
Exercise Session 7 - Solutions - Parallelism and Concurrency - EPFL

Exercise 1 : Federal Statistical Office

You have been recently hired as a Spark consultant at the Federal Statistical Office in
Neuchâtel. They have recently started using Spark for all their data processing tasks, but for
some reason, they are not entirely satisfied with Spark thus far.

Below is the datatype they use to record information about people living in Switzerland. The
RDD that contains all records (several millions) is called people.

case class Person(age: Long, salary: Long, town: Int)

val people: RDD[Person] = ???

The Spark cluster they have put in place consists of 8 identical machines, each of which has
4 cores.

Question 1

On your very first day, you are immediately tasked with investigating some piece of code.
Even though the statistician that wrote the code is absolutely sure it is correct, he is not
satisfied with its performance! It’s awfully slow!

people.groupBy(_.age).map {

 case (age, peopleOfAge) => {

 val salaries = peopleOfAge.map(_.salary)

 val n = peopleOfAge.size

 val mean = salaries.sum / n

 val variance = salaries.map(x => (x - mean) * (x - mean)).sum / n

 (age, (mean, Math.sqrt(variance).toLong))

 }

}

Using your own words, explain why the above code is supposed to do and why it is not as
efficient as it could be. What happens ?

Hint: You may find it useful to draw a graphical representation of the nodes and show data
exchanges between the nodes.

Answer

A lot of unnecessary communication happens on the cluster. Data is moved over the
network from nodes to other nodes, which is called “shuffling”. Network communication is
extremely slow relatively to other operations.

1

Exercise Session 7 - Solutions - Parallelism and Concurrency - EPFL

Question 2

Rewrite the above piece of code to be as efficient as possible.

Hint: You may recall from your Probabilities and statistics course that there exist multiple
formulas to compute the variance of a series x of n values with mean m. For instance:

 or ar(x) m) / nV = ∑
n

i=1
(xi − ˆ2

ar(x) () / n V = ∑
n

i=1
xiˆ

2
− mˆ2

One of the two forms might be more appropriate in your solution.

Answer

people.map(p => (p.age, p.salary))

 .mapValues(s => (1, s, s * s))

 .reduceByKey {

 case ((n1, s1, ss1), (n2, s2, ss2)) =>

 (n1 + n2, s1 + s2, ss1 + ss2)

 }

 .mapValues {

 case (n, sum, sumSquares) => {

 val mean = sum / n

 val variance = sumSquares / n - mean * mean

 (mean, Math.sqrt(variance).toLong)

 }

 }

Note the use of reduceByKey instead of groupByKey. Also, mapValues is used whenever
possible, which preserves the partitioner, if any. This will be useful later on.

Question 3

Could the computation be done even faster if the data was already partitioned ? Write the
code to partition the data intelligently.

// Code to partition the data before processing

val pairs = people.map(p => (p.age, p.salary))

val nPartitions = 32 // 8 machines, 4 cores each

val tunedPartitioner = new RangePartitioner(nPartitions, pairs)

val partitioned = pairs.partitionBy(tunedPartitioner).persist()

2

Exercise Session 7 - Solutions - Parallelism and Concurrency - EPFL

// Actual processing of the data

partitioned.mapValues(s => (1, s, s * s))

 .reduceByKey {

 case ((n1, s1, ss1), (n2, s2, ss2)) =>

 (n1 + n2, s1 + s2, ss1 + ss2)

 }

 .mapValues {

 case (n, sum, sumSquares) => {

 val mean = sum / n

 val variance = sumSquares / n - mean * mean

 (mean, Math.sqrt(variance).toLong)

 }

 }

3

Exercise Session 7 - Solutions - Parallelism and Concurrency - EPFL

Exercise 2 : Partitioners

Question 1

What is a partitioner ? Come up with two reasons why you would want to repartition data.

Answer

Partitioners specify which keys are hosted by the different partitions. Repartitioning in useful
for example for:

1) Improving data locality, and thus avoiding network shuffles.
2) Balance the work between the different partitions.

Question 2

Which of the following transformations preserve the partitioner of the parent RDD, if any ?

● map

● mapValues

● filter

● flatMap

● flatMapValues

● join

● reduceByKey

● groupByKey

Within your group, discuss what makes it possible for some transformations to preserve and
propagate the parent’s partitioner.

Answer

The transformations that preserve partitioners are in bold below.

● map

● mapValues

● filter

● flatMap

● flatMapValues

● join

● reduceByKey

● groupByKey

The partitioner can be preserved because the set of keys held by a partition in the resulting
RDD is a subsets of the keys the partition held in the parent RDD. Therefore the partitioner
still faithfully describe where the different keys are held.

4

Exercise Session 7 - Solutions - Parallelism and Concurrency - EPFL

Question 3

Which of the following transformations will return an RDD with a partitioner, even when the
parent doesn’t have one ?

● map

● mapValues

● filter

● flatMap

● flatMapValues

● join

● reduceByKey

● groupByKey

Answer

The transformations that introduce partitioners are in bold below.

● map

● mapValues

● filter

● flatMap

● flatMapValues

● join

● reduceByKey

● groupByKey

Question 4

What is the difference between a HashPartitioner and a RangePartitioner ? When
would you use one over the other ?

Answer

A HashPartitioner partitions the data according to the hashcode of the key, while a
RangePartitioner partitions the data according to an ordering on the keys.

HashPartitioners generally split the work evenly between the different partitions. This
partitioners does not require a specific ordering to exist on the keys.

RangePartitioners allow grouping keys in the same range on the same partition. This can
be useful to further improve data locality. In some cases, as seen in the video lecture, it also
allows for better work balancing.

5

