Randomized Model Finder

Everything that could lead us to solve
the paradox...

Model Finding Basics

o First Order Logic Formula
m Predicate
s Functions

o Interpretation
= (Finite) Domalin
= Interpretation of predicates and
functions

o Model: Interpretation that satisfies
some FOL formulas

Finding Models...

0o Exhaustive search

o SEM: Search using constraint
propagation method

o MACE: Translating « instanciated »
FOL formulas into propositional
clauses, solved by a SAT-Solver

o KODKOD: Takes into account partial
Instance

MACE

0 Reduction FOL == Propositional Logic
1. Propositional Encoding
2. Flattening
3. Instanciating

o Solve the SAT problem

Flattening

o Translate all FOL clauses Into clauses
containing only shallow literal

m P(X,...,y) or =P(X,...,y)
n f(X,....y) =z or f(x,..,.y) # z

B X=YVY

o Example:
P(a,f(x)) leads to
a+xy|f(x)=z]| P(y,z)

Instanciation

o Instances
= Instanciate every free variable with each domain
element
o Functional Definitions

s EXpress the requirement that a function has to
give back the same value for the same
arguments.

s (f(d) = x| fd) =Yy) & ...

o Totality Definitions
s f(d)=1]..]f(d)=s

Paradox

o The number of clauses Is growing
exponentially with the number of
variables: |Jdomain]| #variables

o Even worse: Flattening introduces a
lot of auxiliary variables...

o Paradox is all about technigues for
making the life of SAT-Solvers
easier...

The need for speed

o Overview of optimizations
= Reducing #Variables in Clauses (Splitting)
= Incremental Search
. Static Symmetry Reduction
= Sort Inference

Splitting

O # Instances needed for a clause Is
exponential to # variables in the
clause

o More clauses with fewer variables iIs
thus better

o ¥ P(X,y) | Q(x,z) } can be split to
{ PXY) | S(X) F & L 1S(X) | Q(X,2) }

Splitting

Let a clause Cla] U D[3]
C' and D are a proper binary split —= dr.(zrcarxz ¢) Ady.(y e BNy & a)

{1Slan g)}uC|al
{=S(anp)} U D3]

Splitting

0o Repeating binary splits are possible,
but greedy choices might destroy
better later ones

o Paradox uses a simple heuristic

s Least connected variable is split

s Finds all possible splits, but does not
necessarily lead to optimal split

Incremental Search

O Paradox uses several iterations with
Increasing domain size

o Conflict Learning: contradictions are
converted Into learning clauses and
forwarded to the next iteration

Incremental Satisfiability

o Given the SAT instance for domain size
s, for domain size s+1:

s For Instances and Function
Definitions, we can keep the
previous clauses and add new ones

s For Totality Definitions, clauses have
to be replaced

Incremental Satisfiability

0 Add a propositional variable d, for
each domain size s

0 Adding —d_ as a literal to each totality
clause

Static Symmetry Reduction

o Due to the encoding Iin SAT, for each
model all isomorphic variations are
also models

o This is a problem for the SAT solver
since SEM-style methods use
Symmetry Reduction Techniques to
reduce the search space

o Paradox thus adds constraints to
remove symmetries statically

Sort Inference

o Think of 'sorts' as types
o 'sorted' models are easier to find

o Paradox tries to infer 'sorts' on the
Initially unsorted problems

And ?

o Within 2 min, Paradox Is able to solve
90% of TPTP satisfiable problems.
(Better than the previous CASC
winner with a limit of 5 min)

o Within 10 min, Paradox solved for the
first time 28 TPTP problems (including
15 open / unknown problems)

Our project...

o Goal: finding models in a randomized
fashion

o Parse formulas in TPTP format

o Evaluate an interpretation against
formulas

o So far, interpretations are generated
using exhaustive search...

o Implemented in Scala: Stack
Overflow problems

