Parallel Programming

Midterm Exam
Wednesday, April 27, 2016

Your points are precious, don’t let them go to waste!

Your Time All points are not equal. Note that we do not think that all exercises have the
same difficulty, even if they have the same number of points.

Your Attention The exam problems are precisely and carefully formulated, some details
can be subtle. Pay attention, because if you do not understand a problem, you can not
obtain full points.

Exercise | Points | Points Achieved

1 25
2 25
3 25
4 25

Total 100

Exercise 1: Associativity (25 points)

For the this exercise, you will look at multiplication of 2 by 2 matrices containing 32-bits integers. Remember
that multiplication of such matrices is defined as follows:

2
AB=C <:>V1§i§2,1§k§2.Cik:ZAij-Bjk
j=1

Also note that 32-bits integers form a commutative ring, meaning that both addition and multiplication are
associative and commutative, and that multiplication distributes over addition.

Question 1: Definition (5 points)

State the associative property for matrix multiplication.

Question 2: Proof of associativity (15 points)

Prove that multiplication of 32-bits integer matrices of dimension 2 by 2 is associative.

Hint: To show that two matrices X and Y are equal, you may show that for all indexes 7 and j that X;; and
Y;; are equal.

Question 3: Associativity in parallel programming (5 points)

Why is associativity interesting in the context of parallel programming? Circle the best answer from the list
below:

1. Associative operations always have efficient lock-free implementations.

2. The order of parameters of an associative operation can be freely swapped, giving better latency.

3. Associativity opens up possibilities to balance work.

4. Associative operations are more efficiently executed on Intel processors.

Exercise 2: Parallelizing Fold with Minus (25 points)
Let a be an Array[Int]. We are interested in the value of acc computed by the following piece of code:

var acc = 0
for(i <- (a.length - 1) to 0 by (-1))
acc = a(i) - acc

For example, with a = Array(4, 3, 6, 2) we obtain acc = 4-(3-(6-(2-0))) = 5.
Question 1 (10 points)

Complete the template shown below so that the value of acc returned by the template is same as that
computed by the above code snippet. For you reference, a.zipWithIndex returns a new array consisting of
all elements of a paired with their index. Eg. Array(1, 2, 5).zipWithIndex = Array((1, 0), (2, 1),
(5, 2))

val acc = a.zipWithIndex
.map{ case (value, index) =>

}.sum

Question 2 (10 points)

We are now interested by a more efficient way of computing acc, which combines the two traversals of the
array and make the traversal in parallel. For that, we will use the parallel construct we saw in the lectures.
For your reference, you will below an implementation of the parallel construct. Note that t = Task { op
} creates a new thread t to execute op, and t.join() waits and returns the result of op when t finishes.

def parallel[A, B](opl: =>A, op2: =>B): (A, B) = {
val resl = Task { opl }
val res2 = op2
(resl.join(), res2)

}

Complete the code snippet shown below so that computeAcc(a, 0, a.length) returns the value of
acc. The function may recursively call itself on an array segment between indices start (inclusive)
and end (exclusive). Some input/output examples: computeAcc(Array(1,2,7,13,5), 0, 5) = -2
computeAcc(Array(1,2,7,13,5), 1, 4) = -8

def computeAcc(a: Array[Int], startIndex: Int, end: Int): Int = {
if(end - start == 1) {

} else {

Question 3 (5 points)

Suppose we call computeAcc with the following arguments:
computeAcc(Array (112, 97, 114, 97, 108, 108, 101, 108), 0, 8)

How many Tasks will be created when the above described implementation of parallel is used?

Exercise 3: Parallel Quick Sort (25 points)

In this exercise, you are required to design and analyze a parallel version of the quick sort algorithm. Consider
the function gsort shown below that implements a sequential quick sort algorithm for sorting (in ascending
order) a list of Int.

def gsort(list: List[Int]): List[Int] = {
if (list.size <= 1) 1list
else {
val (smaller, eqs, bigger) = partition(list, choosePivot(list))
gsort(smaller) ++ eqs ++ gsort(bigger)
}
}

A brief explanation of the quick sort algorithm

(a) If the input list has zero or one element, the algorithm returns the list as it is.
(b) Otherwise, the algorithm chooses an element of the input list referred to as the pivot.

(¢) Tt then partitions the input list into three parts such that the first part (smaller) contains all elements
smaller than the pivot, the second part (eqs) contains all elements equal to the pivot, and the last part
(bigger) contains all elements greater than the pivot. Note that the size of the parts may depend on
the choice of the pivot, and may not necessarily be equal.

(d) Finally, the algorithm recursively sorts the first and the last parts, and concatenates the results.

If the pivot is chosen arbitrarily, the depth of the gsort algorithm is O(n?) in the worst case, for a list of size
n. Now say, instead of arbitrarily choosing the pivot, we always choose the median of the list as the pivot.
The median of a list of integers is the middle element in the sorted order of the integers. We can compute the
median of an arbitrary list 1 (of size n) in worst case linear time: O(n) by using an algorithm called median

of medians. Note that when the median is chosen as the pivot, at most L@J elements are smaller than the

pivot, and at most [@1 elements are greater than the pivot.
Question 1 (15 points) Show a parallel implementation of the gsort function whose depth is O(l.size),

given that choosePivot uses the median. You can use the parallel construct explained in the previous
question. You don’t have to show the implementations of the partition or the choosePivot functions.

Question 2 (10 points) Prove that the depth of the parallel gsort function is O(l.size). Note that for
computing the depth of gsort you need to come up with a sutiable depth for the partition function. You
need not prove the depth of the partition, or choosePivot functions.

Hint: In your proof you can first construct a recurrence relation, and come up with a solution for it.

For your reference, a brief formal definition of depth, which was explained in the lectures, is given below.
For an expression f(ey,---,e,), where f is a function or a primitive operation, S(f(e1, -+ ,en)) = S(e1) +
.+ S(en) + S(f)(v1,- -+ ,v,), where v; denotes the value of e;. If f is a primitive operation on integers e.g.
+, -, * etc., then S(f) is a constant regardless of v;. If f is a user-defined function, then S(f)(vy,- - ,v,)
is equal to the depth of the body of f when the values of the parameters are vy, --- ,v,. For the parallel
construct, S(parallel(cl, c2)) is equal to ¢, + max(S(cl), S(c2))), where ¢, is a constant. For the if-then-
else construct, S(if (e1l) e2 else e3) = S(el) + S(e2) + c if the condition el holds, otherwise is equal to
S(el) + S(e3) + ¢, where ¢ is a constant. Since the match construct can be reduced to if-then-else, its depth
can be derived using the depth of if-then-else.

Exercise 4: Read/Write Lock (25 points)

In this question, you have to implement a class ReadWrite that implements a read/write lock. Unlike a
traditional monitor that has a single operation to build mutual exclusion blocks (synchronized), read/write
locks have two methods:

read(op) // performs ‘op‘ as a reader
write(op) // performs ‘op‘ as a writer

The read and write methods should satisfy the following constraints:

e Only one writer may own the lock at any point in time. That is, no two write operations can execute
concurrently.

e Multiple readers can own the lock concurrently. That is, mutiple read operations can happen concur-
rently.

e A writer may own the lock only if no reader owns it. That is, a write operation can happen only if
there are no concurrent read operations.

Question 1 (15 points)

Implement both read and write in the class stub on the next page and write a small explanation about it
just below: (declare any vars you’d need at the begining of the class). You may use synchronized, wait,
and notifyAll methods to implement the read and write methods.

Ezxplain your solution in at most six sentences here

Hints:

e Since multiple concurrent reads should be allowed to happen, it is important that the op operation in
read is itself executed outside of a synchronized block.

e You may want to keep track of the number of reader executing at the same time.

class ReadWrite extends Monitor {
// declare any private variables needed here

def read[T](op: => T): T = {
synchronized {
// £ill in what is needed here

}
try {
op
}
finally {
synchronized {
// f£ill in what is needed here

}
}
}

def write[T] (op: => Unit) = synchronized {
// £ill in what is needed here

op

10

Question 2 (10 points) In most real world application, reads are far more frequent than writes; the lock
implemented in question 1 would be highly inefficient as reads may block writes from happening.

Implement a read/write lock, based on the previous question’s implementation, ensuring that any write
operation that entered the synchronized block (i.e. that own the lock) takes precedence over any new reader.
That is, if a writer has entered the synchronized block of a write no new reader is permitted to enter a read,
but existing readers are allowed to complete.

class ReadWrite extends Monitor {
// declare any private variables needed here

def read[T](op: => T): T = {
// fill in what is needed here

}

def write[T] (op: => Unit): Unit = synchronized {
// £ill in what is needed here

11

