Randomized Model Finder

Everything that could lead us to solve the paradox...

Model Finding Basics

First Order Logic Formula

- Predicate
- Functions
- Interpretation
 - (Finite) Domain
 - Interpretation of predicates and functions
- Model: Interpretation that satisfies some FOL formulas

Finding Models...

- Exhaustive search
- SEM: Search using constraint propagation method
- MACE: Translating « instanciated » FOL formulas into propositional clauses, solved by a SAT-Solver
- KODKOD: Takes into account partial instance

MACE

Reduction FOL => Propositional Logic

- 1. Propositional Encoding
- 2. Flattening
- 3. Instanciating
- Solve the SAT problem

Flattening

- Translate all FOL clauses into clauses containing only shallow literal
 - P(x,...,y) or ¬P(x,...,y)
 - $f(x,...,y) = z \text{ or } f(x,...,y) \neq z$

Example:

P(a,f(x)) leads to a \neq y | f(x) \neq z | P(y,z)

Instanciation

Instances

 Instanciate every free variable with each domain element

Functional Definitions

- Express the requirement that a function has to give back the same value for the same arguments.
- $(f(d) \neq x | f(d) \neq y) \& ...$

Totality Definitions

• f(d) = 1 | ... | f(d) = s

Paradox

- The number of clauses is growing exponentially with the number of variables: |domain| #variables
- Even worse: Flattening introduces a lot of auxiliary variables...
- Paradox is all about techniques for making the life of SAT-Solvers easier...

The need for speed

Overview of optimizations

- Reducing #Variables in Clauses (Splitting)
- Incremental Search
- Static Symmetry Reduction
- Sort Inference

Splitting

- # instances needed for a clause is exponential to # variables in the clause
- More clauses with fewer variables is thus better
- { P(x,y) | Q(x,z) } can be split to
 { P(x,y) | S(x) } & { !S(x) | Q(x,z) }

Splitting

Let a clause $C[\alpha] \cup D[\beta]$ C and D are a proper binary split $\iff \exists x. (x \in \alpha \land x \notin \beta) \land \exists y. (y \in \beta \land y \notin \alpha)$

> $\{S(\alpha \cap \beta)\} \cup C[\alpha]$ $\{\neg S(\alpha \cap \beta)\} \cup D[\beta]$

Splitting

- Repeating binary splits are possible, but greedy choices might destroy better later ones
- Paradox uses a simple heuristic
 - Least connected variable is split
 - Finds all possible splits, but does not necessarily lead to optimal split

Incremental Search

- Paradox uses several iterations with increasing domain size
- Conflict Learning: contradictions are converted into learning clauses and forwarded to the next iteration

Incremental Satisfiability

- Given the SAT instance for domain size s, for domain size s+1:
 - For Instances and Function
 Definitions, we can keep the previous clauses and add new ones
 - For *Totality Definitions*, clauses have to be replaced

Incremental Satisfiability Add a propositional variable d_s for each domain size s Adding ¬d_s as a literal to each totality clause

Static Symmetry Reduction

- Due to the encoding in SAT, for each model all isomorphic variations are also models
- This is a problem for the SAT solver since SEM-style methods use Symmetry Reduction Techniques to reduce the search space
- Paradox thus adds constraints to remove symmetries statically

Sort Inference

Think of 'sorts' as types

- 'sorted' models are easier to find
- Paradox tries to infer 'sorts' on the initially unsorted problems

And ?

- Within 2 min, Paradox is able to solve 90% of TPTP satisfiable problems. (Better than the previous CASC winner with a limit of 5 min)
- Within 10 min, Paradox solved for the first time 28 TPTP problems (including 15 open / unknown problems)

Our project...

- Goal: finding models in a randomized fashion
- Parse formulas in TPTP format
- Evaluate an interpretation against formulas
- So far, interpretations are generated using exhaustive search...
- Implemented in Scala: Stack Overflow problems