
Implicit Programming
through Automated Reasoning

presented by Viktor Kuncak
Swiss Federal Institute of Technology, Lausanne

http://lara.epfl.ch/w/impro

Programming Activity

Consider three related activities:

• Development within an IDE
(Eclipse, Visual Studio, emacs, vim)

• Compilation and static checking
(optimizing compiler for the language,
static analyzer, contract checker)

• Execution on a (virtual) machine

More compute power available for each of these

 use it to improve programmer productivity

requirements

def f(x : Int) = {
 y = 2 * x + 1
}

iload_0
iconst_1
iadd

42

Implicit Programming

• A high-level declarative programming model

• In addition to traditional recursive functions
and loops, use relations,
 implicit specifications
give property of result, not how to compute it

• More expressive, easier to argue correctness

• Challenge:

– make it executable and efficient so it is useful

• Claim: automated reasoning is key technique

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
 choose((h: Int, m: Int, s: Int) ⇒ (
 h * 3600 + m * 60 + s == totalSeconds
 && 0 <= h
 && 0 <= m && m < 60
 && 0 <= s && s < 60))

The choose Implicit Construct

3787 seconds 1 hour, 3 mins. and 7 secs.

Notions Related to Implicit Programing
• Code completion

– help programmer to interactively develop the program

• Synthesis – core part of our vision
– key to compilation strategies for specification constructs

• Manual refinement from specs (Morgan, Back)

• Logic Programming
– shares same vision, in particular CLP(X)

– operational semantics design choices limit what systems
can do (e.g. Prolog)

– CLP solvers theories limited compared to SMT solvers

– not on mainstream platforms, no curly braces , SAT

Relationship to Verification

• Some functionality is best synthesized from specs
• Others are perhaps best implemented, then

verified
• But currently, no choice - always must implement

– so specifications viewed as overhead

• Goal: make specifications intrinsic part of program,
with clear benefits to programmers – execution

• Expectation: this will help both
– verifiability and
– productivity

• example: state assertion, not how to establish it

Implicit Programming at All Levels

Opportunities for implicit programming in

• Development within an IDE

– isynth tool

• Compilation

– Comfusy and RegSy tools

• Execution

– Scala^Z3 and UDITA tools

I next examine these tools, from last to first,
focusing on Compilation

requirements

def f(x : Int) = {
 choose y st ...
}

iload_0
iconst_1
call Z3

42

Execution of Implicit Constructs
- constraint programming

Scala^Z3, UDITA

Scala^Z3
Invoking Constraint Solver at Run-Time

Java Virtual
Machine
- functional and
 imperative code

- custom ‘decision
 procedure’ plugins

Z3
SMT Solver

Q: implicit constraint

A: model

A: custom theory
consequences

Q: queries containing
extension symbols

with: Philippe Suter, Ali Sinan Köksal, Robin Steiger

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
 choose((h: Var[Int], m: Var[Int], s: Var[Int]) ⇒ (
 h * 3600 + m * 60 + s == totalSeconds
 && 0 <= h
 && 0 <= m && m < 60
 && 0 <= s && s < 60))

Executing choose using Z3

3787 seconds 1 hour, 3 mins. and 7 secs.

It works, certainly for constraints within Z3’s supported theories

Implemented as a library (jar + z3.so / dll) – no compiler extensions

will be constant at run-time

syntax tree constructor

Programming in Scala^Z3

find triples of integers x, y, z such that x > 0, y > x,
2x + 3y <= 40, x · z = 3y2, and y is prime

val results = for(
 (x,y) findAll((x: Var[Int], y: Var[Int])) => x > 0 && y > x && x * 2 + y * 3 <= 40);
 if isPrime(y);
 z findAll((z: Var[Int])) => x * z === 3 * y * y))
 yield (x, y, z)

model enumeration (currently: negate previous)

user’s Scala function

Scala’s existing mechanism for composing iterations
(reduces to standard higher order functions such as flatMap-s)

λ

Use Scala syntax to construct Z3 syntax trees
 a type system prevents certain ill-typed Z3 trees
Obtain models as Scala values
Can also write own plugin decision procedures in Scala

UDITA: system for Test Generation

void generateDAG(IG ig) {
 for (int i = 0; i < ig.nodes.length; i++) {
 int num = chooseInt(0, i);
 ig.nodes[i].supertypes = new Node[num];
 for (int j = 0, k = −1; j < num; j++) {
 k = chooseInt(k + 1, i − (num − j));
 ig.nodes[i].supertypes[j] = ig.nodes[k];
 } } }

We used to it to find real bugs in
javac, JPF itself, Eclipse, NetBeans refactoring

On top of Java Pathfinder’s backtracking mechanism
Can enumerate all executions
Key: suspended execution of non-determinism

Java + choose
 - integers
 - (fresh) objects

with: M. Gligoric, T. Gvero, V. Jagannath, D. Marinov, S. Khurshid

Implicit Programming at All Levels

Opportunities for implicit programming in

• Development within an IDE

– isynth tool

• Compilation

– Comfusy and RegSy tools

• Execution

– Scala^Z3 and UDITA tools

I next examine these tools, from last to first,
focusing on Compilation

requirements

def f(x : Int) = {
 choose y st ...
}

iload_0
iconst_1
call Z3

42

Compilation of Implicit Constructs:
(complete, functional) synthesis

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
 choose((h: Int, m: Int, s: Int) ⇒ (
 h * 3600 + m * 60 + s == totalSeconds
 && h ≥ 0
 && m ≥ 0 && m < 60
 && s ≥ 0 && s < 60))

An example

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
 val t1 = totalSeconds div 3600
 val t2 = totalSeconds + ((-3600) * t1)
 val t3 = min(t2 div 60, 59)
 val t4 = totalSeconds + ((-3600) * t1) + (-60 * t3)
 (t1, t3, t4)

3787 seconds 1 hour, 3 mins. and 7 secs.

Comparing with runtime invocation

Pros of synthesis

• Change in complexity: time
is spent at compile time

• Solving most of the problem
only once

• Partial evaluation: we get a
specialized decision
procedure

• No need to ship a decision
procedure with the program

Pros of runtime invocation

• Conceptually simpler

• Can use off-the-shelf solver

• for now can be more
expressive and even faster

• but:

val times =
 for (secs ← timeStats)
 yield secondsToTime(secs)

Our approach

• Synthesis as programming language construct

• Like compilation, synthesis should always succeed

standard code

implicit code

Turn decision procedures into synthesis procedures

…
val x = readInteger() + 4

val r = choose(y ⇒ 5*x + 7*y = 31)

println(“r^2: “ + r*r)
…

Decision vs. synthesis procedures
for a well-defined class of formulas

Decision procedure

• Takes: a formula

Synthesis procedure

• Takes: a formula, with
input (params) and output variables

• Makes: a model
of the formula

• Makes: a program to compute
output values from input values

5*x + 7*y = 31

x := 2
y := 3

Inputs: { x } outputs: { y }
5*x + 7*y = 31

y := (31 – 5*x) / 7

(model-
generating)

a theorem prover that always succeeds a synthesizer that always succeeds

• Synthesis: our procedures start from an
implicit specification.

• Functional: computes a function that satisfies a
given input/output relation.

• Complete: guaranteed to work for all
specification expressions from a well-defined
class.

Tool: Comfusy

Complete Functional Synthesis

Mikaël Mayer, Ruzica Piskac, Philippe Suter, in PLDI 2010, CAV 2010

Possible starting point:
quantifier elimination

• A specification statement of the form

• Corresponds to constructively solving the
quantifier elimination problem

where a is a parameter

r = choose(x ⇒ F(a, x))

∃ x . F(a, x)

“let r be x such that F(a, x) holds”

Quantifier elimination

• Converts a formula into an equivalent one
with no quantified variables

Observation: we can obtain witness terms
for the eliminated variables

• Prominent application of Q.E.:
 integer linear arithmetic

• Witness terms become the instructions of the
synthesized program

Q.E. for integer linear arithmetic

• Problem of great interest:

– [Presburger, 1929], [Cooper, 1972]

– [Pugh, 1992],

– [Weispfenning, 1997]

– Nipkow: elegant and verified, runs within Isabelle

• Our algorithm for integers:

– Works on disjunctive normal form

– Handling of inequalities as in [Pugh 1992]

– Efficient in handling equalities (solves integer systems)

– Computes witness terms , builds a program from them

val z = ceil(5*a/12)
val x = -7*z + 3*a
val y = 5*z + -2*a

choose((x, y) ⇒ 5 * x + 7 * y == a && x ≤ y)

z = ceil(5*31/12) = 13
x = -7*13 + 3*31 = 2
y = 5*13 – 2*31 = 3

∃ x ∃ y . 5x + 7y = a ∧ x ≤ y

x = 3a
y = -2a

Use extended Euclid’s algorithm to find particular
solution to 5x + 7y = a:
 (5,7 are mutually prime, else we get divisibility pre.)
Express general solution of equations
for x, y using a new variable z:

x = -7z + 3a
y = 5z - 2a

Rewrite inequations x ≤ y in terms of z: 5a ≤ 12z

z ≥ ceil(5a/12)
Obtain synthesized program:

For a = 31:

Corresponding quantifier
elimination problem:

choose((x, y) ⇒ 5 * x + 7 * y == a && x ≤ y && x ≥ 0)

Express general solution of equations
for x, y using a new variable z:

x = -7z + 3a
y = 5z - 2a

Rewrite inequations x ≤ y in terms of z: z ≥ ceil(5a/12)

assert(ceil(5*a/12) ≤ floor(3*a/7))
val z = ceil(5*a/12)
val x = -7*z + 3*a
val y = 5*z + -2*a

Obtain synthesized program:

z ≤ floor(3a/7) Rewrite x ≥ 0:

ceil(5a/12) ≤ floor(3a/7) Precondition on a:

(exact precondition)

With more inequalities
we may generate a for loop

NP-Hard Constructs

• Disjunctions

– Synthesis of a formula computes program and exact
precondition of when output exists

– Given disjunctive normal form, use preconditions
to generate if-then-else expressions (try one by one)

• Divisibility combined with inequalities:

– corresponding to big disjunction in q.e. ,
we will generate a for loop with constant bounds
(could be expanded if we wish)

General Form of Synthesized Functions
for Presburger Arithmetic

 choose x such that F(x,a) x = t(a)

Result t(a) is expressed in terms of
 +, -, C*, /C, if

Need arithmetic for solving equations

Need conditionals for
– disjunctions in input formula

– divisibility and inequalities (find a witness meeting
bounds and divisibility by constants)

t(a) = if P1(a) t1(a) elseif … elseif Pn(a) tn(a)
 else error(“No solution exists for input”,a)

When do we have witness generating
quantifier elimination?

• Suppose we have
– class of specification formulas S
– decision procedure for formulas in class D

that produces satisfying assignments
– function (e.g. substitution) that, given concrete values

of parameters a and formula F in S, computes F(x,a)
that belongs to D

• Then we have synthesis procedure for S
 (proof: invoke decision procedure at run-time)

If have decidability also have computable
witness-generating QE in the language extended w/ computable functions

Synthesis for sets

def splitBalanced[T](s: Set[T]) : (Set[T], Set[T]) =
 choose((a: Set[T], b: Set[T]) ⇒ (
 a union b == s && a intersect b == empty
 && a.size – b.size ≤ 1
 && b.size – a.size ≤ 1
))

def splitBalanced[T](s: Set[T]) : (Set[T], Set[T]) =
 val k = ((s.size + 1)/2).floor
 val t1 = k
 val t2 = s.size – k
 val s1 = take(t1, s)
 val s2 = take(t2, s minus s1)
 (s1, s2)

a

b

s

Synthesis for non-linear arithmetic

def decomposeOffset(offset: Int, dimension: Int) : (Int, Int) =
 choose((x: Int, y: Int) ⇒ (
 offset == x + dimension * y && 0 ≤ x && x < dimension
))

• The predicate becomes linear at run-time

• Synthesized program must do case analysis on
the sign of the input variables

• Some coefficients are computed at run-time

Compile-time warnings
def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
 choose((h: Int, m: Int, s: Int) ⇒ (
 h * 3600 + m * 60 + s == totalSeconds
 && h ≥ 0 && h < 24
 && m ≥ 0 && m < 60
 && s ≥ 0 && s < 60
))

Warning: Synthesis predicate is not

satisfiable for variable assignment:

 totalSeconds = 86400

Compile-time warnings
def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
 choose((h: Int, m: Int, s: Int) ⇒ (
 h * 3600 + m * 60 + s == totalSeconds
 && h ≥ 0
 && m ≥ 0 && m ≤ 60
 && s ≥ 0 && s < 60
))

Warning: Synthesis predicate has multiple

solutions for variable assignment:

 totalSeconds = 60

Solution 1: h = 0, m = 0, s = 60

Solution 2: h = 0, m = 1, s = 0

Arithmetic pattern matching

• Goes beyond Haskell’s (n+k) patterns

• Compiler checks that all patterns are reachable
and whether the matching is exhaustive

def fastExponentiation(base: Int, power: Int) : Int = {
 def fp(m: Int, b: Int, i: Int): Int = i match {
 case 0 ⇒ m
 case 2 * j ⇒ fp(m, b*b, j)
 case 2 * j + 1 ⇒ fp(m*b, b*b, j)
 }
 fp(1, base, p)
}

Experience with Comfusy
• Works well for examples we encountered

– Needed: synthesis for more expressive logics,
to handle more examples

– seems ideal for domain-specific languages

• Efficient for conjunctions of equations
(could be made polynomial)

• Extends to synthesis with parametric
coefficients

• Extends to logics that reduce to Presburger
arithmetic (implemented for BAPA)

Comfusy for Arithmetic

• Limitations of Comfusy for arithmetic:
– Naïve handling of disjunctions

– Blowup in elimination, divisibility constraints

– Complexity of running synthesized code (from QE):
doubly exponential in formula size

– Not tested on modular arithmetic, or on
synthesis with optimization objectives

– Arbitrary-precision arithmetic with multiple
operations generates time-inefficient code

– Cannot do bitwise operations (not in PA)

RegSy

Synthesis for regular specifications over unbounded
domains

J. Hamza, B. Jobstmann, V. Kuncak
FMCAD 2010

Synthesize Functions over Integers

• Given weight w, balance beam using weights
1kg, 3kg, and 9kg

• Where to put weights if w=7kg?

1 3
9

w

Synthesize Functions over Integers

• Given weight w, balance beam using weights
1kg, 3kg, and 9kg

• Where to put weights if w=7kg?

• Program that computes correct positions of
1kg, 3kg, and 9kg for any w (if possible)?

9 7

3 1

Synthesize Functions over Integers

9 7

Synthes ize function that, given weight w,

computes values for l1,l3,l9 ,r1,r3 ,r9 such that

 w l1 + 3l3 + 9l9 = r1 + 3r3 + 9r9

 l1 + r1 1, l3 + r3 1, l9 + r9 1

3 1

Assumption: Integers are non-negative

Parameterized Optimization

2121

21

212121

21

96:),(

),(,,(

),(:),(

)3)34,,,(

,,,

dddd

cpfcpR

cpfdd

cddpddddcpR

ddcp

 profit maximizes (ii)

) i.e., s,constraint satisfies (i)

that function Synthesize

((:=)

e.g., , integers over sconstraint linear Parametric

potato

cabbage

9CHF

6CHF d1

d2

Note: integers have unbounded number of bits

Synthesize Functions over bit-Streams
Smoothing a function:

– Given sequence X of 4-bit numbers

– Compute its average sequence Y

…

… …

…

Y

X

4Y[n..n3]X[n4...n1]2X[n..n3]X[n4..n7]

Expressiveness of Spec Language

• Non-negative integer constants and variables

• Boolean operators

• Linear arithmetic operator

• Bitwise operators

• Quantifiers over numbers and bit positions

PAbit = Presburger arithmetic with bitwise operators
WS1S= weak monadic second-order logic of one successor

(, c x)

(|, &, !)

(,,)

Problem
Given

– relation R over bit-stream (integer) variables
in WS1S (PAbit)

– partition of variables into inputs and outputs

Constructs program that, given inputs, computes
correct output values, whenever they exist.

Basic Idea of Regular Synthesis

• View integers as finite (unbounded) bit-streams
(binary representation starting with LSB)

• Specification in WS1S (PAbit)

• Synthesis approach:

– Step 1: Compile specification to automaton over
combined input/output alphabet
(automaton specifying relation)

– Step 2: Use automaton to generate efficient function
from inputs to outputs realizing relation

010001101010101010101010101101111111110101010101100000000010101010100011010101

Example: Parity of Input Bits

• Input x and output y are bit-streams

• Spec: output variable y indicates parity of non-
zero bits in input variable x

– y=00* if number of 1-bits in x is even, otherwise
y=10*

– Examples:

x :

y :

0

0

1

0

1

0

x :

y :

1

1

0

0

1

0

1

0

Example: Parity of Input Bits

• Step 1: construct automaton for spec over
joint alphabet

Note: must read entire input to know first output bit (non-causal)

Spec: y=00* if number of 1-bits
in x is even, otherwise y=10*

Accepting states are green

x :

y :

0

0

1

0

1

0

A

B

C

0

0

 ,

1

1

0

1

 ,

1

0

1

0

1

0

0

0

0

0

Idea
• Run automaton on input, collect states for all

possible outputs (subset construction)

• From accepting state compute backwards to
initial state and output corresponding value

A

B

C

0

0

 ,

1

1

0

1

 ,

1

0

1

0

1

0

0

0

0

0

A
B

C

0

0

0

1

1

0

1

0

B

C

C

B

1

0

1

0

x :

y :

0

?

1

?

1

?

Automaton has all needed information
but subset construction for every input

WS1S
spec Mona

Synthesis:
1. Det. automaton for spec over joint alphabet
2. Project, determinize, extract lookup table

Execution:
1. Run A on input w and record trace
2. Use table to run backwards and output

Our Approach: Precompute

Synthesized program:
Automaton + lookup table

Input
word

Output
word

without losing backward information

Time and Space

• Automata may be large, but if table lookup is
constant time, then forth-back run is linear in
input (in number of bits)

• Also linear space

– can trade space for extra time by doing
logarithmic check-pointing of state gives O(log(n))
space, O(n log(n)) time

Prototype and Experiments

• RegSy is implemented in Scala

• Uses MONA to construct automaton on joint
alphabet from specification

• Build input-deterministic automaton and
lookup table using a set of automata
constructions

• Run on several bit-stream and parametric
linear programming examples

Experiments

• Linear scaling observed in length of input

No Example MONA (ms) Syn (ms) |A| |A’| 512b 1024b 2048b 4096b

1 addition 318 132 4 9 509 995 1967 3978

2 approx 719 670 27 35 470 932 1821 3641

3 company 8291 1306 58 177 608 1312 2391 4930

4 parity 346 108 4 5 336 670 1310 2572

5 mod-6 341 242 23 27 460 917 1765 3567

6 3-weights-
min

26963 640 22 13 438 875 1688 3391

7 4-weights 2707 1537 55 19 458 903 1781 3605

8 smooth-4b 51578 1950 1781 955 637 1271 2505 4942

9 smooth-f-2b 569 331 73 67 531 989 1990 3905

10 smooth-b-2b 569 1241 73 342 169 347

628 1304

11 6-3n+1 834 1007 233 79 556 953

1882 4022

In 3 seconds solve constraint, minimizing the output;
inputs and outputs are of order 24000

Summary of RegSy

• Synthesize function over bit-stream (integer)
variables

• Specification: WS1S or
PA with bit‐wise operators (including quantifiers)

• Linear complexity of running synthesized code
(linear in number of input bits)

• Synthesize specialized solvers to e.g. disjunctive
parametric linear programming problems

• Recent work:
 replace MONA with different construction

• Lambda calculus (1936)

Foundation of modern functional
programming languages

• Church synthesis problem (1957)

Synthesis as foundation of future
programming languages/systems

Alonzo Church

Implicit Programming at All Levels

Opportunities for implicit programming in

• Development within an IDE

– isynth tool

• Compilation

– Comfusy and RegSy tools

• Execution

– Scala^Z3 and UDITA tools

I next examine these tools, from last to first,
focusing on Compilation

requirements

def f(x : Int) = {
 choose y st ...
}

iload_0
iconst_1
call Z3

42

Implicit Constructs in IDEs:
code completion using automated reasoning

isynth - Interactive Synthesis of Code
Snippets

def map[A,B](f:A => B, l:List[A]): List[B] = { ... }

def stringConcat(lst : List[String]): String = { ... }

...

def printInts(intList:List[Int], prn: Int => String): String =

Returned value:
stringConcat(map[Int, String](prn, intList))

Is there a term of given type in given environment?

Monorphic: decidable. Polymorphic: undecidable

joint work with: Tihomir Gvero, Ruzica Piskac

Solution: use first-order resolution

isynth tool:

• based on first-order resolution – combines
forward and backward reasoning

• supports method combinations, type
polymorphism, user preferences

• ranking of multiple returned solutions
– using a system of weights

– preserving completeness

• further enhancements under way

Conclusion: Implicit Programming

Development within an IDE

– isynth tool – FOL resolution as code completion

Compilation

– Comfusy : decision procedure synthesis procedure
Scala implementation for integer arithmetic, BAPA

– RegSy : solving WS1S constraints

Execution

– Scala^Z3 : constraint programming

– UDITA: Java + choice as test generation language

http://lara.epfl.ch/w/impro

