Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Data-Parallel Programming

Parallel Programming in Scala

Aleksandar Prokopec

Data-Parallelism

Previously, we learned about task-parallel programming.

A form of parallelization that distributes execution processes
across computing nodes.

We know how to express parallel programs with task and parallel
constructs.

Data-Parallelism

Previously, we learned about task-parallel programming.

A form of parallelization that distributes execution processes
across computing nodes.

We know how to express parallel programs with task and parallel
constructs.

Next, we learn about the data-parallel programming.

A form of parallelization that distributes data across computing
nodes.

Data-Parallel Programming Model

The simplest form of data-parallel programming is the parallel for loop.

Example: initializing the array values.

Data-Parallel Programming Model

The simplest form of data-parallel programming is the parallel for loop.

Example: initializing the array values.

def initializeArray(xs: Array[Int])(v: Int): Unit

Data-Parallel Programming Model
The simplest form of data-parallel programming is the parallel for loop.
Example: initializing the array values.

def initializeArray(xs: Array[Int])(v: Int): Unit = {
for (i <- (@ until xs.length).par) {

Data-Parallel Programming Model

The simplest form of data-parallel programming is the parallel for loop.

Example: initializing the array values.

def initializeArray(xs: Array[Int])(v: Int): Unit = {
for (i <- (@ until xs.length).par) {
xs(i) = v
3
}

Data-Parallel Programming Model

The simplest form of data-parallel programming is the parallel for loop.

Example: initializing the array values.

def initializeArray(xs: Array[Int])(v: Int): Unit = {
for (i <- (@ until xs.length).par) {
xs(i) = v
3
}

The parallel for loop is not functional — it can only affect the program
through side-effects.

Data-Parallel Programming Model

The simplest form of data-parallel programming is the parallel for loop.
Example: initializing the array values.
def initializeArray(xs: Array[Int])(v: Int): Unit = {

for (i <- (@ until xs.length).par) {
xs(i) = v

}

The parallel for loop is not functional — it can only affect the program
through side-effects.

As long as iterations of the parallel loop write to separate memory
locations, the program is correct.

Example: Mandelbrot Set

Although simple, parallel for loop allows writing interesting programs.

Render a set of complex numbers in the plane for which the sequence
Zny1 = 22 + ¢ does not approach infinity.

Example: Mandelbrot Set

Although simple, parallel for loop allows writing interesting programs.

Render a set of complex numbers in the plane for which the sequence
Zny1 = 22 + ¢ does not approach infinity.

Example: Mandelbrot Set

We approximate the definition of the Mandelbrot set — as long as the
absolute value of z, is less than 2, we compute z,11 until we do
maxIterations.

private def computePixel(xc: Double, yc: Double, maxIterations: Int): Int = {

var i = 0@

var x, y = 0.0

while (x * x +y *x y < 4 & i < maxIterations) {
val xt = x * x -y *y + xc

val yt = 2 * x x y + yc

X = xt; y =yt

i+=1

3

color(i)

Example: Mandelbrot Set (Data-Parallel)

How do we render the set using data-parallel programming?

def parRender(): Unit = {
for (idx <- (@ until image.length).par) {
val (xc, yc) = coordinatesFor(idx)
image(idx) = computePixel(xc, yc, maxIterations)

Rendering the Mandelbrot Set: Demo

Time for a demol!

Rendering the Mandelbrot Set: Demo
Time for a demo!
Summary:

> task-parallel implementation — the slowest.

» data-parallel implementation — about 2x faster.

Workload

Different data-parallel programs have different workloads.

Workload is a function that maps each input element to the amount of
work required to process it.

Uniform Workload

Defined by a constant function: w(i) = const
A

Uniform Workload

Defined by a constant function: w(i) = const
A

[LT T T 1]

-

Easy to parallelize.

Irregular Workload

Defined by an arbitrary function: w(i) = (i)

\

Irregular Workload

Defined by an arbitrary function: w(i) = (i)

In the Mandelbrot case: w(i) = #iterations

The workload depends on the problem instance.

Irregular Workload

Defined by an arbitrary function: w(i) = (i)

In the Mandelbrot case: w(i) = #iterations
The workload depends on the problem instance.

Goal of the data-parallel scheduler: efficiently balance the workload across
processors without any knowledge about the w(i).

Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Data-Parallel Operations |

Parallel Programming in Scala

Aleksandar Prokopec

Parallel Collections

In Scala, most collection operations can become data-parallel.
The .par call converts a sequential collection to a parallel collection.
(1 until 1000).par

filter(n => n % 3 == @)
.count(n => n.toString == n.toString.reverse)

Parallel Collections
In Scala, most collection operations can become data-parallel.
The .par call converts a sequential collection to a parallel collection.
(1 until 1000).par
filter(n => n % 3 == @)

.count(n => n.toString == n.toString.reverse)

However, some operations are not parallelizable.

Non-Parallelizable Operations

Task: implement the method sum using the foldLeft method.

def sum(xs: Array[Int]): Int

Non-Parallelizable Operations

Task: implement the method sum using the foldLeft method.

def sum(xs: Array[Int]): Int = {
xs.par.foldLeft(@)(_ + _)
3

Does this implementation execute in parallel?

Non-Parallelizable Operations

Task: implement the method sum using the foldLeft method.

def sum(xs: Array[Int]): Int = {
xs.par.foldLeft(@)(_ + _)
3

Does this implementation execute in parallel?

Why not?

Non-Parallelizable Operations

Let's examine the foldLeft signature:

def foldLeft[BI(z: B)(f: (B, A) =>B): B

Non-Parallelizable Operations

Let's examine the foldLeft signature:

def foldLeft[BI(z: B)(f: (B, A) =>B): B

R,

Non-Parallelizable Operations

Let's examine the foldLeft signature:

def foldLeft[BI(z: B)(f: (B, A) =>B): B

R,

Operations foldRight, reduceleft, reduceRight, scanLeft and scanRight
similarly must process the elements sequentially.

The fold Operation

Next, let’s examine the fold signature:

def fold(z: A)(f: (A, A) => A): A

The fold Operation

Next, let’s examine the fold signature:
def fold(z: A)(f: (A, A) => A): A

A

A A A A

The fold operation can process the elements in a reduction tree, so it can
execute in parallel.

Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Data-Parallel Operations Il

Parallel Programming in Scala

Aleksandar Prokopec

Use-cases of the fold Operation

Implement the sum method:

def sum(xs: Array[Int]): Int = {
xs.par.fold(@)(_ + _)
3

Use-cases of the fold Operation

Implement the sum method:

def sum(xs: Array[Int]): Int = {
xs.par.fold(@)(_ + _)
3

Implement the max method:

def max(xs: Array[Int]): Int

Use-cases of the fold Operation

Implement the sum method:

def sum(xs: Array[Int]): Int
xs.par.fold(@)(_ + _)

3

1"
-~

Implement the max method:

def max(xs: Array[Int]): Int = {
xs.par.fold(Int.MinValue) (math.max)
3

Preconditions of the fold Operation

Given a list of ”paper”, ”rock” and ”scissors” strings, find out who won:
pap

Array(”paper”, ”rock”, ”paper”, ”scissors”)

Preconditions of the fold Operation

Given a list of ”paper”, "rock” and ”scissors” strings, find out who won:

Array(”paper”, ”rock”, ”paper”, ”scissors”)
.par.fold(””) (play)

def play(a: String, b: String): String = List(a, b).sorted match {

case List(”paper”, ”scissors”) => ”scissors”
case List(”paper”, ”rock”) => ”paper”
case List(”rock”, ”scissors”) => "rock”
case List(a, b) if a == => a

case List(””, b) =>b

Preconditions of the fold Operation

Given a list of ”paper”, ”rock” and ”scissors” strings, find out who won:
pap

Array(”paper”, ”rock”, ”paper”, ”scissors”)
.par.fold(””) (play)

Preconditions of the fold Operation

Given a list of ”paper”, ”rock” and ”scissors” strings, find out who won:
pap

Array(”paper”, ”rock”, ”paper”, ”scissors”)
.par.fold(””) (play)

play(play(”paper”, ”rock”), play(”paper”, ”scissors”)) == ”scissors”

Preconditions of the fold Operation

Given a list of ”paper”, ”rock” and ”scissors” strings, find out who won:
pap

Array(”paper”, ”rock”, ”paper”, ”scissors”)
.par.fold(””) (play)

play(play(”paper”, ”rock”), play(”paper”, ”scissors”)) == ”scissors”

play(”paper”, play(”rock”, play(”paper”, ”scissors”))) == "paper”

Why does this happen?

Preconditions of the fold Operation

Given a list of ”paper”, ”rock” and ”scissors” strings, find out who won:
pap

Array(”paper”, ”rock”, ”paper”, ”scissors”)
.par.fold(””) (play)

play(play(”paper”, ”rock”), play(”paper”, ”scissors”)) == ”scissors”

_

play(”paper”, play(”rock”, play(”paper”, ”scissors”))) == "paper”

Why does this happen?

The play operator is commutative, but not associative.

Preconditions of the fold Operation

In order for the fold operation to work correctly, the following relations
must hold:

f(a, f(b, c)) == f(f(a, b), ©)
f(z, a) == f(a, 2) ==

We say that the neutral element z and the binary operator f must form a
monoid.

Preconditions of the fold Operation

In order for the fold operation to work correctly, the following relations
must hold:

f(a, f(b, c)) == f(f(a, b), c)
f(z, a) == f(a, 2) ==

We say that the neutral element z and the binary operator f must form a
monoid.

Commutativity does not matter for fold — the following relation is not
necessary:

f(a, b) == f(b, a)

Limitations of the fold Operation

Given an array of characters, use fold to return the vowel count:

Limitations of the fold Operation

Given an array of characters, use fold to return the vowel count:

Array(‘E‘, ‘P¢, ‘F‘, ‘L¢).par
.fold(@) ((count, c) => if (isVowel(c)) count + 1 else count)

Limitations of the fold Operation

Given an array of characters, use fold to return the vowel count:

Array(‘E‘, ‘P¢, ‘F‘, ‘L¢).par
.fold(@) ((count, c) => if (isVowel(c)) count + 1 else count)

Question:

What does this snippet do?

» The program runs and returns the correct vowel count.
> The program is non-deterministic.

» The program returns incorrect vowel count.

» The program does not compile.

Limitations of the fold Operation

Given an array of characters, use fold to return the vowel count:

Array(‘E‘, ‘P¢, ‘F‘, ‘L¢).par
.fold(@) ((count, c) => if (isVowel(c)) count + 1 else count)

// does not compile -- @ is not a Char

The fold operation can only produce values of the same type as the
collection that it is called on.

Limitations of the fold Operation

Given an array of characters, use fold to return the vowel count:

Array(‘E‘, ‘P¢, ‘F‘, ‘L¢).par
.fold(@) ((count, c) => if (isVowel(c)) count + 1 else count)

// does not compile -- @ is not a Char

The fold operation can only produce values of the same type as the
collection that it is called on.

The foldLeft operation is more expressive than fold. Sanity check:

def fold(z: A)(op: (A, A) => A): A = foldLeft[Al(z) (op)

The aggregate Operation

Let's examine the aggregate signature:

def aggregate[B](z: B)(f: (B, A) =>B, g: (B, B) =>B): B

The aggregate Operation

Let's examine the aggregate signature:

def aggregate[B](z: B)(f: (B, A) =>B, g: (B, B) =>B): B

B
B B <——r_
1 \\
A A A l,' A AlN\A AN
[(nB B’ [nB B

A combination of foldLeft and fold.

Using the aggregate Operation

Count the number of vowels in a character array:

Using the aggregate Operation

Count the number of vowels in a character array:

Array(‘E‘, ‘P¢, ‘F‘, ‘L‘).par.aggregate(0)(
(count, c) => if (isVowel(c)) count + 1 else count,
+

The Transformer Operations

So far, we saw the accessor combinators.

Transformer combinators, such as map, filter, flatMap and groupBy, do
not return a single value, but instead return new collections as results.

Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Scala Parallel Collections

Parallel Programming in Scala

Aleksandar Prokopec

Scala Collections Hierarchy

» Traversable[T] — collection of elements with type T, with operations
implemented using foreach

Scala Collections Hierarchy

» Traversable[T] — collection of elements with type T, with operations
implemented using foreach

> Iterable[T] — collection of elements with type T, with operations
implemented using iterator

Scala Collections Hierarchy

» Traversable[T] — collection of elements with type T, with operations
implemented using foreach

> Iterable[T] — collection of elements with type T, with operations
implemented using iterator

» Seq[T] — an ordered sequence of elements with type T

Scala Collections Hierarchy

» Traversable[T] — collection of elements with type T, with operations
implemented using foreach

> Iterable[T] — collection of elements with type T, with operations
implemented using iterator

» Seq[T] — an ordered sequence of elements with type T

> Set[T] — a set of elements with type T (no duplicates)

Scala Collections Hierarchy

» Traversable[T] — collection of elements with type T, with operations
implemented using foreach

> Iterable[T] — collection of elements with type T, with operations
implemented using iterator

» Seq[T] — an ordered sequence of elements with type T
> Set[T] — a set of elements with type T (no duplicates)

> Map[K, V] —a map of keys with type K associated with values of type
vV (no duplicate keys)

Parallel Collection Hierarchy

Traits ParIterable[T], ParSeq[T], ParSet[T] and ParMap[K, V] are the
parallel counterparts of different sequential traits.

Parallel Collection Hierarchy

Traits ParIterable[T], ParSeq[T], ParSet[T] and ParMap[K, V] are the
parallel counterparts of different sequential traits.

For code that is agnostic about parallelism, there exists a separate

hierarchy of generic collection traits GenIterable[T], GenSeq[T], GenSet[T]
and GenMap[K, V].

Parallel Collection Hierarchy

Traits ParIterable[T], ParSeq[T], ParSet[T] and ParMap[K, V] are the
parallel counterparts of different sequential traits.

For code that is agnostic about parallelism, there exists a separate

hierarchy of generic collection traits GenIterable[T], GenSeq[T], GenSet[T]
and GenMap[K, V].

GenTraversable
Traversable/ Genlttrable
A A
Iteible GenSeq/' GenMa:\ GenSet Parlterable
T
Seq/' Map V\Set ParS(PzIMa:\ParSet

Writing Parallelism-Agnostic Code

Generic collection traits allow us to write code that is unaware of
parallelism.

Example — find the largest palindrome in the sequence:

def largestPalindrome(xs: GenSeq[Int]): Int = {
xs.aggregate(Int.MinValue) (
(largest, n) =>
if (n > largest && n.toString == n.toString.reverse) n else largest,
math.max

3
val array = (@ until 1000000).toArray

Writing Parallelism-Agnostic Code

Generic collection traits allow us to write code that is unaware of
parallelism.

Example — find the largest palindrome in the sequence:

def largestPalindrome(xs: GenSeq[Int]): Int = {
xs.aggregate(Int.MinValue) (
(largest, n) =>
if (n > largest && n.toString == n.toString.reverse) n else largest,
math.max

3
val array = (@ until 1000000).toArray

largestPalindrome(array)

Writing Parallelism-Agnostic Code

Generic collection traits allow us to write code that is unaware of
parallelism.

Example — find the largest palindrome in the sequence:
def largestPalindrome(xs: GenSeq[Int]): Int = {
xs.aggregate(Int.MinValue)(
(largest, n) =>
if (n > largest && n.toString == n.toString.reverse) n else largest,
math.max

3
val array = (@ until 1000000).toArray

largestPalindrome(array)

TarocectPalindramel arrav nar)

Non-Parallelizable Collections

A sequential collection can be converted into a parallel one by calling par.

val vector = Vector.fill(10000000)(””)
val list = vector.tolList

Non-Parallelizable Collections

A sequential collection can be converted into a parallel one by calling par.

val vector = Vector.fill(10000000)(””)
val list = vector.tolList

vector.par // creates a ParVector[String]
list.par // also creates a ParVector[String]

Parallelizable Collections

» ParArray[T] — parallel array of objects, counterpart of Array and
ArrayBuffer

Parallelizable Collections

» ParArray[T] — parallel array of objects, counterpart of Array and
ArrayBuffer

» ParRange — parallel range of integers, counterpart of Range

Parallelizable Collections

» ParArray[T] — parallel array of objects, counterpart of Array and
ArrayBuffer

» ParRange — parallel range of integers, counterpart of Range

» ParVector[T] — parallel vector, counterpart of Vector

Parallelizable Collections

» ParArray[T] — parallel array of objects, counterpart of Array and
ArrayBuffer

» ParRange — parallel range of integers, counterpart of Range
» ParVector[T] — parallel vector, counterpart of Vector

» immutable.ParHashSet[T] — counterpart of immutable.HashSet

Parallelizable Collections

» ParArray[T] — parallel array of objects, counterpart of Array and
ArrayBuffer

» ParRange — parallel range of integers, counterpart of Range
» ParVector[T] — parallel vector, counterpart of Vector
» immutable.ParHashSet[T] — counterpart of immutable.HashSet

» immutable.ParHashMap[K, V] — counterpart of immutable.HashMap

Parallelizable Collections

» ParArray[T] — parallel array of objects, counterpart of Array and
ArrayBuffer

» ParRange — parallel range of integers, counterpart of Range

» ParVector[T] — parallel vector, counterpart of Vector

» immutable.ParHashSet[T] — counterpart of immutable.HashSet

» immutable.ParHashMap[K, V] — counterpart of immutable.HashMap
» mutable.ParHashSet[T] — counterpart of mutable.HashSet

Parallelizable Collections

» ParArray[T] — parallel array of objects, counterpart of Array and
ArrayBuffer

» ParRange — parallel range of integers, counterpart of Range

» ParVector[T] — parallel vector, counterpart of Vector

» immutable.ParHashSet[T] — counterpart of immutable.HashSet

» immutable.ParHashMap[K, V] — counterpart of immutable.HashMap
» mutable.ParHashSet[T] — counterpart of mutable.HashSet

» mutable.PasHashMap[K, V] — counterpart of mutable.HashMap

Parallelizable Collections

» ParArray[T] — parallel array of objects, counterpart of Array and
ArrayBuffer

» ParRange — parallel range of integers, counterpart of Range

» ParVector[T] — parallel vector, counterpart of Vector

» immutable.ParHashSet[T] — counterpart of immutable.HashSet

» immutable.ParHashMap[K, V] — counterpart of immutable.HashMap
» mutable.ParHashSet[T] — counterpart of mutable.HashSet

» mutable.PasHashMap[K, V] — counterpart of mutable.HashMap

» ParTrieMap[K, V] — thread-safe parallel map with atomic snapshots,
counterpart of TrieMap

Parallelizable Collections

» ParArray[T] — parallel array of objects, counterpart of Array and
ArrayBuffer

» ParRange — parallel range of integers, counterpart of Range

» ParVector[T] — parallel vector, counterpart of Vector

» immutable.ParHashSet[T] — counterpart of immutable.HashSet

» immutable.ParHashMap[K, V] — counterpart of immutable.HashMap
» mutable.ParHashSet[T] — counterpart of mutable.HashSet

» mutable.PasHashMap[K, V] — counterpart of mutable.HashMap

» ParTrieMap[K, V] — thread-safe parallel map with atomic snapshots,
counterpart of TrieMap

» for other collections, par creates the closest parallel collection — e.g. a
List is converted to a ParVector

Computing Set Intersection

def intersection(a: GenSet[Int], b: GenSet[Int]): Set[Int] = {
val result = mutable.Set[Int]()
for (x <- a) if (b contains x) result += x
result
3
intersection((@ until 1000).toSet, (@ until 1000 by 4).toSet)
intersection((@ until 1000).par.toSet, (@ until 1000 by 4).par.toSet)

Computing Set Intersection

def intersection(a: GenSet[Int], b: GenSet[Int]): Set[Int] = {
val result = mutable.Set[Int]()
for (x <- a) if (b contains x) result += x
result

3
intersection((@ until 1000).toSet, (@ until 1000 by 4).toSet)
intersection((@ until 1000).par.toSet, (@ until 1000 by 4).par.toSet)

Question: ls this program correct?

> Yes.
» No.

Side-Effecting Operations

def intersection(a: GenSet[Int], b: GenSet[Int]): Set[Int] = {
val result = mutable.Set[Int]()
for (x <- a) if (b contains x) result += x
result
3
intersection((@ until 1000).toSet, (@ until 1000 by 4).toSet)
intersection((@ until 1000).par.toSet, (@ until 1000 by 4).par.toSet)

Rule: Avoid mutations to the same memory locations without proper
synchronization.

Synchronizing Side-Effects

Solution — use a concurrent collection, which can be mutated by multiple
threads:

import java.util.concurrent._
def intersection(a: GenSet[Int], b: GenSet[Int]) = {
val result = new ConcurrentSkipListSet[Int]()
for (x <- a) if (b contains x) result += x
result
3
intersection((@ until 1000).toSet, (@ until 1000 by 4).toSet)
intersection((@ until 1000).par.toSet, (@ until 1000 by 4).par.toSet)

Avoiding Side-Effects

Side-effects can be avoided by using the correct combinators. For
example, we can use filter to compute the intersection:

def intersection(a: GenSet[Int], b: GenSet[Int]): GenSet[Int] = {
if (a.size < b.size) a.filter(b(l))
else b.filter(a(l))
3
intersection((@ until 1000).toSet, (@ until 1000 by 4).toSet)
intersection((@ until 1000).par.toSet, (@ until 1000 by 4).par.toSet)

Concurrent Modifications During Traversals

Rule: Never modify a parallel collection on which a data-parallel operation
is in progress.

val graph = mutable.Map[Int, Int]() ++= (@ until 100000).map(i => (i, i + 1))
graph(graph.size - 1) = 0@

for ((k, v) <- graph.par) graph(k) = graph(v)

val violation = graph.find({ case (i, v) => v != (i + 2) % graph.size })
println(s”violation: $violation”)

Concurrent Modifications During Traversals

Rule: Never modify a parallel collection on which a data-parallel operation
is in progress.

val graph = mutable.Map[Int, Int]() ++= (@ until 100000).map(i => (i, i + 1))
graph(graph.size - 1) = 0@

for ((k, v) <- graph.par) graph(k) = graph(v)

val violation = graph.find({ case (i, v) => v != (i + 2) % graph.size })
println(s”violation: $violation”)

» Never write to a collection that is concurrently traversed.

» Never read from a collection that is concurrently modified.

In either case, program non-deterministically prints different results, or
crashes.

The TrieMap Collection

TrieMap is an exception to these rules.

The snapshot method can be used to efficiently grab the current state:

val graph =

concurrent.TrieMap[Int, Int]() ++= (@ until 100000).map(i => (i, i + 1))
graph(graph.size - 1) = 0
val previous = graph.snapshot()
for ((k, v) <- graph.par) graph(k) = previous(v)
val violation = graph.find({ case (i, v) => v != (i + 2) % graph.size })
println(s”violation: $violation”)

Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Splitters and Combiners

Parallel Programming in Scala

Aleksandar Prokopec

Data-Parallel Abstractions

We will study the following abstractions:

> iterators
» splitters
» builders

» combiners

[terator

The simplified Iterator trait is as follows:

trait Iterator[A] {
def next(): A
def hasNext: Boolean

def iterator: Iterator[A] // on every collection

[terator

The simplified Iterator trait is as follows:

trait Iterator[A] {
def next(): A
def hasNext: Boolean

def iterator: Iterator[A] // on every collection
The iterator contract:

> next can be called only if hasNext returns true
> after hasNext returns false, it will always return false

Using Iterators

Question: How would you implement foldLeft on an iterator?

def foldLeft[BI(z: B)(f: (B, A) =>B): B

Using Iterators

Question: How would you implement foldLeft on an iterator?

def foldLeft[BI(z: B)(f: (B, A) =>B): B = {
var s = z
while (hasNext) s = f(s, next())
s

Splitter

The simplified Splitter trait is as follows:
trait Splitter[A] extends Iterator[A] {

def split: Seq[Splitter[A]]
def remaining: Int

def splitter: Splitter[A] // on every parallel collection

Splitter

The simplified Splitter trait is as follows:

trait Splitter[A] extends Iterator[A] {
def split: Seq[Splitter[A]]
def remaining: Int

def splitter: Splitter[A] // on every parallel collection

The splitter contract:

» after calling split, the original splitter is left in an undefined state
> the resulting splitters traverse disjoint subsets of the original splitter
> remaining is an estimate on the number of remaining elements
» split is an efficient method — O(log n) or better

Using Splitters

Question: How would you implement fold on a splitter?

def fold(z: A)(f: (A, A) => A): A

Using Splitters

Question: How would you implement fold on a splitter?

def fold(z: A)(f: (A, A) => A): A = {
if (remaining < threshold) foldLeft(z)(f)

Using Splitters

Question: How would you implement fold on a splitter?

def fold(z: A)(f: (A, A) => A): A = {
if (remaining < threshold) foldLeft(z)(f)
else {
val children = for (child <- split) yield task { child.fold(z)(f) }
children.map(_.join()).foldLeft(z) (f)

Builder

The simplified Builder trait is as follows:
trait Builder[A, Repr] {

def +=(elem: A): Builder[A, Repr]
def result: Repr

def newBuilder: Builder[A, Repr] // on every collection
The builder contract:

» calling result returns a collection of type Repr, containing the
elements that were previously added with +=
» calling result leaves the Builder in an undefined state

Using Builders

Question: How would you implement the filter method using newBuilder?

def filter(p: T => Boolean): Repr

Using Builders

Question: How would you implement the filter method using newBuilder?

def filter(p: T => Boolean): Repr = {
val b = newBuilder
for (x <- this) if (p(x)) b += x
b.result

Combiner

The simplified Combiner trait is as follows:

trait Combiner[A, Repr] extends Builder[A, Repr] {
def combine(that: Combiner[A, Repr]): Combiner[A, Repr]

def newCombiner: Combiner[T, Repr] // on every parallel collection
The combiner contract:

» calling combine returns a new combiner that contains elements of
input combiners

» calling combine leaves both original Combiners in an undefined state

> combine is an efficient method — O(log n) or better

Using Combiners

Question: How would you implement a parallel filter method using
splitter and newCombiner?

