

» has an efficient combine method — O(log n + log m) or better
> has an efficient += method

» can be converted to the resulting data structure in O(n/P) time



Example: Array Combiner

Let's implement a combiner for arrays.

Two arrays cannot be efficiently concatenated, so we will do a two-phase
construction.



Example: Array Combiner

Let's implement a combiner for arrays.

Two arrays cannot be efficiently concatenated, so we will do a two-phase
construction.

class ArrayCombiner[T <: AnyRef: ClassTagl(val parallelism: Int) {
private var numElems = 0@
private val buffers = new ArrayBuffer[ArrayBuffer[T]]
buffers += new ArrayBuffer[T]



Example: Array Combiner

First, we implement the += method:

def +=(x: T) ={
buffers.last += x
numElems += 1
this



Example: Array Combiner

First, we implement the += method:

def +=(x: T) = {
buffers.last += x
numElems += 1
this

3

Amortized O(1), low constant factors — as efficient as an array buffer.



Example: Array Combiner

Next, we implement the combine method:

def combine(that: ArrayCombiner[T]) = {
buffers ++= that.buffers
numElems += that.numElems
this



Example: Array Combiner

Next, we implement the combine method:

def combine(that: ArrayCombiner[T]) = {
buffers ++= that.buffers
numElems += that.numElems
this

3

O(P), assuming that buffers contains no more than O(P) nested array
buffers.



Example: Array Combiner

Finally, we implement the result method:

def result: Array[T] = {
val array = new Array[T](numElems)
val step = math.max(1, numElems / parallelism)
val starts = (@ until numElems by step) :+ numElems
val chunks = starts.zip(starts.tail)
val tasks = for ((from, end) <- chunks) yield task {
copyTo(array, from, end)
}
tasks.foreach(_.join())
array



Benchmark

Demo — we will test the performance of the aggregate method:

Xs.par.aggregate(newCombiner) (_ += _, combine _).result



Two-Phase Construction for Arrays

Two-phase construction works for in a similar way for other data
structures. First, partition the elements, then construct parts of the final
data structure in parallel:

1. partition the indices into subintervals
2. initialize the array in parallel



Two-Phase Construction for Hash Tables

1. partition the hash codes into buckets
2. allocate the table, and map hash codes from different buckets into
different regions



Two-Phase Construction for Search Trees

1. partition the elements into non-overlapping intervals according to
their ordering
2. construct search trees in parallel, and link non-overlapping trees



Two-Phase Construction for Spatial Data Structures

1. spatially partition the elements
2. construct non-overlapping subsets and link them
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How can we implement combiners?
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Implementing combiners

How can we implement combiners?

1. Two-phase construction — the combiner uses an intermediate data
structure with an efficient combine method to partition the elements.
When result is called, the final data structure is constructed in
parallel from the intermediate data structure.

2. An efficient concatenation or union operation — a preferred way when
the resulting data structure allows this.

3. Concurrent data structure — different combiners share the same
underlying data structure, and rely on synchronization to correctly
update the data structure when += is called.
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List Data Type

Let's recall the list data type in functional programming.

sealed trait List[+T] {
def head: T
def tail: List[T]

case class ::[T](head: T, tail: List[T])
extends List[T]

case object Nil extends List[Nothing] {
def head = sys.error(empty list”)
def tail = sys.error(empty list”)



List Data Type

How do we implement a filter method on lists?



List Data Type

How do we implement a filter method on lists?

def filter[T1(Ist: List[T1)(p: T => Boolean): List[T] = 1lst match {
case x :: xs if p(x) => x :: filter(xs)(p)
case x :: xs => filter(xs)(p)
case Nil => Nil



Trees

Lists are built for sequential computations — they are traversed from left to
right.
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Trees

Lists are built for sequential computations — they are traversed from left to
right.

Trees allow parallel computations — their subtrees can be traversed in
parallel.

sealed trait Tree[+T]

case class Node[T](left: Tree[T], right: Tree[T])
extends Tree[T]

case class Leaf[T](elem: T) extends Tree[T]

case object Empty extends Tree[Nothing]
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How do we implement a filter method on trees?



Filter On Trees

How do we implement a filter method on trees?

def filter[T1(t: Treel[T1)(p: T => Boolean): Tree[T] = t match {
case Node(left, right) => Node(parallel(filter(left)(p), filter(right)(p)))
case Leaf(elem) => if (p(elem)) t else Empty
case Empty => Empty



Filter On Trees

How do we implement a filter method on trees?

def filter[T1(t: Treel[T1)(p: T => Boolean): Tree[T] = t match {
case Node(left, right) => Node(parallel(filter(left)(p), filter(right)(p)))
case Leaf(elem) => if (p(elem)) t else Empty

case Empty => Empty




Conc Data Type

Trees are not good for parallelism unless they are balanced.



Conc Data Type

Trees are not good for parallelism unless they are balanced.

Let's devise a data type called Conc, which represents balanced trees:

sealed trait Conc[+T] {
def level: Int
def size: Int
def left: Conc[T]
def right: Conc[T]

3

In parallel programming, this data type is known as the conc-list
(introduced in the Fortress language).



Conc Data Type

Concrete implementations of the Conc data type:

case object Empty extends Conc[Nothing] {
def level = 0
def size = @

3

class Single[T](val x: T) extends Conc[T] {
def level = 0
def size =1

}

case class <>[T](left: Conc[T], right: Conc[T]) extends Conc[T] {
val level = 1 + math.max(left.level, right.level)
val size = left.size + right.size



Conc Data Type Invariants

In addition, we will define the following invariants for Conc-trees:

1. A <> node can never contain Empty as its subtree.

2. The level difference between the left and the right subtree of a <>
node is always 1 or less.



Conc Data Type Invariants

In addition, we will define the following invariants for Conc-trees:

1. A <> node can never contain Empty as its subtree.

2. The level difference between the left and the right subtree of a <>
node is always 1 or less.

We will rely on these invariants to implement concatenation:

def <>(that: Conc[T]): Conc[T] = {
if (this == Empty) that
else if (that == Empty) this
else concat(this, that)



Concatenation with the Conc Data Type

Concatenation needs to consider several cases.

First, the two trees could have height difference 1 or less:




Concatenation with the Conc Data Type

Concatenation needs to consider several cases.

First, the two trees could have height difference 1 or less:

def concat[T](xs: Conc[T], ys: Conc[T]): Conc[T] = {
val diff = ys.level - xs.level
if (diff >= -1 && diff <= 1) new <>(xs, ys)
else if (diff < -1) {



Concatenation with the Conc Data Type

Otherwise, let's assume that the left tree is higher than the right one.



Concatenation with the Conc Data Type

Otherwise, let's assume that the left tree is higher than the right one.

d

. e <=d-2 g <=d-1
d-2 < > e<=d-2
< > ==
xs.left ys
xs.right ys

Case 1: The left tree is left-leaning.

Recursively concatenate the right subtree.



Concatenation with the Conc Data Type

if (xs.left.level >= xs.right.level) {
val nr = concat(xs.right, ys)
new <>(xs.left, nr)

} else {

e<=d-2

.<:> ==

ys

xs.left

xs.right ys




Concatenation with the Conc Data Type

Case 2: The left tree is right-leaning.

e <=d-2
ys xs.left xs.right.left
d-2 d-2
d-3

d-2




Concatenation with the Conc Data Type

} else {

val nrr = concat(xs.right.right, ys)

if (nrr.level == xs.level - 3) {
val nl = xs.left
val nr = new <>(xs.right.left, nrr)
new <>(nl, nr)

} else {
val nl = new <>(xs.left, xs.right.left)
val nr = nrr
new <>(nl, nr)



Summary

Question: What is the complexity of <> method?

O(log n)
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Summary

Question: What is the complexity of <> method?

log n)
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Concatenation takes O(h; — hy) time, where h; and hy are the heights of
the two trees.
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Constant Time Appends in Conc-Trees

Let's use Conc-Trees to implement a Combiner.

How could we implement += method?

var xs: Conc[T] = Empty
def +=(elem: T) {
Xs = xs <> Single(elem)

b



Constant Time Appends in Conc-Trees

Let's use Conc-Trees to implement a Combiner.
How could we implement += method?

var xs: Conc[T] = Empty

def +=(elem: T) {

Xs = xs <> Single(elem)

b

This takes O(log n) time — can we do better than that?



Constant Time Appends in Conc-Trees

To achieve O(1) appends with low constant factors, we need to extend the
Conc-Tree data structure.

We will introduce a new Append node with different semantics:
case class Append[T](left: Conc[T], right: Conc[T]) extends Conc[T] {

val level = 1 + math.max(left.level, right.level)
val size = left.size + right.size



Constant Time Appends in Conc-Trees

One possible appendLeaf implementation:

def appendLeaf[T](xs: Conc[T], y: T): Conc[T] = Append(xs, new Single(y))



Constant Time Appends in Conc-Trees

One possible appendLeaf implementation:
def appendLeaf[T](xs: Conc[T], y: T): Conc[T] = Append(xs, new Single(y))

Can we still do O(log n) concatenation? l.e. can we eliminate Append
nodes in O(log n) time?



Constant Time Appends in Conc-Trees

One possible appendLeaf implementation:
def appendLeaf[T](xs: Conc[T], y: T): Conc[T] = Append(xs, new Single(y))

Can we still do O(log n) concatenation? l.e. can we eliminate Append
nodes in O(log n) time?

This implementation breaks the O(log n) bound on the concatenation.
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» To count up to n in the binary number system, we need O(n) work.



Counting in a Binary Number System

1 + 1

w=2°

1 0 4+ 1

w=2! w=2°

1 1 4+ 1

w=2! w=2°

1 0 0
w=22 w=2! w=2°

» To count up to n in the binary number system, we need O(n) work.

» A number n requires O(log n) digits.



Counting in a Binary Number System
1 + 1
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Counting in a Binary Number System
1 + 1
wW=2° % A%
1 0 4 1 A
w=2! W=2° X %

W=121 W1=2°+ ' K % A %

1 0 0
w=22 w=2! w=2°

» To add n leaves to an Append list, we need O(n) work.
» Storing n leaves requires O(log n) Append nodes.



Binary Number Representation

» 0 digit corresponds to a missing tree
» 1 digit corresponds to an existing tree



Constant Time Appends in Conc-Trees

def appendLeaf[T](xs: Conc[T], ys: Single[T]): Conc[T] = xs match {
case Empty => ys
case xs: Single[T] => new <>(xs, ys)
case _ <> _ => new Append(xs, ys)
case xs: Append[T] => append(xs, ys)



Constant Time Appends in Conc-Trees

@tailrec private def append[T](xs: Append[T], ys: Conc[T]): Conc[T] = {
if (xs.right.level > ys.level) new Append(xs, ys)
else {
val zs = new <>(xs.right, ys)
xs.left match {
case ws @ Append(_, _) => append(ws, zs)
case ws if ws.level <= zs.level => ws <> zs
case ws => new Append(ws, zs)



Constant Time Appends in Conc-Trees

We have implemented an immutable data structure with:

» O(1) appends
» O(log n) concatenation

Next, we will see if we can implement a more efficient, mutable data
Conc-tree variant, which can implement a Combiner.
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Conc Buffers

The ConcBuffer appends elements into an array of size k.

When the array gets full, it is stored into a Chunk node and added into the
Conc-tree.

class ConcBuffer[T: ClassTagl(val k: Int, private var conc: Conc[T]) {
private var chunk: Array[T] = new Array(k)
private var chunkSize: Int = @



Conc Buffers

The += operation in most cases just adds an element to the chunk array:

final def +=(elem: T): Unit = {
if (chunkSize >= k) expand()
chunk(chunkSize) = elem
chunkSize += 1

3

Occasionally, the chunk array becomes full, and needs to be expanded.



Chunk Nodes

Chunk nodes are similar to Single nodes, but instead of a single element,
they hold an array of elements.

class Chunk[T](val array: Array[T], val size: Int) extends Conc[T] {
def level = @



Expanding the Conc Buffer

The expand method inserts the chunk into the Conc-tree, and allocates a
new chunk:

private def expand() {
conc = appendLeaf(conc, new Chunk(chunk, chunkSize))
chunk = new Array(k)
chunkSize = @



Combine Method

The combine method is straightforward:

final def combine(that: ConcBuffer[T]): ConcBuffer[T] = {
val combinedConc = this.result <> that.result
new ConcBuffer(k, combinedConc)

}

Above, the combine method relies on the result method to obtain the
Conc-trees from both buffers.



Result Method

The result method packs chunk array into the tree and returns the
resulting tree:

def result: Conc[T] = {
conc = appendLeaf(conc, new Chunk(chunk, chunkSize))
conc



Result Method

The result method packs chunk array into the tree and returns the
resulting tree:

def result: Conc[T] = {
conc = appendLeaf(conc, new Chunk(chunk, chunkSize))
conc

}
Summary:

» O(log n) combine concatenation
» fast O(1) += operation
» O(1) result operation



Conc Buffer Demo

Demo — run the same benchmark as we did for the ArrayCombiner:

xs.par.aggregate(new ConcBuffer[Stringl)(_ += _, combine _).result



