
Shuffling, Partitioning, and Closures

Principles of Functional Programming
Heather Miller

What we’ve learned so far

▶ We extended data parallel programming to the distributed case.
▶ We saw that Apache Spark implements this distributed data parallel

model.
▶ We developed some intuition for how long it takes to do various

operations – in memory, on disk, and over the network. And,
specifically, we saw how important it is to reduce network
communication.

What we’ve learned so far

Spark’s Basic Programming Model
▶ We saw that, at a glance, Spark looks like Scala collections
▶ However, Spark behaves very differently than Scala collections

▶ Spark uses laziness to save time and memory

▶ We saw transformations and actions
▶ We saw caching and persistence (i.e., cache in memory, save time!)
▶ We saw how the cluster topology comes into the programming model
▶ We learned in detail about reduction operations in Spark vs Scala

collections

What we’ve learned so far

Distributed Key-Value Pairs (Pair RDDs)
▶ We got a sampling of Spark’s key-value pairs (Pair RDDs)
▶ We saw all of the different sorts of joins
▶ We learned other important operations on just Pair RDDs
▶ We got a glimpse of “shuffling”

Today…

Now that we understand Spark’s programming model, and a majority of
Spark’s key operations, we’ll now see how we can optimize what we do
with Spark to keep it practical.
It’s very easy to write clear code that takes tens of minutes to compute
when it could be computed in only tends of seconds.

1. Shuffling

▶ What is it and why is it important?
▶ How do I know when it happens?
▶ How can I optimize an operation that requires a shuffle?

2. Partitioning
3. Closures and Capturing
4. Shared Variables

Grouping and Reducing, Example

Let’s start with an example. Given:

case class CFFPurchase(customerId: Int, destination: String, price: Double)

Assume we have an RDD of the purchases that users of the CFF mobile
app have made in the past month.

val purchasesRdd: RDD[CFFPurchase] = sc.textFile(...)

Goal: calculate how many trips, and how much money was spent by
each individual customer over the course of the month.

Grouping and Reducing, Example

Goal: calculate how many trips, and how much money was spent by
each individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchase] = sc.textFile(...)

val purchasesPerMonth = ...

Grouping and Reducing, Example

Goal: calculate how many trips, and how much money was spent by
each individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchase] = sc.textFile(...)

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerId, p.price)) // Pair RDD

Grouping and Reducing, Example

Goal: calculate how many trips, and how much money was spent by
each individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchase] = sc.textFile(...)

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerId, p.price)) // Pair RDD

.groupByKey() // groupByKey returns RDD[K, Iterable[V]]

Grouping and Reducing, Example

Goal: calculate how many trips, and how much money was spent by
each individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchase] = sc.textFile(...)

// Returns: Array[(Int, (Int, Double))]

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerId, p.price)) // Pair RDD

.groupByKey() // groupByKey returns RDD[(K, Iterable[V])]

.map(p => (p._1, (p._2.size, p._2.sum)))

.collect()

Grouping and Reducing, Example – What’s Happening?

Let’s start with an example dataset:

val purchases = List(CFFPurchase(100, ”Geneva”, 22.25),

CFFPurchase(300, ”Zurich”, 42.10),

CFFPurchase(100, ”Fribourg”, 12.40),

CFFPurchase(200, ”St. Gallen”, 8.20),

CFFPurchase(100, ”Lucerne”, 31.60),

CFFPurchase(300, ”Basel”, 16.20))

What might the cluster look like with this data distributed over it?

Grouping and Reducing, Example – What’s Happening?

What might the cluster look like with this data distributed over it?
Starting with purchasesRdd:

What might this look like on the cluster?

Workers

SHUFFLE
“Shuffles” data
 across network

CFFPurchase(100, ”Geneva”, 22.25) CFFPurchase(300, ”Zurich”, 42.10)CFFPurchase(100, ”Fribourg”, 12.40)

CFFPurchase(200, ”St. Gallen”, 8.20)CFFPurchase(100, ”Lucerne”, 31.60) CFFPurchase(300, ”Basel”, 16.20)

Grouping and Reducing, Example – What’s Happening?

What might this look like on the cluster?

What might this look like on the cluster?

Workers

SHUFFLE
“Shuffles” data
 across network

CFFPurchase(100, ”Geneva”, 22.25) CFFPurchase(300, ”Zurich”, 42.10)CFFPurchase(100, ”Fribourg”, 12.40)

CFFPurchase(200, ”St. Gallen”, 8.20)CFFPurchase(100, ”Lucerne”, 31.60)

map

CFFPurchase(300, ”Basel”, 16.20)

(100, 22.25) (300, 42.10)(100, 12.40)

(200, 8.20)(100, 31.60) (300, 16.20)

Grouping and Reducing, Example

Goal: calculate how many trips, and how much money was spent by
each individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchase] = sc.textFile(...)

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerId, p.price)) // Pair RDD

.groupByKey() // groupByKey returns RDD[K, Iterable[V]]

Grouping and Reducing, Example

Goal: calculate how many trips, and how much money was spent by
each individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchase] = sc.textFile(...)

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerId, p.price)) // Pair RDD

.groupByKey() // groupByKey returns RDD[K, Iterable[V]]

Note: groupByKey results in one key-value pair per key. And this
single key-value pair cannot span across multiple worker nodes.

Grouping and Reducing, Example – What’s Happening?

What might this look like on the cluster?

What might this look like on the cluster?

Workers

SHUFFLE
“Shuffles” data
 across network

CFFPurchase(100, ”Geneva”, 22.25) CFFPurchase(300, ”Zurich”, 42.10)CFFPurchase(100, ”Fribourg”, 12.40)

CFFPurchase(200, ”St. Gallen”, 8.20)CFFPurchase(100, ”Lucerne”, 31.60)

map

CFFPurchase(300, ”Basel”, 16.20)

(100, 22.25) (300, 42.10)(100, 12.40)

(200, 8.20)(100, 31.60) (300, 16.20)

Grouping and Reducing, Example – What’s Happening?

What might this look like on the cluster?

What might this look like on the cluster?

Workers

SHUFFLE
“Shuffles” data
 across network

CFFPurchase(100, ”Geneva”, 22.25) CFFPurchase(300, ”Zurich”, 42.10)CFFPurchase(100, ”Fribourg”, 12.40)

CFFPurchase(200, ”St. Gallen”, 8.20)CFFPurchase(100, ”Lucerne”, 31.60)

map

groupByKey

CFFPurchase(300, ”Basel”, 16.20)

(100, 22.25) (300, 42.10)(100, 12.40)

(200, 8.20)(100, 31.60) (300, 16.20)

(100, [22.25, 12.40, 31.60]) (200, [8.20]) (300, [42.10, 16.20])

Grouping and Reducing, Example – What’s Happening?

What might this look like on the cluster?

SHUFFLE
“Shuffles” data
 across network

What might this look like on the cluster?

Workers

CFFPurchase(100, ”Geneva”, 22.25) CFFPurchase(300, ”Zurich”, 42.10)CFFPurchase(100, ”Fribourg”, 12.40)

CFFPurchase(200, ”St. Gallen”, 8.20)CFFPurchase(100, ”Lucerne”, 31.60)

map

groupByKey

CFFPurchase(300, ”Basel”, 16.20)

(100, 22.25) (300, 42.10)(100, 12.40)

(200, 8.20)(100, 31.60) (300, 16.20)

(100, [22.25, 12.40, 31.60]) (200, [8.20]) (300, [42.10, 16.20])

Reminder: Latency Matters (Humanized)

Shared Memory Distributed

Seconds

Minutes

L1 cache reference..........0.5s

L2 cache reference............7s

Mutex lock/unlock............25s

Main memory reference.....1m 40s Send packet

CA->Netherlands->CA....4.8 years

Roundtrip within

same datacenter.........5.8 days

Days

Years

We don’t want to be sending all of our data over the network if it’s
not absolutely required. Too much network communication kills

performance.

Can we do a better job?

Perhaps we don’t need to send all pairs over the network.

What might this look like on the cluster?

Workers

SHUFFLE
“Shuffles” data
 across network

CFFPurchase(100, ”Geneva”, 22.25) CFFPurchase(300, ”Zurich”, 42.10)CFFPurchase(100, ”Fribourg”, 12.40)

CFFPurchase(200, ”St. Gallen”, 8.20)CFFPurchase(100, ”Lucerne”, 31.60)

map

CFFPurchase(300, ”Basel”, 16.20)

(100, 22.25) (300, 42.10)(100, 12.40)

(200, 8.20)(100, 31.60) (300, 16.20)

Can we do a better job?

Perhaps we don’t need to send all pairs over the network.

What might this look like on the cluster?

Workers

SHUFFLE
“Shuffles” data
 across network

CFFPurchase(100, ”Geneva”, 22.25) CFFPurchase(300, ”Zurich”, 42.10)CFFPurchase(100, ”Fribourg”, 12.40)

CFFPurchase(200, ”St. Gallen”, 8.20)CFFPurchase(100, ”Lucerne”, 31.60)

map

CFFPurchase(300, ”Basel”, 16.20)

(100, 22.25) (300, 42.10)(100, 12.40)

(200, 8.20)(100, 31.60) (300, 16.20)

Perhaps we can reduce before we shuffle. This could greatly reduce the
amount of data we have to send over the network.

Grouping and Reducing, Example – Optimized

We can use reduceByKey.
Conceptually, reduceByKey can be thought of as a combination of first
doing groupByKey and then reduce-ing on all the values grouped per key.
It’s more efficient though, than using each separately. We’ll see how in the
following example.

Signature:

def reduceByKey(func: (V, V) => V): RDD[(K, V)]

Grouping and Reducing, Example – Optimized

Goal: calculate how many trips, and how much money was spent by each
individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchase] = sc.textFile(...)

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerId, (1, p.price))) // Pair RDD

.reduceByKey(...) // ?

Grouping and Reducing, Example – Optimized

Goal: calculate how many trips, and how much money was spent by each
individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchase] = sc.textFile(...)

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerId, (1, p.price))) // Pair RDD

.reduceByKey(...) // ?

Notice that the function passed to map has changed. It’s now p =>

(p.customerId, (1, p.price)).
What function do we pass to reduceByKey in order to get a result
that looks like: (customerId, (numTrips, totalSpent)) returned?

Grouping and Reducing, Example – Optimized

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerId, (1, p.price))) // Pair RDD

.reduceByKey(...) // ?

Grouping and Reducing, Example – Optimized

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerId, (1, p.price))) // Pair RDD

.reduceByKey(...) // ?

Recall that we’re reducing over the values per key.
Since our values are an Iterable[(Int, Double)], the function that we
pass to reduceByKey must reduce over two such pairs.

Grouping and Reducing, Example – Optimized

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerId, (1, p.price))) // Pair RDD

.reduceByKey((v1, v2) => (v1._1 + v2._1, v1._2 + v2._2))

.collect()

Grouping and Reducing, Example – Optimized

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerId, (1, p.price))) // Pair RDD

.reduceByKey((v1, v2) => (v1._1 + v2._1, v1._2 + v2._2))

.collect()

What might this look like on the cluster?

Grouping and Reducing, Example – Optimized

What might this look like on the cluster?

SHUFFLE
“Shuffles” data
 across network

What might this look like on the cluster?

Workers

CFFPurchase(100, ”Geneva”, 22.25) CFFPurchase(300, ”Zurich”, 42.10)CFFPurchase(100, ”Fribourg”, 12.40)

CFFPurchase(200, ”St. Gallen”, 8.20)CFFPurchase(100, ”Lucerne”, 31.60)

map

CFFPurchase(300, ”Basel”, 16.20)

(100, (1, 22.25)) (300, (1, 42.10))(100, (1, 12.40))

(200, (1, 8.20))(100, (1, 31.60)) (300, (1, 16.20))

(300, [42.10, 16.20])

Grouping and Reducing, Example – Optimized

What might this look like on the cluster?

SHUFFLE
“Shuffles” data
 across network

What might this look like on the cluster?

Workers

CFFPurchase(100, ”Geneva”, 22.25) CFFPurchase(300, ”Zurich”, 42.10)CFFPurchase(100, ”Fribourg”, 12.40)

CFFPurchase(200, ”St. Gallen”, 8.20)CFFPurchase(100, ”Lucerne”, 31.60)

map

reduceByKey

CFFPurchase(300, ”Basel”, 16.20)

(100, (1, 12.40))

(200, (1, 8.20))
(100, (2, 53.85)) (300, (2, 58.30))

(100, [22.25, 12.40, 31.60]) (200, [8.20]) (300, [42.10, 16.20])

(300, [42.10, 16.20])

reduce
on the
mapper
side
first!

Grouping and Reducing, Example – Optimized

What might this look like on the cluster?

SHUFFLE
“Shuffles” data
 across network

What might this look like on the cluster?

Workers

CFFPurchase(100, ”Geneva”, 22.25) CFFPurchase(300, ”Zurich”, 42.10)CFFPurchase(100, ”Fribourg”, 12.40)

CFFPurchase(200, ”St. Gallen”, 8.20)CFFPurchase(100, ”Lucerne”, 31.60)

map

reduceByKey

CFFPurchase(300, ”Basel”, 16.20)

(100, (1, 12.40))

(200, (1, 8.20))
(100, (2, 53.85)) (300, (2, 58.30))

(300, (2, 58.30))(200, (1, 8.20))(100, (3, 66.25))

(100, [22.25, 12.40, 31.60]) (200, [8.20]) (300, [42.10, 16.20])

(300, [42.10, 16.20])

reduce
again
after
shuffle

Grouping and Reducing, Example – Optimized

What are the benefits of this approach?

Grouping and Reducing, Example – Optimized

What are the benefits of this approach?

By reducing the dataset first, the amount of data sent over the network
during the shuffle is greatly reduced.
This can result in non-trival gains in performance!

Grouping and Reducing, Example – Optimized

What are the benefits of this approach?

By reducing the dataset first, the amount of data sent over the network
during the shuffle is greatly reduced.
This can result in non-trival gains in performance!

Let’s benchmark on a real cluster.

groupByKey and reduceByKey Running Times

What might this look like on the cluster?

Workers

SHUFFLE
“Shuffles” data
 across network

CFFPurchase(100, ”Geneva”, 22.25) CFFPurchase(300, ”Zurich”, 42.10)CFFPurchase(100, ”Fribourg”, 12.40)

CFFPurchase(200, ”St. Gallen”, 8.20)CFFPurchase(100, ”Lucerne”, 31.60)

map

reduceByKey

CFFPurchase(300, ”Basel”, 16.20)

(100, 22.25) (300, 42.10)(100, 12.40)

(200, 8.20)(100, 31.60) (300, 16.20)

(100, [22.25, 12.40, 31.60]) (200, [8.20]) (300, [42.10, 16.20])

Full example with 20 million element RDD can be found in the notebook
on our Databricks Cloud installation.

Shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerId, p.price)) // Pair RDD

.groupByKey()

Shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerId, p.price)) // Pair RDD

.groupByKey()

Grouping all values of key-value pairs with the same key requires collecting
all key-value pairs with the same key on the same machine.

But how does Spark know which key to put on which machine?

Shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerId, p.price)) // Pair RDD

.groupByKey()

Grouping all values of key-value pairs with the same key requires collecting
all key-value pairs with the same key on the same machine.

But how does Spark know which key to put on which machine?

▶ By default, Spark uses hash partitioning to determine which key-value
pair should be sent to which machine.

“Partitioning”?

First, a quick detour into partitioning…

Partitions

The data within an RDD is split into several partitions.
Properties of partitions:

▶ Partitions never span multiple machines, i.e., tuples in the same
partition are guaranteed to be on the same machine.

▶ Each machine in the cluster contains one or more partitions.
▶ The number of partitions to use is configurable. By default, it equals

the total number of cores on all executor nodes.

Two kinds of partitioning available in Spark:

▶ Hash partitioning
▶ Range partitioning

Customizing a partitioning is only possible on Pair RDDs.

Hash partitioning

Back to our example. Given a Pair RDD that should be grouped:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerId, p.price)) // Pair RDD

.groupByKey()

Hash partitioning

Back to our example. Given a Pair RDD that should be grouped:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerId, p.price)) // Pair RDD

.groupByKey()

groupByKey first computes per tuple (k, v) its partition p:

p = k.hashCode() % numPartitions

Then, all tuples in the same partition p are sent to the machine hosting p.

Intuition: hash partitioning attempts to spread data evenly across
partitions based on the key.

Range partitioning

Pair RDDs may contain keys that have an ordering defined.

▶ Examples: Int, Char, String, …

For such RDDs, range partitioning may be more efficient.
Using a range partitioner, keys are partitioned according to:

1. an ordering for keys
2. a set of sorted ranges of keys

Property: tuples with keys in the same range appear on the same machine.

Hash Partitioning: Example

Consider a Pair RDD, with keys [8, 96, 240, 400, 401, 800], and a
desired number of partitions of 4.

Hash Partitioning: Example

Consider a Pair RDD, with keys [8, 96, 240, 400, 401, 800], and a
desired number of partitions of 4.
Furthermore, suppose that hashCode() is the identity (n.hashCode() == n).

Hash Partitioning: Example

Consider a Pair RDD, with keys [8, 96, 240, 400, 401, 800], and a
desired number of partitions of 4.
Furthermore, suppose that hashCode() is the identity (n.hashCode() == n).
In this case, hash partitioning distributes the keys as follows among the
partitions:

▶ partition 0: [8, 96, 240, 400, 800]

▶ partition 1: [401]

▶ partition 2: []

▶ partition 3: []

The result is a very unbalanced distribution which hurts performance.

Range Partitioning: Example

Using range partitioning the distribution can be improved significantly:

▶ Assumptions: (a) keys non-negative, (b) 800 is biggest key in the
RDD.

▶ Set of ranges: [1, 200], [201, 400], [401, 600], [601, 800]

Range Partitioning: Example

Using range partitioning the distribution can be improved significantly:

▶ Assumptions: (a) keys non-negative, (b) 800 is biggest key in the
RDD.

▶ Set of ranges: [1, 200], [201, 400], [401, 600], [601, 800]

In this case, range partitioning distributes the keys as follows among the
partitions:

▶ partition 0: [8, 96]

▶ partition 1: [240, 400]

▶ partition 2: [401]

▶ partition 3: [800]

The resulting partitioning is much more balanced.

Partitioning Data

How do we set a partitioning for our data?

Partitioning Data

How do we set a partitioning for our data?

There are two ways to create RDDs with specific partitionings:

1. Call partitionBy on an RDD, providing an explicit Partitioner.
2. Using transformations that return RDDs with specific partitioners.

Partitioning Data: partitionBy

Invoking partitionBy creates an RDD with a specified partitioner.

Partitioning Data: partitionBy

Invoking partitionBy creates an RDD with a specified partitioner.
Example:

val pairs = purchasesRdd.map(p => (p.customerId, p.price))

Partitioning Data: partitionBy

Invoking partitionBy creates an RDD with a specified partitioner.
Example:

val pairs = purchasesRdd.map(p => (p.customerId, p.price))

val tunedPartitioner = new RangePartitioner(8, pairs)

val partitioned = pairs.partitionBy(tunedPartitioner).persist()

Partitioning Data: partitionBy

Invoking partitionBy creates an RDD with a specified partitioner.
Example:

val pairs = purchasesRdd.map(p => (p.customerId, p.price))

val tunedPartitioner = new RangePartitioner(8, pairs)

val partitioned = pairs.partitionBy(tunedPartitioner).persist()

Creating a RangePartitioner requires:

1. Specifying the desired number of partitions.
2. Providing a Pair RDD with ordered keys. This RDD is sampled to

create a suitable set of sorted ranges.

Partitioning Data: partitionBy

Invoking partitionBy creates an RDD with a specified partitioner.
Example:

val pairs = purchasesRdd.map(p => (p.customerId, p.price))

val tunedPartitioner = new RangePartitioner(8, pairs)

val partitioned = pairs.partitionBy(tunedPartitioner).persist()

Creating a RangePartitioner requires:

1. Specifying the desired number of partitions.
2. Providing a Pair RDD with ordered keys. This RDD is sampled to

create a suitable set of sorted ranges.

Important: the result of partitionBy should be persisted. Otherwise,
the partitioning is repeatedly applied (involving shuffling!) each
time the partitioned RDD is used.

Partitioning Data Using Transformations

Partitioner from parent RDD:

Pair RDDs that are the result of a transformation on a partitioned Pair
RDD typically is configured to use the hash partitioner that was used to
construct it.

Automatically-set partitioners:

Some operations on RDDs automatically result in an RDD with a known
partitioner – for when it makes sense.
For example, by default, when using sortByKey, a RangePartitioner is
used. Further, the default partitioner when using groupByKey, is a
HashPartitioner, as we saw earlier.

Partitioning Data Using Transformations

Operations on Pair RDDs that hold to (and propagate) a partitioner:

▶ cogroup

▶ groupWith

▶ join

▶ leftOuterJoin

▶ rightOuterJoin

▶ groupByKey

▶ reduceByKey

▶ foldByKey

▶ combineByKey

▶ partitionBy

▶ sort

▶ mapValues (if parent has a partitioner)
▶ flatMapValues (if parent has a partitioner)
▶ filter (if parent has a partitioner)

All other operations will produce a result without a partitioner.

Partitioning Data Using Transformations

…All other operations will produce a result without a partitioner.

Why?

Partitioning Data Using Transformations

…All other operations will produce a result without a partitioner.

Why?

Consider the map transformation. Given that we have a hash partitioned
Pair RDD, why would it make sense for map to lose the partitioner in its
result RDD?

Partitioning Data Using Transformations

…All other operations will produce a result without a partitioner.

Why?

Consider the map transformation. Given that we have a hash partitioned
Pair RDD, why would it make sense for map to lose the partitioner in its
result RDD?
Because it’s possible for map to change the key . E.g.,:

Partitioning Data Using Transformations

…All other operations will produce a result without a partitioner.

Why?

Consider the map transformation. Given that we have a hash partitioned
Pair RDD, why would it make sense for map to lose the partitioner in its
result RDD?
Because it’s possible for map to change the key . E.g.,:

rdd.map((k: String, v: Int) => (”doh!”, v))

In this case, if the map transformation preserved the partitioner in the
result RDD, it no longer make sense, as now the keys are all different.
Hence mapValues. It enables us to still do map transformations
without changing the keys, thereby preserving the partitioner.

Optimization using range partitioning

Using range partitioners we can optimize our earlier use of reduceByKey so
that it does not involve any shuffling over the network at all!

Optimization using range partitioning

Using range partitioners we can optimize our earlier use of reduceByKey so
that it does not involve any shuffling over the network at all!

val pairs = purchasesRdd.map(p => (p.customerId, p.price))

val tunedPartitioner = new RangePartitioner(8, pairs)

val partitioned = pairs.partitionBy(tunedPartitioner)

.persist()

val purchasesPerCust =

partitioned.map(p => (p._1, (1, p._2)))

val purchasesPerMonth = purchasesPerCust

.reduceByKey((v1, v2) => (v1._1 + v2._1, v1._2 + v2._2))

.collect()

Optimization using range partitioning

What might this look like on the cluster?

Workers

SHUFFLE
“Shuffles” data
 across network

CFFPurchase(100, ”Geneva”, 22.25) CFFPurchase(300, ”Zurich”, 42.10)CFFPurchase(100, ”Fribourg”, 12.40)

CFFPurchase(200, ”St. Gallen”, 8.20)CFFPurchase(100, ”Lucerne”, 31.60)

map

reduceByKey

CFFPurchase(300, ”Basel”, 16.20)

(100, 22.25) (300, 42.10)(100, 12.40)

(200, 8.20)(100, 31.60) (300, 16.20)

(100, [22.25, 12.40, 31.60]) (200, [8.20]) (300, [42.10, 16.20])

On the range partitioned data:

Optimization using range partitioning

What might this look like on the cluster?

Workers

SHUFFLE
“Shuffles” data
 across network

CFFPurchase(100, ”Geneva”, 22.25) CFFPurchase(300, ”Zurich”, 42.10)CFFPurchase(100, ”Fribourg”, 12.40)

CFFPurchase(200, ”St. Gallen”, 8.20)CFFPurchase(100, ”Lucerne”, 31.60)

map

reduceByKey

CFFPurchase(300, ”Basel”, 16.20)

(100, 22.25) (300, 42.10)(100, 12.40)

(200, 8.20)(100, 31.60) (300, 16.20)

(100, [22.25, 12.40, 31.60]) (200, [8.20]) (300, [42.10, 16.20])

On the range partitioned data:

almost a 9x speedup over
purchasePerMonthSlowLarge!

Partitioning Data: partitionBy, Another Example

From pages 61-64 of the Learning Spark book
Consider an application that keeps a large table of user information in
memory:

▶ userData - BIG, containing (UserID, UserInfo) pairs, where UserInfo

contains a list of topics the user is subscribed to.

The application periodically combines this big table with a smaller file
representing events that happened in the past five minutes.

▶ events – small, containing (UserID, LinkInfo) pairs for users who
have clicked a link on a website in those five minutes:

For example, we may wish to count how many users visited a link that was
not to one of their subscribed topics. We can perform this combination
with Spark’s join operation, which can be used to group the UserInfo and
LinkInfo pairs for each UserID by key.

Partitioning Data: partitionBy, Another Example

From pages 61-64 of the Learning Spark book

val sc = new SparkContext(...)

val userData = sc.sequenceFile[UserID, UserInfo](”hdfs://...”).persist()

def processNewLogs(logFileName: String) {

val events = sc.sequenceFile[UserID, LinkInfo](logFileName)

val joined = userData.join(events) //RDD of (UserID, (UserInfo, LinkInfo))

val offTopicVisits = joined.filter {

case (userId, (userInfo, linkInfo)) => // Expand the tuple

!userInfo.topics.contains(linkInfo.topic)

}.count()

println(”Number of visits to non-subscribed topics: ” + offTopicVisits)

}

Is this OK?

Partitioning Data: partitionBy, Another Example

From pages 61-64 of the Learning Spark book
It will be very inefficient!

Why? The join operation, called each time processNewLogs is invoked,
does not know anything about how the keys are partitioned in the datasets.

By default, this operation will hash
all the keys of both datasets,
sending elements with the same key
hash across the network to the
same machine, and then join
together the elements with the
same key on that machine. Even
though userData doesn’t
change!

// we assume that this is a SequenceFile containing (UserID, LinkInfo) pairs.
def processNewLogs(logFileName: String) {
 val events = sc.sequenceFile[UserID, LinkInfo](logFileName)
 val joined = userData.join(events)// RDD of (UserID, (UserInfo, LinkInfo)) pairs
 val offTopicVisits = joined.filter {
 case (userId, (userInfo, linkInfo)) => // Expand the tuple into its components
 !userInfo.topics.contains(linkInfo.topic)
 }.count()
 println("Number of visits to non-subscribed topics: " + offTopicVisits)
}

This code will run fine as is, but it will be inefficient. This is because the join() oper‐
ation, called each time processNewLogs() is invoked, does not know anything about
how the keys are partitioned in the datasets. By default, this operation will hash all
the keys of both datasets, sending elements with the same key hash across the net‐
work to the same machine, and then join together the elements with the same key on
that machine (see Figure 4-4). Because we expect the userData table to be much
larger than the small log of events seen every five minutes, this wastes a lot of work:
the userData table is hashed and shuffled across the network on every call, even
though it doesn’t change.

Figure 4-4. Each join of userData and events without using partitionBy()

Fixing this is simple: just use the partitionBy() transformation on userData to
hash-partition it at the start of the program. We do this by passing a
org.apache.spark.HashPartitioner object to partitionBy, as shown in
Example 4-23.

62 | Chapter 4: Working with Key/Value Pairs

Partitioning Data: partitionBy, Another Example

Fixing this is easy. Just use partitionBy on the big userData RDD at the
start of the program!

Partitioning Data: partitionBy, Another Example

Fixing this is easy. Just use partitionBy on the big userData RDD at the
start of the program!
Therefore, userData becomes:

val userData = sc.sequenceFile[UserID, UserInfo](”hdfs://...”)

.partitionBy(new HashPartitioner(100)) // Create 100 partitions

.persist()

Since we called partitionBy when building userData, Spark will now know
that it is hash-partitioned, and calls to join on it will take advantage of
this information.
In particular, when we call userData.join(events), Spark will shuffle only
the events RDD, sending events with each particular UserID to the
machine that contains the corresponding hash partition of userData.

Partitioning Data: partitionBy, Another Example

Or, shown visually:

Example 4-23. Scala custom partitioner

val sc = new SparkContext(...)
val userData = sc.sequenceFile[UserID, UserInfo]("hdfs://...")
 .partitionBy(new HashPartitioner(100)) // Create 100 partitions
 .persist()

The processNewLogs() method can remain unchanged: the events RDD is local to
processNewLogs(), and is used only once within this method, so there is no advan‐
tage in specifying a partitioner for events. Because we called partitionBy() when
building userData, Spark will now know that it is hash-partitioned, and calls to
join() on it will take advantage of this information. In particular, when we call user
Data.join(events), Spark will shuffle only the events RDD, sending events with
each particular UserID to the machine that contains the corresponding hash partition
of userData (see Figure 4-5). The result is that a lot less data is communicated over
the network, and the program runs significantly faster.

Figure 4-5. Each join of userData and events using partitionBy()

Note that partitionBy() is a transformation, so it always returns a new RDD—it
does not change the original RDD in place. RDDs can never be modified once cre‐
ated. Therefore it is important to persist and save as userData the result of parti
tionBy(), not the original sequenceFile(). Also, the 100 passed to partitionBy()
represents the number of partitions, which will control how many parallel tasks per‐
form further operations on the RDD (e.g., joins); in general, make this at least as large
as the number of cores in your cluster.

Data Partitioning (Advanced) | 63

Now that userData is pre-partitioned, Spark will shuffle only the events

RDD, sending events with each particular UserID to the machine that
contains the corresponding hash partition of userData.

Back to shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerId, p.price)) // Pair RDD

.groupByKey()

Back to shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerId, p.price)) // Pair RDD

.groupByKey()

Grouping all values of key-value pairs with the same key requires collecting
all key-value pairs with the same key on the same machine.

Back to shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerId, p.price)) // Pair RDD

.groupByKey()

Grouping all values of key-value pairs with the same key requires collecting
all key-value pairs with the same key on the same machine.
Grouping is done using a hash partitioner with default parameters.

Back to shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerId, p.price)) // Pair RDD

.groupByKey()

Grouping all values of key-value pairs with the same key requires collecting
all key-value pairs with the same key on the same machine.
Grouping is done using a hash partitioner with default parameters.
The result RDD, purchasesPerCust, is configured to use the hash
partitioner that was used to construct it.

How do I know a shuffle will occur?

Rule of thumb: a shuffle can occur when the resulting RDD depends on
other elements from the same RDD or another RDD.

How do I know a shuffle will occur?

Rule of thumb: a shuffle can occur when the resulting RDD depends on
other elements from the same RDD or another RDD.

Note: sometimes one can be clever and avoid much or all network
communication while still using an operation like join via smart
partitioning

How do I know a shuffle will occur?

You can also figure out whether a shuffle has been planned/executed via:

1. The return type of certain transformations, e.g.,

org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[366]

2. Using function toDebugString to see its execution plan:

partitioned.reduceByKey((v1, v2) => (v1._1 + v2._1, v1._2 + v2._2))

.toDebugString

res9: String =

(8) MapPartitionsRDD[622] at reduceByKey at <console>:49 []

| ShuffledRDD[615] at partitionBy at <console>:48 []

| CachedPartitions: 8; MemorySize: 1754.8 MB; DiskSize: 0.0 B

Operations that might cause a shuffle

▶ cogroup

▶ groupWith

▶ join

▶ leftOuterJoin

▶ rightOuterJoin

▶ groupByKey

▶ reduceByKey

▶ combineByKey

▶ distinct

▶ intersection

▶ repartition

▶ coalesce

Avoiding a Network Shuffle By Partitioning

There are a few ways to use operations that might cause a shuffle and to
still avoid much or all network shuffling.
Can you think of an example?

Avoiding a Network Shuffle By Partitioning

There are a few ways to use operations that might cause a shuffle and to
still avoid much or all network shuffling.
Can you think of an example?

2 Examples:

1. reduceByKey running on a pre-partitioned RDD will cause the values
to be computed locally, requiring only the final reduced value has to
be sent from the worker to the driver.

2. join called on two RDDs that are pre-partitioned with the same
partitioner and cached on the same machine will cause the join to be
computed locally, with no shuffling across the network.

Shuffles Happen: Key Takeaways

How your data is organized on the cluster, and what operations
you’re doing with it matters!

We’ve seen speedups of 10x on small examples just by trying to ensure
that data is not transmitted over the network to other machines.
This can hugely affect your day job if you’re trying to run a job that
should run in 4 hours, but due to a missed opportunity to partition data or
optimize away a shuffle, it could take 40 hours instead.

Closures

Closures are central to RDDs.

▶ Passed to most transformations.
▶ Passed to some actions (like reduce and foreach).

Closures

Closures are central to RDDs.

▶ Passed to most transformations.
▶ Passed to some actions (like reduce and foreach).

However, they can also cause issues that are specific to distribution (but
would not be problematic with parallel collections, say)

Closures

Closures are central to RDDs.

▶ Passed to most transformations.
▶ Passed to some actions (like reduce and foreach).

However, they can also cause issues that are specific to distribution (but
would not be problematic with parallel collections, say)
Two main issues:

1. Serialization exceptions at run time when closures are not serializable.
2. Closures that are “too large.”

Closures

Closures are central to RDDs.

▶ Passed to most transformations.
▶ Passed to some actions (like reduce and foreach).

However, they can also cause issues that are specific to distribution (but
would not be problematic with parallel collections, say)
Two main issues:

1. Serialization exceptions at run time when closures are not serializable.
2. Closures that are “too large.”

Closure Troubles: Example

class MyCoolApp {

val repos: RDD[Repository] = ... // repositories on GitHub (many!)

val team: Map[String, List[String]] = ... // maps username to skills

// GitHub repos that users in ”team” map contribute to

def projects(): Array[Repository] = {

val filtered = repos.filter { repo =>

team.exists(user => repo.contributors.contains(user))

}

filtered.collect()

}

}

Closure Troubles: Example

class MyCoolApp {

val repos: RDD[Repository] = ... // repositories on GitHub (many!)

val team: Map[String, List[String]] = ... // maps username to skills

// GitHub repos that users in ”team” map contribute to

def projects(): Array[Repository] = {

val filtered = repos.filter { repo =>

team.exists(user => repo.contributors.contains(user))

}

filtered.collect()

}

}

What happens when you run this?

Closure Troubles: Example

What happens when you run this?

Closure Troubles: Example

What happens when you run this?

java.io.NotSerializableException

Closure Troubles: Example

What happens when you run this?

java.io.NotSerializableException

Why?

Closure Troubles: Example

What happens when you run this?

java.io.NotSerializableException

Why?

Let’s have a look at the closure passed to the RDD:

val filtered = repos.filter { repo =>

team.exists(user => repo.contributors.contains(user))

}

Closure Troubles: Example

What happens when you run this?

java.io.NotSerializableException

Why?

Let’s have a look at the closure passed to the RDD:

val filtered = repos.filter { repo =>

team.exists(user => repo.contributors.contains(user))

}

Is this closure serializable?

Closure Troubles: Example

What happens when you run this?

java.io.NotSerializableException

Why?

Let’s have a look at the closure passed to the RDD:

val filtered = repos.filter { repo =>

team.exists(user => repo.contributors.contains(user))

}

Is this closure serializable?
It should be: it only captures the “team” map. Map[String, List[String]]

is serializable in Scala.

Closure Troubles: Example

What happens when you run this?

java.io.NotSerializableException
Why?
Let’s have a look at the closure passed to the RDD:

val filtered = repos.filter { repo =>

team.exists(user => repo.contributors.contains(user))

}

Is this closure serializable?
It should be: it only captures the “team” map. Map[String, List[String]]

is serializable in Scala.
In reality: closure is not serializable!

Closures: Variable Capture

A closure is serializable if…

Closures: Variable Capture

A closure is serializable if…
…all captured variables are serializable.

Closures: Variable Capture

A closure is serializable if…
…all captured variables are serializable.

val filtered = repos.filter { repo =>

team.exists(user => repo.contributors.contains(user))

}

What are the captured variables?

Closures: Variable Capture

A closure is serializable if…
…all captured variables are serializable.

val filtered = repos.filter { repo =>

team.exists(user => repo.contributors.contains(user))

}

What are the captured variables?
Just team.

Closures: Variable Capture

A closure is serializable if…
…all captured variables are serializable.

val filtered = repos.filter { repo =>

team.exists(user => repo.contributors.contains(user))

}

What are the captured variables?
Just team.

Wrong!

Closures: Variable Capture

A closure is serializable if…
…all captured variables are serializable.

...isn’t true. Why?

Closures: Variable Capture

A closure is serializable if…
…all captured variables are serializable.

...isn’t true. Why?

Instead of team, it is this (of type MyCoolApp) which is captured:

val filtered = repos.filter { repo =>

this.team.exists(user => repo.contributors.contains(user))

}

Closures: Variable Capture

A closure is serializable if…
…all captured variables are serializable.

...isn’t true. Why?

Instead of team, it is this (of type MyCoolApp) which is captured:

val filtered = repos.filter { repo =>

this.team.exists(user => repo.contributors.contains(user))

}

However, this is not serializable. MyCoolApp does not extend the marker
interface Serializable.

Closure Trouble: Solution 1

Make a local copy of team. No more accidental capturing of MyCoolApp.
It should be written like this:

val localTeam = team

val filtered = repos.filter { repo =>

localTeam.keys.exists(user => repo.contributors.contains(user))

}

With localTeam, this is no longer captured. Now it’s serializable.

Closure Trouble: Big Closures

Let’s assume that this and everything within it (MyCoolApp) is serializable.

Problem:

It could be silently capturing, serializing, and sending over the network,
some huge pieces of captured data. Typically the only hint of this
occurring is high memory usage and long run times.

Note: this is a real problem which could appear in your
programming assignments! If you’re using too much memory, and if
performance is slow, make sure you’re not accidentally capturing
large enclosing objects!

Shared Variables

Normally, when a function passed to a Spark operation (such as map or
reduce) is executed on a remote cluster node, it works on separate copies
of all the variables used in the function.
These variables are copied to each machine, and no updates to the
variables on the remote machine are propagated back to the driver
program.
However, Spark does provide two limited types of shared variables for two
common usage patterns:

1. Broadcast variables
2. Accumulators

Broadcast Variables

Let’s revisit the closure from a few slides ago:

val localTeam = team

val filtered = repos.filter { repo =>

localTeam.keys.exists(user => repo.contributors.contains(user))

}

1. What if localTeam/team is a Map of thousands of elements?
2. What if several operations require it?

Broadcast Variables

Let’s revisit the closure from a few slides ago:

val localTeam = team

val filtered = repos.filter { repo =>

localTeam.keys.exists(user => repo.contributors.contains(user))

}

1. What if localTeam/team is a Map of thousands of elements?
2. What if several operations require it?

This is the ideal use-case for broadcast variables.

Broadcast Variables

Broadcast variables:

▶ allow the programmer to keep a read-only variable cached on each
machine rather than shipping a copy of it with tasks.

They can be used, for example, to give every node a copy of a large input
dataset in an efficient manner.

Spark also distributes broadcast variables using efficient broadcast
algorithms to reduce communication cost.

Broadcast Variables

To make localTeam/team a broadcast variable, all we have to do is:

val broadcastTeam = sc.broadcast(team)

We can then use it in our closures without having to ship it over the
network multiple times!
(Its value can be accessed by calling the value method)

val filtered = repos.filter { repo =>

broadcastTeam.value.keys.exists(user => repo.contributors.contains(user))

}

Accumulators

Accumulators:

▶ are variables that are only “added” to through an associative
operation and can therefore be efficiently supported across nodes in
parallel.

▶ provide a simple syntax for aggregating values from worker nodes
back to the driver program.

They can be used to implement counters (as in MapReduce) or sums.

Out of the box, only numeric accumulators are supported in Spark.
But it’s possible to add support for your own types with a bit of effort.

Accumulators: Example

val badRecords = sc.accumulator(0)

val badBytes = sc.accumulator(0.0)

records.filter(r => {

if (isBad(r)) {

badRecords += 1

badBytes += r.size

false

} else {

true

}

}).save(...)

printf(”Total bad records: %d, avg size: %f\n”,

badRecords.value, badBytes.value / badRecords.value)

Accumulators

Accumulators can appear both in transformations and actions.

What about fault tolerance? What happens to an accumulator when a
node dies and must be restarted?

Accumulators

Accumulators can appear both in transformations and actions.

What about fault tolerance? What happens to an accumulator when a
node dies and must be restarted?

Accumulators and fault tolerance:

▶ Actions: Each tasks’ update is applied to each accumulator only
once.

▶ Transformations: An accumulator update within a transformation
can occur more than once. E.g., when an RDD is recomputed from
its lineage, it can update the accumulator. Should only be used for
debugging in transformations.

