
Set-valued field language to 1st order logic

conversion rules

Charles Bouillaguet
charles.bouillaguet@dptinfo.ens-cachan.fr

May 10, 2006

Language of incomming formulae :

O ::= VO|null |O.fO

S ::= VS |S ∩ S|S ∪ S|S \ S| {O, . . . , O} |O.fS

fO ::= VfO
|fO [O −→ O]

fS ::= VfS
|fS [O −→ S]

A ::= O = O|S = S|O ∈ S|Card (S) ≤ k|fO = fO|fS = fS

F ::= A|F ∧ F |F ∨ F |¬F |>|⊥

Figure 1: Syntax of expresions and formulas

1 Unnesting for dummies

Cardinalities constraints Just expresses the fact that the set is equal to a
finite set of cardinality k. All the introduced variables are fresh.

Card-Constraint

Card (S) ≤ k

∃ (x1, . . . , xk) , S ⊆ {x1, . . . , xk}
k ∈ N

Set inclusion and equality We unfold the definition. After that, we only
have set membership.

Set-Inclusion

S1 ⊆ S2

∀x, x ∈ S1 ⇒ x ∈ S2

Set-Equality

S1 = S2

∀x, x ∈ S1 ⇐⇒ x ∈ S2

1

Complex set expressions We unfold the definition. After that, the only set
expressions are set variables or set-valued fields.

Intersection

x ∈ S1 ∩ S2

x ∈ S1 ∧ x ∈ S2

Union

x ∈ S1 ∪ S2

x ∈ S1 ∨ x ∈ S2

Difference

x ∈ S1 \ S2

x ∈ S1 ∧ x /∈ S2

FiniteSet

x ∈ {O1, . . . , Ok}
x = O1 ∨ · · · ∨ x = Ok

Field Equalities we can unfold the definitions, and flaten everything to be in
a finite number of case. Note that the set expressions that appears here
may be complex, as they have not been processed by the rules above. Note
that we can’t write existential quantifiers on fields variables, so there must
NOT be universal quantifier above in the formula. Just introducing a fresh
constant symbol as we do is like doing some kind of immediate skolemiza-
tion, assuming there are not universally quantified variables above.

2

Object-Field-Variables-Equality

V 1
fO

= V 2
fO

∀x, x.V 1
fO

= x.V 2
fO

Object-Field-Write-Equality-Rectify

f2
O [O1 −→ O2] = V 1

fO

V 1
fO

= f2
O [O1 −→ O2]

Object-Field-Write-Flattening

f1
O [O1 −→ O2] = f2

O [O3 −→ O4]

f1
O [O1 −→ O2] = V fresh

fO
∧ V fresh

fO
= f2

O [O3 −→ O4]

Set-Field-Variables-Equality

V 1
fS

= V 2
fS

∀x, y, x ∈ y.V 1
fS

⇐⇒ x ∈ y.V 2
fS

Set-Field-Write-Equality-Rectify

f2
S [O −→ S] = V 1

fS

V 1
fS

= f2
S [O −→ S]

Set-Field-Write-Flattening

f1
S [O1 −→ S1] = f2

S [O2 −→ S2]

V fresh
fS

= f1
S [O1 −→ S1] ∧ V fresh

fS
= f2

S [O2 −→ S2]

Object-Field-Write-Equality-Unfolding

V 1
fO

= f2
O [O1 −→ O2]

∀(x, y : Obj), x.V 1
fO

= y ⇐⇒ (x = O1 ∧ y = O2) ∨
(
x 6= O1 ∧ y = x.f2

O

)
Set-Field-Write-Equality-Unfolding

V 1
fS

= f2
S [O −→ S]

∀(x, y : Obj), y ∈ x.V 1
fS

⇐⇒ (x = O ∧ y ∈ S) ∨
(
x 6= O ∧ y ∈ x.f2

S

)
Field Writes We instanciate the previous UNFOLDING rules.

Object-Field-Write-Read

V 1
O = V 2

O.fO [O1 −→ O2](
V 2

O = O1 ∧ V 1
O = O2

)
∨

(
V 2

O 6= O1 ∧ V 1
O = V 2

O.fO

)
Set-Field-Write-Read

V 1
O ∈ V 2

O.fS [O −→ S](
V 2

O = O ∧ V 1
O ∈ S

)
∨

(
V 2

O 6= O ∧ V 1
O ∈ V 2

O.fS

)
Flattening We must find any remaining field write : for this purpose we flatten

everything. This may trigger the two previous rules, and the set expres-
sions rules.

3

Object-Valued-Field-Flattening

O1.f
1
O = O2.f

2
O

∃x, x = O1.f
1
O ∧ x = O2.f

2
O

Objet-Flattening

VO = O1.fO.VfO

∃x, x = O1.fO ∧ VO = x.VfO

Membership-Flattening-Right

VO ∈ O.fO.fS

∃x, x = O.fO ∧ VO ∈ x.fS

Membership-Flattening-Left

VO.fO ∈ S

∃x, x = VO.fO ∧ x ∈ S
S not a set expression

1st order logic Now we’re finally ready to finish the conversion to first-order
logic.

Field-Deferencing

V 1
O = V 2

O.VfO

VfO

(
V 2

O, V 1
O

)
Variable-Membership

VO ∈ VS

VS (VO)

Field-Membership

V 1
O ∈ V 2

O.VS

VS

(
V 2

O, V 1
O

)
Equality-Normalization

V 1
O.VfO

= V 2
O

V 2
O = V 1

O.VfO

I chose to instanciate the Field Writes rules instead of flatening the field
writes because it generates less hypothesis.

Figure 2 shows a summary of what’s happening.
Termination is clear.
Confluence is trivial because for a given atom, there is no situation where two

different rules could be applied (at least, if we enforce the S in the OBJECT-
VALUED-FIELD-FLATENING rule not to be a complex set expression).

Correcteness (i.e. that once the rewriting has terminated the result is a FO
formula) is less evident.

1. When no rule from the Field Equality section can be applied, then there
is no field equality in the formula. Although the UNFOLDING rules only
apply to equality which left-side term is a field variable, the RECTIFY
and FLATTENING rules are enough to put all the field equalities in the
desired form.

2. the trickiest point is to see that all the field writes disappear in the pro-
cess. This is achieved by the recursive interaction between the “Field

4

Start

Cardinality constraints

Set equality and inclusion

Complex set expressions

Field equality

Field write

Flattening

Symmetry

First-Order Logic

End

Figure 2: Possibles triggering of rules

write” and the “Flattening” sets of rules. A field write cannot be hid-
den in the left-hand side of an equality or membership atom because
of the OBJECT-VALUED-FIELD-FLATTENING and MEMBERSHIP-
FLATTENING-LEFT rules. It cannot be the first deferenced field be-
cause of the WRITE-READ rules. However, if we have multiple cascaded
field deferences, they will be flattened by the OBJECT-FLATTENING
and MEMBERSHIP-FLATTENING-RIGHT rules.This way, all the fields
occuring in the formula will occur as the first and only field deference of
an object variable, and the READ-WRITE rules then apply.

The real implementation is summarized by figure 3

5

rewrite_card_constraints rewrite_card_atom

rewrite_seteq rewrite_seteq_atom

rewrite_setoprewrite_setop_atom

rewrite_fieldeqrewrite_fieldWrite_atom generate_binding

big_rewriting

fol_of_unnestedprocess_formula

Original Formula

Figure 3: Call graph of the real implementation (black arrows), and result flow
graph (red arrows)

6

