
Randomized Model Finder

Everything that could lead us to solve
the paradox…

Model Finding Basics
First Order Logic Formula

Predicate
Functions

Interpretation
(Finite) Domain
Interpretation of predicates and
functions

Model: Interpretation that satisfies
some FOL formulas

Finding Models…

Exhaustive search
SEM: Search using constraint
propagation method
MACE: Translating « instanciated »
FOL formulas into propositional
clauses, solved by a SAT-Solver
KODKOD: Takes into account partial
instance

MACE

Reduction FOL => Propositional Logic
1. Propositional Encoding
2. Flattening
3. Instanciating

Solve the SAT problem

Flattening

Translate all FOL clauses into clauses
containing only shallow literal

P(x,…,y) or ¬P(x,…,y)
f(x,…,y) = z or f(x,…,y) ≠ z
x = y

Example:
P(a,f(x)) leads to
a ≠ y | f(x) ≠ z | P(y,z)

Instanciation
Instances

Instanciate every free variable with each domain
element

Functional Definitions
Express the requirement that a function has to
give back the same value for the same
arguments.
(f(d) ≠ x | f(d) ≠ y) & …

Totality Definitions
f(d) = 1 | … | f(d) = s

Paradox

The number of clauses is growing
exponentially with the number of
variables: |domain| #variables

Even worse: Flattening introduces a
lot of auxiliary variables…
Paradox is all about techniques for
making the life of SAT-Solvers
easier…

The need for speed

Overview of optimizations
Reducing #Variables in Clauses (Splitting)
Incremental Search
Static Symmetry Reduction
Sort Inference

Splitting

instances needed for a clause is
exponential to # variables in the
clause
More clauses with fewer variables is
thus better
{ P(x,y) | Q(x,z) } can be split to
{ P(x,y) | S(x) } & { !S(x) | Q(x,z) }

Splitting

Splitting

Repeating binary splits are possible,
but greedy choices might destroy
better later ones
Paradox uses a simple heuristic

Least connected variable is split
Finds all possible splits, but does not
necessarily lead to optimal split

Incremental Search

Paradox uses several iterations with
increasing domain size
Conflict Learning: contradictions are
converted into learning clauses and
forwarded to the next iteration

Incremental Satisfiability

Given the SAT instance for domain size
s, for domain size s+1:

For Instances and Function
Definitions, we can keep the
previous clauses and add new ones
For Totality Definitions, clauses have
to be replaced

Incremental Satisfiability

Add a propositional variable ds for
each domain size s
Adding ¬ds as a literal to each totality
clause

Static Symmetry Reduction

Due to the encoding in SAT, for each
model all isomorphic variations are
also models
This is a problem for the SAT solver
since SEM-style methods use
Symmetry Reduction Techniques to
reduce the search space
Paradox thus adds constraints to
remove symmetries statically

Sort Inference

Think of 'sorts' as types
'sorted' models are easier to find
Paradox tries to infer 'sorts' on the
initially unsorted problems

And ?

Within 2 min, Paradox is able to solve
90% of TPTP satisfiable problems.
(Better than the previous CASC
winner with a limit of 5 min)
Within 10 min, Paradox solved for the
first time 28 TPTP problems (including
15 open / unknown problems)

Our project…
Goal: finding models in a randomized
fashion
Parse formulas in TPTP format
Evaluate an interpretation against
formulas
So far, interpretations are generated
using exhaustive search…
Implemented in Scala: Stack
Overflow problems

