e, — - —

" Swiss Federal Institute of Technology, Lausanne
http://lara.epfl.ch/w/impro

OLE POLYTECHNIQUE
DERALE DE LAUSANNE

Programming Activity

 Development within an IDE Gef o 0 =1

Consider three related activities:

(Eclipse, Visual Studio, emacs, vim) }sz*“l
* Compilation and static checking l

(optimizing compiler for the language, :'C%ani;f)l

static analyzer, contract checker) add
e Execution on a (virtual) machine g

More compute power available for each of these
— use it to improve programmer productivity

Implicit Programming

A high-level declarative programming model

In addition to traditional recursive functions
and loops, use relations,

implicit specifications
give property of result, not how to compute it

More expressive, easier to argue correctness
Challenge:

— make it executable and efficient so it is useful

Claim: automated reasoning is key technique

The choose Implicit Construct

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
choose((h: Int, m: Int, s: Int) = (
h * 3600+ m * 60 + s == totalSeconds
&& 0<=h
&& 0<=m & & m < 60
&& 0<=5s&&s<60))

3787 seconds —— 1 hour, 3 mins. and 7 secs.

Notions Related to Implicit Programing

* Code completion
— help programmer to interactively develop the program

* Synthesis — core part of our vision
— key to compilation strategies for specification constructs

 Manual refinement from specs (Morgan, Back)

* Logic Programming
— shares same vision, in particular CLP(X)

— operational semantics design choices limit what systems
can do (e.g. Prolog)

— CLP solvers theories limited compared to SMT solvers
— not on mainstream platforms, no curly braces ©, SAT

Relationship to Verification

Some functionality is best synthesized from specs

Others are perhaps best implemented, then
verified

But currently, no choice - always must implement
— so specifications viewed as overhead

Goal: make specifications intrinsic part of program,
with clear benefits to programmers — execution

Expectation: this will help both

— verifiability and

— productivity

example: state assertion, not how to establish it

Implicit Programming at All Levels

requirements

Opportunities for implicit programming in

* Development within an IDE RS

— isynth tool chocse st
 Compilation @
— Comfusy and RegSy tools :Ic?)ani¥01
m). Execution call 23
— Scala”Z3 and UDITA tools %

| next examine these tools, from last to first,
focusing on Compilation

UDITA

4

o™
N
<
A
(C
O
(Vg

Scala”Z3

Invoking Constraint Solver at Run-Time

Gava Virtual
Machine

~

Q: implicit constraint

- functional and

>

-~

imperative code <

- custom ‘decision <

A: model

Q: queries containing
extension symbols

N

procedure’ plugins

%

A: custom theory
consequences

with: Philippe Suter, Ali Sinan Koksal, Robin Steiger

o

/3

~

SMT Solver

%

Executing choose using Z3

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
choose((h: Var[Int], m: Var[Int], s: Var[Int]) = (
h * 3600 + m * 60 + s == totalSeconds
&& 0<=h
2 0<=m && m < 60 will be constant at run-time

&& 0<=5&&s<60)) syntax tree constructor

3787 seconds —— 1 hour, 3 mins. and 7 secs.

It works, certainly for constraints within Z3’s supported theories

Implemented as a library (jar + z3.so / dll) — no compiler extensions

Programming in Scala”Z3

find triples of integers x, y, z such thatx >0, y > x,
2x + 3y <=40, x - z=3y?, and y is prime

/model enumeration (currently: negate previous)

val results = for(
(x,y) € findAll((x: Var[Int], y: Var[Int])) =>x>0 && y > x && x * 2 +y * 3 <= 40);

if isPrime(y); < user’s Scala function
z < findAll((z: Var[Int])) =>x*z===3 *y *vy))
yield (x, y, z) K "

Scala’s existing mechanism for composing iterations
(reduces to standard higher order functions such as flatMap-s)

Use Scala syntax to construct Z3 syntax trees

a type system prevents certain ill-typed Z3 trees
Obtain models as Scala values
Can also write own plugin decision procedures in Scala

UDITA: system for Test Generation

void generateDAG(IG ig) { Java + choose
for (inti=0;i<ig.nodes.length; i++) { - integers
int num = chooselnt(0, i); - (fresh) objects

ig.nodes|i].supertypes = new Node[num];
for(intj=0,k=-1;j < num; j++) {
k = chooselnt(k + 1, i — (hum —j));
ig.nodes|i].supertypes|j] = ig.nodes[k];
b1}

We used to it to find real bugs in
javac, JPF itself, Eclipse, NetBeans refactoring
On top of Java Pathfinder’s backtracking mechanism
Can enumerate all executions
Key: suspended execution of non-determinism
with: M. Gligoric, T. Gvero, V. Jagannath, D. Marinov, S. Khurshid

Implemented and released in official Java PathFinder

= projects/jpf-delayed — Java P| o |

C

1‘/(; J P F . Ihelswiss army knife |::nf Java™ verification

JIPFwiki Timeline Foadmap Wiew Tic
projects | jpf-delayed

jpf-delayed

Milos Ghgoric and Tihomir Gvero, {milos.gligoric, tthomir.gvero}@gmail.com, January 2010
Repository

The repository for |pf-delayed is =+http://babelfish_arc_nasa.govw'hg/|pfijpf-delayed.
Delayed Choice

The basic delayed choice postpones non-deterministic choice of values until they are used, reducing the size of the search
tree. The technique works with both int and boolean, i.e_, with Verify_getint and Verfy_getBoolean methods. Additionally, we
speed up the basic delayed choice by introducing copy propagation that keeps non-deterministic values symbalic even if they

are copied through memory locations. We also implement a special class for linked structures, called ObjectPool, which has the
following methods for non-deterministic assignments of objects:

public final class ObjectPool<T> implements Iterable<T> {

public ChijectPool (Class<?>» clz, int =ize, boolean includeMull) {...}
public T getAnv() {...}

public T getMew() {...}

public Iterator<T> iterator() {...}
1

Implicit Programming at All Levels

requirements

Opportunities for implicit programming in

* Development within an IDE RS

— isynth tool chocse st
m). Compilation I
— Comfusy and RegSy tools :Ic?)ani¥01
\ « Execution call 23
— Scala”Z3 and UDITA tools %

| next examine these tools, from last to first,
focusing on Compilation

, funct

)
(Vp)
()

EC
)
-
>~
(Vp)

©
c

RS,

(complete

An example

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
/choose((h: Int, m: Int, s: Int) = (
h * 3600+ m * 60 + s == totalSeconds
&& h=>0

&& m >0 && m< 60
_ &&s>208&&s<60)))

3787 seconds —— 1 hour, 3 mins. and 7 secs.

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
val t1 = totalSeconds div 3600
val t2 = totalSeconds + ((-3600) * t1)
val t3 = min(t2 div 60, 59) <

val t4 = totalSeconds + ((-3600) * t1) + (-60 * t3)
(t1, t3, t4)

Comparing with runtime invocation

Pros of runtime invocation Pros of synthesis
* Conceptually simpler Change in complexity: time
is spent at compile time

e Can use off-the-shelf solver Solving most of the problem

 for now can be more only once
expressive and even faster * Partial evaluation: we get a
* but: specialized decision
procedure
val times = * No need to ship a decision
for (secs < timeStats) procedure with the program

yield secondsToTime(secs)

Our approach

* Synthesis as programming language construct

val x = readInteger() + 4 standard code

valr :[choose(y = 5*x + 7*y = 31) }i implicit code

printin(“r*2: “ + r*r)

* Like compilation, synthesis should always succeed

Turn decision procedures into synthesis procedures

Decision vs. synthesis procedures
for a well-defined class of formulas

(model-

generatingJ Synthesis procedure

[Decision procedure

a theorem prover that always succeeds a synthesizer that always succeeds

 Takes: a formula e Takes: a formula, with
input (params) and output variables

 Makes: a model Makes: a program to compute
of the formula output values from input values
/5*x+7*y=31) Inputs: { x } outputs: {y }
1' 5*x+7*y =31

X:=2 'l
Ky:=3 - y:=(31-5*x)/7

Complete Functional Synthesis

* Synthesis: our procedures start from an
implicit specification.

* Functional: computes a function that satisfies a
given input/output relation.

* Complete: guaranteed to work for all
specification expressions from a well-defined
class.

Tool: Comfusy

Mikaél Mayer, Ruzica Piskac, Philippe Suter, in PLDI 2010, CAV 2010

Possible starting point:
guantifier elimination

* A specification statement of the form

[r=choose(x = F(a, x)) }

“let r be x such that F(a, x) holds”

* Corresponds to constructively solving the
quantifier elimination problem

Ix.F(a, x)

—> .
where g is a parameter

Quantifier elimination

* Converts a formula into an equivalent one
with no quantified variables

Observation: we can obtain withess terms

for the eliminated variables

e Witness terms become the instructions of the
synthesized program

* Prominent application of Q.E.:
integer linear arithmetic

Q.E. for integer linear arithmetic

* Problem of great interest:
— [Presburger, 1929], [Cooper, 1972]
— [Pugh, 1992],
— [Weispfenning, 1997]
— Nipkow: elegant and verified, runs within Isabelle

e QOur algorithm for integers:
— Works on disjunctive normal form
— Handling of inequalities as in [Pugh 1992]
— Efficient in handling equalities (solves integer systems)
— Computes witness terms , builds a program from them

{ choose((x,y)=>5*x+7*y==a&&XSY)}

Corresponding quantifier

5X+ 7y = <
elimination problem: AxJy.ox+7y=anxsy

Use extended Euclid’s algorithm to find particular X =3a

solutionto 5x+ 7y = a: y=-2a
(5,7 are mutually prime, else we get divisibility pre.)

Express general solution of equations X=-7z+ 3a

for x, y using a new variable z: y=>5z-2a

Rewrite inequations x £y in terms of z: 5a<12z

—> 7 > ceil(5a/12)
Obtain synthesized program:
val z = ceil(5*a/12) z = ceil(5*31/12) = 13
val x =-7*z + 3*a Fora=31: X=-7*13+3*%31=2
valy =5*z + -2*3 y=5%13-2*31=3

{ choose((x,y)=>5*x+7*y==a&&x£y&<x20ﬂ

Express general solution of equations X=-7z+ 3a
for x, y using a new variable z: y=>5z-2a
Rewrite inequations x £y in terms of z: z > ceil(5a/12)
Rewrite x 2 0: z < floor(3a/7)
Precondition on a: ceil(5a/12) < floor(3a/7)

(exact precondition)
Obtain synthesized program:

assert(ceil(5*a/12) < floor(3*a/7))
val z = ceil(5*a/12) With more inequalities

val x = -7*z + 3*3 we may generate a for loop

valy =5*z +-2*3

NP-Hard Constructs

* Disjunctions
— Synthesis of a formula computes program and exact
precondition of when output exists

— Given disjunctive normal form, use preconditions
to generate if-then-else expressions (try one by one)

* Divisibility combined with inequalities:

— corresponding to big disjunction in g.e.,
we will generate a for loop with constant bounds
(could be expanded if we wish)

General Form of Synthesized Functions
for Presburger Arithmetic

choose x such that F(x,a) 2> x=t(a)
Result t(a) is expressed in terms of
+ - C*, /C, if
Need arithmetic for solving equations
Need conditionals for

— disjunctions in input formula
— divisibility and inequalities (find a witness meeting
bounds and divisibility by constants)
t(a) = if P,(a) t,(a) elseif ... elseif P_(a) t.(a)
else error(“No solution exists for input”,a)

When do we have withess generating
guantifier elimination?

e Suppose we have
— class of specification formulas S

— decision procedure for formulas in class D
that produces satisfying assignments

— function (e.g. substitution) that, given concrete values
of parameters a and formula F in S, computes F(x,a)
that belongs to D
 Then we have synthesis procedure for S
(proof: invoke decision procedure at run-time)

If have decidability = also have computable
WitneSS'generating QE in the language extended w/ computable functions

Synthesis for sets

def splitBalanced[T](s: Set[T]) : (Set[T], Set[T]) =
/choose((a: Set[T], b: Set[T]) = (
a union b == s && a intersect b == empty
&& a.size —b.size<1

&& b.size —a.size<1

N Y,
def splltBaIanced[T](s Set[T]) (Set[T], Set[T]) =

val t2 = s.s¥z¢

val s1 = tAl e(tl%,)

val s2 = tgke(td s % uss
(s1, s2) e

Synthesis for non-linear arithmetic

def decomposeOffset(offset: Int, dimension: Int) : (Int, Int) =

/choose((x: Int, v: ! 2
offset == x ¥dimension * y && 0 < x && x < dimension
))

.)

* The predicate becomes linear at run-time

* Synthesized program must do case analysis on
the sign of the input variables

* Some coefficients are computed at run-time

Compile-time warnings

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
choose((h: Int, m: Int, s: Int) = (
h * 3600 + m-* 60 + s == totalSeconds
&& h >0 &&
& & m2>0&& m<60
&& s>0&&s<60

)

Warning: Synthesis predicate 1s not
satisfiable for variable assignment:
totalSeconds 86400

Compile-time warnings

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
choose((h: Int, m: Int, s: Int) = (
h * 3600+ m * 60 + s == totalSeconds
& & h=>0

&&mZO&
&& s 20 && s <6l

)

Warning: Synthesis predicate has multiple

solutions for variable assignment:
totalSeconds = 60

Solution 1: h = 0, m = 0, s = 60

Solution 2: h =0, m =1, s = 0

Arithmetic pattern matching

def fastExponentiation(base: Int, power: Int) : Int = {
def fp(m: Int, b: Int, i: Int): Int = i match {
case0=>m
case 2 * j = fp(m, b*b, j)
case 2 *j+ 1 = fp(m*b, b*Db, j)

}
fp(1, base, p)

}

* Goes beyond Haskell’s (n+k) patterns

e Compiler checks that all patterns are reachable
and whether the matching is exhaustive

Experience with Comfusy ©

Works well for examples we encountered

— Needed: synthesis for more expressive logics,
to handle more examples

— seems ideal for domain-specific languages

Efficient for conjunctions of equations
(could be made polynomial)

Extends to synthesis with parametric
coefficients

Extends to logics that reduce to Presburger
arithmetic (implemented for BAPA)

Comfusy for Arithmetic ®

Limitations of Comfusy for arithmetic:
— Naive handling of disjunctions
— Blowup in elimination, divisibility constraints

— Complexity of running synthesized code (from QE):
doubly exponential in formula size

— Not tested on modular arithmetic, or on
synthesis with optimization objectives

— Arbitrary-precision arithmetic with multiple
operations generates time-inefficient code

— Cannot do bitwise operations (not in PA)

RegSy

Synthesis for regular specifications over unbounded
domains
J. Hamza, B. Jobstmann, V. Kuncak
FMCAD 2010

Synthesize Functions over Integers

@

* Given weight w, balance beam using weights
1kg, 3kg, and 9kg

* Where to put weights if w=7kg?

Synthesize Functions over Integers

3

7 9

* Given weight w, balance beam using weights
1kg, 3kg, and 9kg

* Where to put weights if w=7kg?

* Program that computes correct positions of
1kg, 3kg, and 9kg for any w (if possible)?

Synthesize Functions over Integers
3

7 9

Synthesize function thagjven weight,
computes values farl,, /[, 7, r, 7 such tha
w+l +3,+91, =1 +3r, +97,

[+r <1, L+r,<1, [,+r, <1

Assumption: Integers are non-negative

Parameterized Optimization

Parametric linear constraints over integers p,C,dl,dz,e.g.,
R(p,c,d,,d,):=(4d, +3d, < p) A(d, +3d, <)
Synthesize function(d,,d,) = f (p,C) that

(i) satisfies constraints,i.e., R(p,c, f(p,c))
(i) maximizes profit (d,,d,) :=6d, +9d,

cabbage

Note: integers have unbounded number of bits

Synthesize Functions over bit-Streams

Smoothing a function:
— Given sequence X of 4-bit numbers
— Compute its average sequence Y

4Y[n..n+3]=X[n—-4..n—-1]4+2X[n.n+ 3]+ X[n+4..n+7]

16

14

X 12
" 0r

! Y I S |
R 1 in ikl

Ii :;:
[

A5l

<
= o] F=Y s3] =]
T a A 1

[

R LR A s dpitd g 1 1 1 I ARA L
0 m 20 30 40 50 &0 JFO 80 90 100

Expressiveness of Spec Language

Non-negative integer constants and variables
Boolean operators (A,Vv,—)

Linear arithmetic operator (+, ¢ - x)

Bitwise operators (|, &, !)

Quantifiers over numbers and bit positions

PAbit = Presburger arithmetic with bitwise operators
WS1S= weak monadic second-order logic of one successor

Problem
Given

— relation R over bit-stream (integer) variables
in WS1S (PADbit)

— partition of variables into inputs and outputs

Constructs program that, given inputs, computes
correct output values, whenever they exist.

Basic Idea of Regular Synthesis

* View integers as finite (unbounded) bit-streams
(binary representation starting with LSB)

e Specification in WS1S (PAbit)
e Synthesis approach:

— Step 1: Compile specification to automaton over
combined input/output alphabet
(automaton specifying relation)

— Step 2: Use automaton to generate efficient function
from inputs to outputs realizing relation

Example: Parity of Input Bits

* [nput x and output y are bit-streams

e Spec: output variable y indicates parity of non-
zero bits in input variable x
— y=00" if number of 1-bits in x is even, otherwise

y=10"
— Examples:
x: 0 1 1
y: 0.0 0 y: 10 0 0

Example: Parity of Input Bits

e Step 1: construct automaton for spec over
joint alphabet [oj

0 Spec: y=00" if number of 1-bits
Llj /> in x is even, otherwise y=10"
B

Accepting states are green

Note: must read entire input to know first output bit (non-causal)

ldea
 Run automaton on input, collect states for all
possible outputs (subset construction)

* From accepting state compute backwards to
initial state and output corresponding value

Automaton has all needed information
but subset construction for every input

Our Approach: Precompute

without losing backward information

WS1S Synthesis:
- 1. Det. automaton for spec over joint alphabet 4—}[Mona }

spec _ o
4 2. Project, determinize, extract lookup table

Automaton + lookup table

Synthesized program: J

Input Execution: Output
word ™™ 1. RunAoninputw and record trace —» ord
4 2. Use table to run backwards and output

Time and Space

 Automata may be large, but if table lookup is
constant time, then forth-back run is linear in
input (in number of bits)

* Also linear space

— can trade space for extra time by doing

logarithmic check-pointing of state gives O(log(n))
space, O(n log(n)) time

Prototype and Experiments

RegSy is implemented in Scala

Uses MONA to construct automaton on joint

alp
Bui
loo

nabet from specification
d input-deterministic automaton and

kup table using a set of automata

constructions

Run on several bit-stream and parametric
linear programming examples

Experiments
o Lo Luowsins Lo [ial_List Lsis Liouo oo s

1 addition 1967 3978
2 approx 719 670 27 35 470 932 1821 3641
3 company 8291 1306 58 177 608 1312 2391 4930
4 parity 346 108 4 5 336 670 1310 2572
5 mod-6 341 242 23 27 460 917 1765 3567
6 3-weights- 26963 640 22 13 438 875 1688
min
7 4-weights 2707 1537 55 19 458 903 1781 3605
8 smooth-4b 51578 1950 1781 955 637 1271 2505 4942
9 smooth-f-2b 569 331 73 67 531 989 1990 3905
10 smooth-b-2b 569 1241 73 342 169 347 628 1304

11 6-3n+l 834 1007 233 79 556 953 1882 4022

Summary of RegSy

Synthesize function over bit-stream (integer)
variables

Specification: WS1S or
PA with bit-wise operators (including quantifiers)

Linear complexity of running synthesized code
(linear in number of input bits)

Synthesize specialized solvers to e.g. disjunctive
parametric linear programming problems

Recent work:
replace MONA with different construction

Alonzo Church

 Lambda calculus (1936)
Foundation of modern functional
programming languages

* Church synthesis problem (1957)
Synthesis as foundation of future
programming languages/systems

Implicit Programming at All Levels

requirements

Opportunities for implicit programming in
_ 2 Development within an IDE

def f(x : Int) = {
choose y st ...

— isynth tool }
\ . Compilation @
— Comfusy and RegSy tools :Ic?)ani¥01
\ « Execution call 23
— Scala"Z3 and UDITA tools %

| next examine these tools, from last to first,
focusing on Compilation

joint work with: Tihomir Gvero, Ruzica Piskac

isynth - Interactive Synthesis of Code
Snippets

def map[A,B](f:A => B, I:List[A]): List[B] ={... }
def stringConcat(Ist : List[String]): String={ ... }

def printints(intList:List[Int], prn: Int => String): String = [I

Returned value:
stringConcat(map|Int, String](prn, intList))

Is there a term of given type in given environment?

Monorphic: decidable. Polymorphic: undecidable

Solution: use first-order resolution

isynth tool:

based on first-order resolution — combines
forward and backward reasoning

supports method combinations, type
polymorphism, user preferences

ranking of multiple returned solutions
— using a system of weights
— preserving completeness

further enhancements under way

Conclusion: Implicit Programming

Development within an IDE
— isynth tool — FOL resolution as code completion

Compilation

— Comfusy : decision procedure = synthesis procedure
Scala implementation for integer arithmetic, BAPA

— RegSy : solving WS1S constraints
Execution
— Scala”Z3 : constraint programming

— UDITA: Java + choice as test generation language
http://lara.epfl.ch/w/impro

