
Set Interfaces for Generalized Typestate

and Data Structure Consistency Verification

Patrick Lam, Viktor Kuncak, Karen Zee, and Martin Rinard

MIT Computer Science and Artificial Intelligence Laboratory, USA

{plam,vkuncak,kkz,rinard}@csail.mit.edu

Abstract

Typestate systems allow the type of an object to change during its lifetime in
the computation. Unlike standard type systems, they can enforce safety properties
that depend on changing object states. We present a new, generalized formulation
of typestate that models the typestate of an object through membership in abstract
sets. This abstract set formulation enables developers to reason about cardinalities
of sets, and in particular to state and verify the condition that certain sets are
empty. We support hierarchical typestate classifications by specifying subset and
disjointness properties over the typestate sets.

We present our formulation of typestate in the context of the Hob program spec-
ification and verification framework. The Hob framework allows the combination of
typestate analysis with powerful independently developed analyses such as shape
analyses or theorem proving techniques. We implemented our analysis and anno-
tated several programs (75-2500 lines of code) with set specifications. Our imple-
mentation includes several optimizations that improve the scalability of the analysis
and a novel loop invariant inference algorithm that eliminates the need to specify
loop invariants. We present experimental data demonstrating the effectiveness of
our techniques.

1 Introduction

Typestate systems [7, 10, 12, 13, 21, 37] allow the type of an object to change
during its lifetime in the computation. Unlike standard type systems, typestate
systems can enforce safety properties that depend on changing object states.

1 This research was supported by DARPA Contract F33615-00-C-1692, NSF
Grant CCR-0086154, NSF Grant CCR-0073513, NSF Grant CCR-0209075, and the
Singapore-MIT Alliance.
2 This is a revised version of the paper [26]. The present version contains a new
technique for loop invariant inference, and improves the presentation of the system.

Preprint submitted to Elsevier Science 17 September 2006

This paper develops a new, generalized formulation of typestate systems. In-
stead of associating a single typestate with each object, our system models
each typestate as an abstract set of objects. Objects may, of course, simul-
taneously belong to multiple sets. If an object is in a given typestate, it is a
member of the set that corresponds to that typestate. This formulation imme-
diately leads to several generalizations of the standard typestate approach. It
is possible to relate typestate sets by specifying subset and disjointness prop-
erties over sets, which enables our approach to support hierarchical typestate
classifications. Furthermore, the use of the boolean algebra of sets to reason
about set membership enables our approach to reason about cardinalities of
sets, and in particular to state and verify that certain sets are empty. Finally,
a typestate in our formulation can be formally related to a potentially com-
plex property of an object, with the relationship between the typestate and
the property verified using powerful independently developed analyses such as
shape analyses or theorem provers.

We implemented the idea of generalized typestate in the Hob program specifi-
cation and verification framework [24–28]. This framework supports the divi-
sion of the program into instantiable, separately analyzable modules. Modules
encapsulate private state and export abstract sets of objects that support
abstract reasoning about the encapsulated state. Abstraction functions spec-
ify the objects that participate in each abstract set, and are defined using
unary predicates on the encapsulated state. Modules also export procedures
that may access the encapsulated state and therefore change the contents of
the exported abstract sets. Each module uses set algebra expressions involv-
ing operators such as set union or difference to specify the preconditions and
postconditions of exported procedures. As a result, the analysis of client mod-
ules that coordinate the actions of other modules can reason solely in terms
of the exported abstract sets and avoid the complexity of reasoning about any
encapsulated state.

When the encapsulated state implements a data structure (such as a list, hash
table, or tree), the resulting abstract sets characterize how objects participate
in that data structure. The developer can then use the abstract sets to spec-
ify consistency properties that involve multiple data structures from different
modules. Such a property might state, for example, that two data structures
involve disjoint objects or that the objects in one data structure are a subset
of the objects in another. In this way, our approach captures global sharing
patterns and characterizes both local and global data structure consistency.

The verification of a program in our system consists of the application of
potentially different specialized analyses to verify 1) the set interfaces of all
of the modules in the program and 2) the validity of the global data struc-
ture consistency properties. The set specifications separate the analysis of a
complex program into independent verification tasks, where each task is veri-
fied by an appropriate specialized analysis plugin [24]. Our approach therefore
makes it possible, for the first time, to apply multiple specialized, extremely

2

precise, and unscalable analyses such as shape analysis [31, 34] or even man-
ually aided theorem proving [38] to effectively verify sophisticated typestate
and data structure consistency properties in sizable programs.

Specification Language. Our specification language is the full first-order
theory of the boolean algebra of sets. In addition to basic typestate properties
expressible using quantifier-free boolean algebra expressions, our language can
state constant bounds on the cardinalities of sets of objects, such as “a local
variable is not null” or “the content of the queue is nonempty”, or even “the
data structure contains at least one and at most ten objects”. Because a cardi-
nality constraint counts all objects that satisfy a given property, our specifica-
tion language goes beyond standard typestate approaches that use per-object
finite state machines. Our specification language also supports quantification
over sets. Universal set quantifiers are useful for stating parametric properties;
existential set quantifiers are useful for information hiding. Note that quantifi-
cation over sets is not directly expressible even in such sophisticated languages
as first-order logic with transitive closure. Despite this expressive power, our
set specification language is decidable and furthermore extends naturally to
Boolean Algebra with Presburger Arithmetic [22, 23].

The Flag Analysis Plugin. The generalized typestate analysis in the Hob
system is implemented in the flag analysis plugin, which is the focus of this
paper. The flag analysis plugin uses the values of integer and boolean object
fields (flags) to define the meaning of abstract sets. It verifies set specifications
by first constructing set algebra formulas whose validity implies the validity
of the set specifications, then verifying these formulas using an off-the-shelf
decision procedure [19].

The flag analysis plugin is important for two reasons. First, flag field values
often reflect the high-level conceptual state of the entity that an object rep-
resents, and flag changes correspond to changes in the conceptual state of
the entity. By using flags in preconditions of object operations, the developer
can specify key object state properties required for the correct processing of
objects and the correct operation of the program. Unlike standard typestate
approaches, our flag analysis plugin can enforce not only temporal operation
sequencing constraints, but also the generalizations that our expressive set
specification language enables.

Second, the flag analysis plugin can propagate constraints between abstract
sets defined with arbitrarily sophisticated abstraction functions in external
modules. The plugin can therefore analyze modules that, as they coordinate
the operation of other modules, indirectly manipulate external data structures
defined in those other modules. This enables the flag analysis to perform the
intermodule reasoning required to verify global invariants relating different
data structures, e.g. inclusion and disjointness of data structures. Because the
flag plugin uses the boolean algebra of sets to internally represent its dataflow
facts, it can propagate and verify these constraints in a precise way.

3

Evaluation. We implemented our flag analysis plugin in the context of the
Hob system [27, 28]. In addition to the flag analysis plugin, the Hob system
contains a shape analysis plugin based on Pointer Assertion Logic Tool [31],
and a theorem proving plugin [38] that uses a verification-condition generator
and the Isabelle interactive proof assistant [32]. We used the flag analysis
plugin to verify high-level properties in our benchmarks; we used the other
two plugins to verify implementations of encapsulated data structures. Overall,
most of the code was verified using the scalable flag analysis plugin, allowing
the more precise analyses to be focused on the intricacies of internal data
structure implementations.

Our initial implementation of the flag analysis algorithm simply synthesized
boolean algebra formulas and used the MONA decision procedure [19] directly
to discharge them. We found that scalability problems with the MONA de-
cision procedure prevented this initial approach from analyzing some of our
benchmarks. We therefore implemented several formula simplifications that
substantially improved the scalability of the flag analysis; we present experi-
mental data that show the effect of our formula simplifications.

Loop invariant inference. Our flag analysis is based on symbolically com-
puting the postconditions of statements, which makes it precise. A general
problem with such an approach is the handling of loops. Previously, our anal-
ysis used a simple loop invariant inference technique that was often ineffective
at deriving loop invariants; developers would typically be forced to supply loop
invariants explicitly. Like procedure summaries, invariants provide useful in-
formation for code understanding; however, unlike procedure summaries, they
are not essential for modular analysis. To eliminate the necessity of writing
loop invariants, we have therefore developed a more sophisticated loop invari-
ant inference technique, which we present in Section 6. We found that our loop
invariant inference technique was successful in inferring all loop invariants in
our benchmarks.

2 Example

In this section we illustrate how Hob analyzes a program consisting of multiple
modules and explain the role of the flag analysis plugin in Hob.

Fig. 1. Modules in Minesweeper implementation

We use an implementation of the popular Minesweeper game as an example.

4

impl module Board {
format Cell {

isMined : bool;
isExposed : bool;
isMarked : bool;
i, j : int;
init : bool;

}
var init, peeking, gameOver : bool;

proc revealAllUnexposed() {
UnexposedList.openIter();
bool b = UnexposedList.isLastIter();
while (!b) {

Cell c = UnexposedList.nextIter();
UnexposedList.remove(c);
c.isExposed = true;
ExposedSet.add(c);
b = UnexposedList.isLastIter();

}
}
...

}

Fig. 2. Implementation of Board

spec module Board {
format Cell;
specvar MarkedCells, MinedCells,

ExposedCells, UnexposedCells,
U : Cell set;

specvar init, peeking, gameOver : bool;

proc revealAllUnexposed()
requires gameOver & init & not peeking
modifies ExposedCells, UnexposedCells
ensures card(UnexposedCells’) = 0;

...

}

Fig. 3. Specification of Board

abst module Board {
use plugin "flags";
U = { x : Cell | "x.init = true" };
MarkedCells = U cap { x : Cell | "x.isMarked = true" };
ExposedCells = U cap { x : Cell | "x.isExposed = true" };
UnexposedCells = U cap { x : Cell | "x.isExposed = false" };
MinedCells = U cap { x : Cell | "x.isMined = true" };
predvar gameOver; predvar init; predvar peeking;

}

Fig. 4. Abstraction of Board

Figure 1 presents the module diagram of our minesweeper implementation,
with boxes representing modules and arrows representing procedure calls. 3

Our minesweeper implementation has several modules: a game board module
(which represents the game state), a controller module (which responds to
user input), a view module (which produces the game’s output), an exposed
cell module (which stores the exposed cells in an array), and an unexposed
cell module (which stores the unexposed cells in an instantiated linked list).

Each module in Hob consists of three sections: the implementation section, the
specification section, and the abstraction section. Our minesweeper implemen-
tation uses the standard model-view-controller (MVC) design pattern [16]; the
Board module implements the model part of the MVC pattern. Figures 2, 3,
and 4 present the three sections of the Board module.

The implementation section contains the executable code for each procedure
of the module, written in a type-safe imperative language similar to Java or
ML. In this example we examine the revealAllUnexposed procedure, which

3 Full source code for the minesweeper example and other case studies, the inter-
preter, the Java translator, and the Hob analysis engine are available at the Hob
homepage, http://hob.csail.mit.edu. The Hob page is served by a custom web
server implemented in the Hob language.

5

is called at the end of the game to reveal the positions of all cells that have
not been exposed so far. In addition to procedure implementations, the im-
plementation section contains declarations of private global variables, such as
the boolean variables gameOver, init, and peeking in Figure 2, and field dec-
larations, such as isMined, isExposed, and isMarked. These fields reflect the
fact that each Cell object may represent a mined, exposed or marked cell in
the minesweeper game. Field declarations are grouped into formats. Multiple
modules can contribute fields to the same format, allowing encapsulation at
the granularity of fields [25].

The specification section contains the public interface for the module, ex-
pressed in terms of specification variables, including the global set-valued
variables MarkedCells, MinedCells, ExposedCells, and UnexposedCells,
and the global boolean variables in Figure 3. The specification section allows
the clients of the module to reason about module behavior without having
access to the implementation of the module. The specification module de-
scribes the behavior of each procedure using procedure contracts written in
terms of the specification variables. For example, the contract of procedure
revealAllUnexposed indicates 1) that the procedure may only be called when
the gameOver variable is true, 2) that the only relevant specification variables
that are modified are ExposedCells and UnexposedCells, and 3) that the size
of the set UnexposedCells at the end of procedure execution is zero, that is,
the set is empty. Section 3 describes our specification language more detail.

Finally, the abstraction section of the module specifies the mapping between
the implementation section and the abstraction section, by defining each spec-
ification variable in terms of implementation variables. For example, the ab-
straction section in Figure 4 defines the set UnexposedCells as the set of all
allocated objects whose init field is true and whose isExposed field is false.
The abstraction section also indicates the name of the analysis plugin used
to analyze the module; the Board module uses the flag plugin. The defining
formula of each specification variable is given in a language specific to the plu-
gin used to analyze the module; see [38] for another example of specification
variable definitions.

Our system uses the flag analysis plugin to verify that our implementation
has the following properties (among others):

• Unless the game is over, the set of mined cells is disjoint from the set of
exposed cells.

• The sets of exposed and unexposed cells are disjoint.
• The set of unexposed cells maintained in the Board module is identical to

the set of unexposed cells maintained in the UnexposedList list.
• The set of exposed cells maintained in the Board module is identical to the

set of exposed cells maintained in the ExposedSet array.
• At the end of the game, all cells are revealed; that is, the set of unexposed

cells is empty.

6

spec module UnexposedList {
format Cell;
specvar Content, Iter : Cell set;
invariant Iter in Content;

proc remove(n : Cell)
requires card(n)=1 & (n in Content)
modifies Content, Iter
ensures (Content’ = Content - n) &

(Iter’ = Iter - n);

proc openIter()
requires card(Iter) = 0
modifies Iter
ensures (Iter’ = Content);

proc isLastIter() returns e:bool
ensures not e’ <=> (card(Iter’)>= 1);
...

}

Fig. 5. Specification of the
UnexposedList module

scope Model {
modules Board, ExposedSet, UnexposedList;
exports Board;
invariant
(Board.ExposedCells = ExposedSet.Content) &
(Board.UnexposedCells = UnexposedList.Content) &
(Board.init => ExposedList.setInit) &
(Board.peeking |

(card(UnexposedList.Iter) = 0));
}

Fig. 6. Scope for Minesweeper Example

To illustrate our flag analysis, we discuss the analysis of the
revealAllUnexposed procedure. The goal of the analysis is to show
that the implementation in Figure 2 conforms to the specification in
Figure 3 when the specification variables are defined as in Figure 4. The
procedure revealAllUnexposed invokes operations in the UnexposedList

and ExposedSet modules, which implement sets using linked lists and
arrays respectively. Figure 5 shows a fragment of the specification of the
UnexposedList module. Hob’s separation of modules into implementation,
specification and abstractions sections enables analyses to examine only
the specifications of called modules. For example, the analysis of the Board
module need not handle the complexity of analyzing the implementation
of UnexposedList. It simply uses the specification of remove in Figure 5
to derive the effect of a call UnexposedList.remove(c) in Figure 2.
The analysis of revealAllUnexposed starts with the full precondition of
revealAllUnexposed. The full precondition includes the explicitly stated
requires clause in Figure 3, as well as the scope invariant in Figure 6. A scope

in the Hob system is a collection of modules, some of which are exported,
along with a list of scope invariants [25]. Scope invariants are global invariants
that span specification variables from multiple modules; these invariants are
implicitly conjoined to the preconditions and postconditions of all public
procedures declared in exported modules, including the revealAllUnexposed
procedure that we are discussing.

Starting from the precondition, the flag analysis uses a postcondition se-
mantics of statements to compute an approximation of the transition re-
lation between 1) the initial state of the procedure and 2) the state of
the procedure at each program point. The flag analysis represents this ap-
proximation as a formula relating unprimed variables and primed variables.
Upon entry to the procedure, the relation contains the precondition, as well
as the conjuncts such as UnexposedList.Iter’ = UnexposedList.Iter

for each variable relevant to the analysis of the procedure, indicating

7

that none of the variables have changed. When analyzing the first state-
ment, UnexposedList.openIter(), the flag analysis checks that the cur-
rent state implies the precondition of openIter, which follows from the
clause not peeking from the revealAllUnexposed precondition, combined
with the scope invariant. The analysis then uses the specification of
openIter to derive a new transition relation formula that implies Iter’ =
Content (and does not contain the conjunct UnexposedList.Iter’ =
UnexposedList.Iter). Subsequent analysis derives properties that involve
local variables; for instance, b <=> card(UnexposedList.Iter’)>=1 holds
after a call to UnexposedList.isLastIter. The analysis of the loop proceeds
by iterating the loop several times and removing the conjuncts that do not
persist across all loop iterations. Section 6 describes our loop invariant infer-
ence algorithm in greater detail. Eventually the fixpoint iteration terminates
and the analysis verifies that the synthesized loop invariant implies the post-
condition, which consists of 1) the ensures clause and 2) the scope invariant.

Note that, in the course of its operation, our flag analysis verifies that the
invoked procedures in UnexposedList are always used correctly. This usage
constraint includes data structure operation preconditions: any element in-
serted into the list with ExposedList.add(c) must not already be in the list.
Furthermore, our flag analysis propagates boolean conditions reflecting global
game state information, such as init, not peeking and gameOver. 4 In the
rest of this paper we describe the flag analysis of our framework in more detail.

3 Specification Language

Figure 7 presents the syntax for the specification section of modules in our
language. This section contains a list of set definitions and procedure specifi-
cations and lists the names of types used in these set definitions and proce-
dure specifications. Set declarations identify the module’s abstract sets, while
boolean variable declarations identify the module’s abstract boolean variables.
Each procedure specification contains a requires, modifies, and ensures

clause. The requires clause identifies the precondition that the procedure
requires to execute correctly; the ensures clauses identifies the postcondition
that the procedure ensures when called in program states that satisfy the
requires condition. The modifies clause identifies sets whose elements may
change as a result of executing the procedure. For the purposes of this pa-
per, modifies clauses can be viewed as a special syntax for a frame-condition
conjunct in the ensures clause. The variables in the ensures clause can refer
to both the initial (unprimed variables) and final (primed variables) states of
the procedure. Both requires and ensures clauses use arbitrary first-order
boolean algebra formulas B extended with cardinality constraints. A free vari-

4 The Hob framework supports an additional default construct that allows the
developer to specify conjuncts such as init and not peeking as default values that
apply to a set of procedures given by some crosscut expression, so these conjuncts
need not be repeated for every procedure [25].

8

M ::= spec module m {(type t)∗(set S)∗(predvar b)∗P ∗}
P ::= proc pn(p1 : t1, . . . , pn : tn)[returns r : t]

[requires B] [modifies S∗] ensures B
B ::= SE1 = SE2 | SE1 ⊆ SE2 | card(SE)=k
| B ∧ B | B ∨ B | ¬B | ∃S.B | ∀S.B

SE ::= ∅ | p | [m.] S | [m.] S′

| SE1 ∪ SE2 | SE1 ∩ SE2 | SE1 \ SE2

Fig. 7. Syntax of the Module Specification Language

M ::= abst module m {D∗ P ∗}
D ::= id=Dr;

Dr ::= Dr ∪Dr | Dr ∩Dr | id | {x : T | x.f=c}
P ::= predvar p;

Fig. 8. Syntax of the Flag Abstraction Language

able of any formula appearing in a module specification denotes an abstract
set or boolean variable declared in that specification; it is an error if no such
set or boolean variable has been declared. The expressive power of such for-
mulas is the first-order theory of boolean algebras, which is decidable [20,30].
The decidability of the specification language ensures that analysis plugins
can precisely propagate the specified relations between the abstract sets.

4 Overview of Flag Analysis

Our flag analysis verifies that modules implement set specifications in which
integer or boolean flags indicate abstract set membership. The developer spec-
ifies (using the flag abstraction language) the correspondence between con-
crete flag values and abstract sets from the specification, as well as the corre-
spondence between the concrete and the abstract boolean variables. Figure 8
presents the syntax for our flag abstraction modules. This abstraction lan-
guage defines abstract sets in two ways: (1) directly, by stating a base set; or
(2) indirectly, as a set-algebraic combination of sets. Base sets have the form
B = {x : T | x.f=c} and include precisely the objects of type T whose field f
has value c, where c is an integer or boolean constant; the analysis converts
mutations of the field f into set-algebraic modifications of the set B. Derived

sets are defined as set algebraic combinations of other sets; the flag analysis
handles derived sets by conjoining the definitions of derived sets (in terms of
base sets) to each verification condition and tracking the contents of the base
sets. Derived sets may use named base sets in their definitions; additionally,
they may use anonymous sets given by set comprehensions. In that case, the
flag analysis assigns internal names to anonymous sets and tracks their values
to compute the values of derived sets.

Operation of the Analysis Algorithm. The flag analysis verifies a module
M by verifying each procedure of M . To verify a procedure, the analysis
performs abstract interpretation [5] with analysis domain elements represented
by formulas. Our analysis associates quantified set algebra formulas B to each
program point. A formula B has two collections of set variables: unprimed set
variables S denoting initial values of sets at the entry point of the procedure,
and primed set variables S ′ denoting the values of these sets at the current

9

program point. B may also contain unprimed and primed boolean variables
b and b′ representing the pre- and post-values of local and global boolean
variables. The definitions in the abstraction sections of the module provide the
interpretations of these variables. The use of primed and unprimed variables
allows our analysis to represent, for each program point p, a binary relation
on states that overapproximates the reachability relation between procedure
entry and p [6, 17, 35].

In addition to the abstract sets from the specification, the analysis also gen-
erates a set for each (object-typed) local variable. This set is either empty,
indicating a null reference, or has cardinality one and contains the object
to which the local variable refers. The formulas that the analysis manipulates
therefore support the disambiguation of local variable and object field accesses
at the granularity of the sets in the analysis; other analyses often rely on a
separate pointer analysis to provide this information.

The initial dataflow fact at the start of a procedure is the precondition for that
procedure, transformed into a relation by conjoining S ′ = S for all relevant
sets. At merge points, the analysis uses disjunction to combine set algebra for-
mulas. The analysis allows the developer to provide loop invariants directly.
If an invariant is not supplied, the analysis infers it using the algorithm in
Section 6. After running the dataflow analysis, our analysis checks that the
procedure conforms to its specification by checking that the derived postcon-
dition (which includes the ensures clause and any required invariants and
defaults [25]) holds at all exit points of the procedure. In particular, the flag
analysis checks that for each exit point e, the computed formula Be implies
the procedure’s postcondition.

Computing Postconditions. The transfer functions in the dataflow analysis
update set algebra formulas to reflect the effect of each statement. Recall that
the dataflow facts for the flag analysis are set algebra formulas B denoting
a relation between the state at procedure entry and the state at the current
program point. Let Bs be the set algebra formula describing the effect of
statement s. The postcondition B ◦Bs is the result of symbolically composing
the relations defined by the formulas B and Bs. Conceptually, postcondition
computation updates B with the effect of Bs. We compute B ◦Bs by applying
equivalence-preserving simplifications to the formula

∃Ŝ1, . . . , Ŝn. B[S′i 7→ Ŝi] ∧ Bs[Si 7→ Ŝi]

Our flag analysis handles each statement in the implementation language by
providing appropriate transfer functions for these statements. The generic
transfer function is a relation of the form JstK(B) = B ◦ F(st), where F(st)
is the formula symbolically representing the transition relation for the state-
ment st expressed in terms of abstract sets. The transition relations for the
statements in our implementation language are in Appendix A.

10

Verifying Implication of Dataflow Facts. A compositional program
analysis needs to verify implication of constraints as part of its operation. Our
flag analysis verifies implication when it encounters an assertion, procedure
call, or procedure postcondition. In these situations, the analysis generates a
formula of the form B ⇒ A where B is the current dataflow fact and A is the
claim to be verified. 5 The implication to be verified, B ⇒ A, is a formula in
the boolean algebra of sets. We use the MONA decision procedure to check
its validity [18], along with the transformations described in Section 5.

5 Boolean Algebra Formula Transformations

In our experience, applying several formula transformations drastically re-
duced the size of the formulas emitted by the flag analysis, as well as the
time needed to determine their validity using an external decision procedure;
in fact, some benchmarks could only be verified with the formula transfor-
mations enabled. This section describes the transformations we found to be
useful. Section 8 presents our measurements of the improvements obtained
from applying these transformations.

Smart Constructors. The constructors for creating boolean algebra for-
mulas apply peephole transformations as they create the formulas. Constant
folding is the simplest peephole transformation: for instance, attempting to
create B ∧ true gives the formula B. Our constructors fold constants in im-
plications, conjunctions, disjunctions, and negations. Similarly, attempting to
quantify over unused variables causes the quantifier to be dropped: ∃x.F is
created as just F when x does not occur free within F . Most interestingly, we
factor common conjuncts out of disjunctions: (A∧B)∨ (A∧C) is represented
as A∧(B∨C). Conjunct factoring greatly reduces the size of formulas tracked
after control-flow merges, since most conjuncts are shared on both control-flow
branches. The effects of this transformations appear similar to the effects of
SSA form conversion in weakest precondition computation [15, 29].

Basic Quantifier Elimination. We symbolically compute the composi-
tion of statement relations while computing postconditions by existentially
quantifying over all state variables. However, most relations corresponding to
statements modify only a small part of the state and contain the frame condi-
tion that indicates that the rest of the state is preserved. The result of relation
composition can therefore often be written in the form ∃x.x = x1∧F (x), which
is equivalent to F (x1). In this way we reduce both the number of conjuncts
and the number of quantifiers. Moreover, this transformation can reduce some
conjuncts to the form t = t for some Boolean algebra term t, which is a true
conjunct that is eliminated by further simplifications.

5 Note that B may be unsatisfiable; this often indicates a problem with the pro-
gram’s specification. The flag analysis can, optionally, check whether B is unsatis-
fiable and emit a warning if it is. This check enabled us to improve the quality of
our specifications by identifying errors in specifications.

11

It is instructive to compare our technique to weakest precondition computation
[15] and forward symbolic execution [4]. These techniques are optimized for
the common case of assignment statements and perform relation composition
and quantifier elimination in one step. Our technique achieves the same result,
but is methodologically simpler and applies more generally. In particular, our
technique can take advantage of equalities in transfer functions that are not a
result of analyzing assignment statements, but are given by explicit formulas
in ensures clauses of procedure specifications. Such transfer functions may
specify more general equalities such as A = A′ ∪ x ∧ B′ = B ∪ x which do
not reduce to simple backward or forward substitution.

Leveraging Quantifier Elimination in Implications We rewrite ∀x.f ⇒
g as ¬(∃x.f ∧ ¬g). This greatly increases the applicability of the quantifier-
elimination optimization described above.

Quantifier Nesting. We have experimentally observed that the MONA
decision procedure works substantially faster when each quantifier is applied
to the smallest scope possible. We have therefore implemented a quantifier
nesting step that reduces the scope of each quantifier to the smallest possible
subformula that contains all free variables in the scope of the quantifier. For
example, our transformation replaces the formula ∀x. ∀y. (f(x) ⇒ g(y)) with
(∃x. f(x)) ⇒ (∀y. g(y)).

To take maximal advantage of our transformations, we simplify formulas after
relation composition and before invoking the decision procedure. Our global
simplification step rebuilds formulas bottom-up and applies simplifications to
each subformula.

6 Loop Invariant Synthesis

In this section, we summarize how our flag analysis plugin handles loops. The
plugin can either verify developer-provided loop invariants or synthesize loop
invariants from the program source code and specifications.

Explicit Loop Invariants. If the developer provides an explicit loop in-
variant, the plugin verifies that the loop invariant: 1) holds on entry to the
loop; and 2) is preserved by the loop body. At the exit of the loop, the loop
invariant conjoined with the loop exit condition characterizes the post-loop
program state.

Our loop invariant verification algorithm uses information from the loop’s con-
text to automatically augment the explicit loop invariant with properties that
are known to be invariant over the loop. In particular, the loop’s containing
procedure has a requires clause, which states the procedure precondition.
This clause involves only the initial values of sets at the begining of the proce-
dure (unprimed set variables), and therefore holds throughout the procedure
execution, including within the loop body. We also use the containing pro-

12

Infer-Loop-Invariant(f0, loop-condition, loop-body, max-iterations)
1 i← 0
2 f ← f0

3 f ′ ← Compute-Postcondition(f ∧ loop-condition, loop-body)
4 while i < max-iterations and f ′ 6⇒ f
5 do f ← Get-Implied-Conjuncts(f, f ′, []) ∧ Get-Implied-Conjuncts(f ′, f, [])
6 f ′ ← Compute-Postcondition(f ∧ loop-condition, loop-body)
7 i← i + 1
8 if i ≥ max-iterations
9 then while f ′ 6⇒ f

10 do f ← Get-Implied-Conjuncts(f, f ′, [])
11 f ′ ← Compute-Postcondition(f ∧ loop-condition, loop-body)
12 return f

Get-Implied-Conjuncts(f1, f2, [x0, . . . , xn])
1 result← True
2 foreach c in Conjuncts(f1)
3 if f2 ⇒ ∃x0, . . . , xn.c
4 then result← c ∧ result
5 else if c has the form ∃x.e
6 then result← Handle-Existential(e, f2, [x0, . . . , xn, x]) ∧ result
7 return result

Handle-Existential(e, f, [x0, . . . , xn])
1 g ← Get-Implied-Conjuncts(e, f, [x0, . . . , xn])
2 if f ⇒ ∃x0, . . . , xn.g
3 then return ∃xn.g
4 g ← True
5 foreach c in Conjuncts(e)
6 if c does not contain xn

7 then g ← c ∧ g
8 return Get-Implied-Conjuncts(g, f, [x0, . . . , xn−1])

Fig. 9. Pseudo-code for Loop Invariant Inference Algorithm.

cedure’s implementation, as well as its modifies clause, to identify all non-
modified sets, and construct a conjunct which states that these non-modified
sets are preserved by the loop 6 . We then conjoin both the original procedure
precondition and clauses guaranteeing the preservation of non-modified sets
to all explicit loop invariants. Developers therefore need not provide these two
pieces of redundant information, which helps to make explicit invariants more
concise and easier to understand.

Inferred Loop Invariants. If the developer does not provide an explicit
loop invariant, the flag analysis automatically synthesizes one. The synthesis
starts with the formula characterizing the transition relation at the entry of
the procedure and weakens the formula by iterating the analysis of the loop
until it reaches a fixpoint. Figure 9 presents pseudocode for the algorithm.
In the remainder of this section we present an example of the algorithm in
action, discuss some properties of the algorithm, and present our experience
with the algorithm applied to our set of benchmarks.

Example. Figure 10 presents procedure clear, which iterates through a set,

6 Using the procedure’s modifies clause alone results in an overly-conservative
estimate of modified private sets in the presence of scopes [25], because scope-
public procedures do not declare modifications of scope-private sets. Our use of the
modifies clause, on the other hand, allows the developer to state more detailed in-
formation about public sets than our modified-set inference algorithm could deduce.

13

specvar Content : Element set;

proc clear() // specification
requires true
modifies Content
ensures card(Content’) = 0;

proc clear() { // implementation
pre: bool e; e = isEmpty();
head: while (!e) {
body: Entry q = removeFirst();

e = isEmpty();
}

post: return;
}

Fig. 10. Procedure containing a loop.

proc isEmpty() returns b : bool
ensures not b’ <=> card(Content)>=1

proc removeFirst() returns e : Element
requires card(Content)>0
modifies Content
ensures (card(e’)=1) & (e’ in Content) &

(Content’ = Content - e’);

Fig. 11. Procedures called within the loop.

removing each element until the set is empty. We use this procedure to illus-
trate our loop inference technique. In procedure clear, each execution of the
loop body removes an element from the Content set. Because the precondition
of procedure removeFirst must hold, the loop body cannot execute success-
fully unless the Content set is non-empty, i.e. card(Content’) >= 1. The
postcondition of the procedure is card(Content’) = 0. A valid loop invariant
must ensure that executing the loop body in a state satisfying the invariant 1)
does not violate the precondition of removeFirst, and 2) leads to a state that
satisfies the loop invariant. A valid loop invariant must also ensure that upon
termination of the loop, the postcondition of clear holds. One possible loop
invariant that satisfies these criteria is Ip : e′ ⇔ card(Content’) = 0. Since e′

is always false at the top of the loop body, Ip expresses the condition that the
set is non-empty, thereby guaranteeing that the loop body can execute cor-
rectly; and since e′ is always true when the loop exits, Ip implies that the set
is empty at the end of the procedure, satisfying the procedure postcondition.

Our analysis plugin analyzes the clear() procedure by starting with the pro-
cedure precondition (in this case, true) and successively computing an approx-
imation of the strongest postcondition over the statements in the procedure.
Eventually, the analysis reaches head, the while() statement containing the
loop, with the intermediate analysis result f . By construction, f holds for all
reachable states at program counter head that the analysis has explored up
to this point. In our example, f is the formula:

f = (∃e3. ¬e3) ∧ q′ = ∅ ∧ (e′ ⇔ ¬card(Content’) ≥ 1) ∧ Content = Content’

The formula f states that: 1) at some intermediate stage, the variable e was
false (in this case, e was initially false); 2) the variable q points to null; 3) e’
is true iff the Content set is nonempty; and 4) the Content set is unchanged
from its value on entry to the procedure.

Our inference algorithm next strengthens f by conjoining the loop condition,
producing a formula f0 which holds at the start of the loop at the label body
after zero loop iterations. For our example, f0 is f ∧ ¬e′:

f0 = (∃e3. ¬e3)∧ q′ = ∅∧ (e′ ⇔ ¬card(Content’) ≥ 1)∧ Content = Content’∧¬e′

Since any loop invariant I must hold for all such states, it must be the case
that f0 ⇒ I. However, f0 is unlikely to be the desired loop invariant, since it

14

does not take into account the effect of the loop body. We therefore compute
the strongest postcondition over the loop body, starting with f0 at the top of
the loop body, to obtain f ′0. The formula f ′0 holds for the set of states that
are reachable at the loop entry after executing exactly one loop iteration. Any
acceptable loop invariant I must satisfy the constraints f0 ⇒ I and f ′0 ⇒ I.
For our example:

f ′0 = (∃e3. ¬e3) ∧ (e′ ⇔ ¬card(Content’) ≥ 1)
∧ (∃e5. ¬e5 ∧ (e5 ⇔ card(Content) = 1))
∧ Content’ = Content \ q′ ∧ card(q′) = 1 ∧ q′ ∈ Content ∧ e′

The formula f ′0 states that the set Content’ is equal to the set Content minus
q′, which points to an object in the heap (since card(q′) = 1). The formula
f ′0 also states that at some previous program state, the variable e was true iff
the set Content had cardinality 1. (Note that e5 was formerly e′ at the top of
the loop; the composition operation renames e′ to the existentially quantified
e5.) Finally, f ′0 states that at some previous program state, the variable e was
false, and that at the present state, e is true iff the Content’ set is empty;
note that these final two conjuncts are common to f0 and f ′0.

Building Potential Invariants. The formula f0 summarizes the program
state after zero iterations of the loop body; f ′0 summarizes the state after
one iteration. Our goal is to produce a logical formula which holds after an
arbitrary number of loop iterations; we can start by producing a formula which
holds after either zero or one loop iterations. We take conjuncts from f0 which
are implied by f ′0, as well as conjuncts from f ′0 which are implied by f0. Any
such conjuncts will then hold after both zero and one iterations of the loop
body. We conjoin these conjuncts to produce the formula f1:

f1 = (∃e3. ¬e3) ∧ (e′ ⇔ ¬card(Content’) ≥ 1)
∧ Content’ = Content \ q′ ∧ q′ ∈ Content

In formula f1, we dropped the intermediate state e5 and the constraint
card(q′) = 1. The intermediate state e5 was dropped because it does not ex-
ist after zero iterations of the loop. The cardinality constraint was dropped
because q′ is the empty set in f0 and known to be nonempty in f1. Dropping
the cardinality constraint allows q′ to contain an arbitrary number of heap
objects; it is no longer required to point to a single location in the heap.

Our technique then checks whether f1 is a loop invariant, using the technique
described above for verifying explicit loop invariants. In our example, f1 is not
a loop invariant: it contains the conjunct Content’ = Content \ q′, where q′

is a free variable; that is, in all iterations of the loop, Content’ is equal to
Content minus q′, for all values of q′ (which is also constrained to be a subset
of Content). While this conjunct holds for the zeroth and first iterations of
the loop, it does not hold for all iterations of the loop. Therefore, we iterate
again, computing f ′1, the strongest postcondition of f1 over the loop body. We
combine conjuncts from f1 which are implied by f ′1 with conjuncts from f ′1
which are implied by f1, yielding the next estimate f2.

15

The formula f2 summarizes the program state after zero, one and two iter-
ations. It contains the clause Content’ = Content \ q8 \ q′. Because q8 is
existentially-quantified (rather than free), and because q8 does not carry any
cardinality constraints, the set q8 can be interpreted to represent the differ-
ence between the initial Content set and the intermediate Content’ set after
any number of loop iterations. The analysis tests f2 and finds that it is a loop
invariant.

f ′1 = ∃e9. (¬e9 ∧ ∃q8. (q8 ∈ Content ∧ q′ ∈ Content \ q8

∧ Content’ = Content \ q8 \ q′)
∧ (¬e9 ⇔ card(Content \ q8) = 1))

∧ (∃e3. ¬e3) ∧ card(q’) = 1 ∧ (e′ ⇔ ¬card(Content’) ≥ 1)

f2 = ∃q8. (q8 ∈ Content ∧ q′ ∈ Content \ q8

∧ Content’ = Content \ q8 \ q′)
∧ (∃e3. ¬e3) ∧ q′ ∈ Content ∧ (e′ ⇔ ¬card(Content’) ≥ 1)

Existential Quantifiers. In our exposition so far, we have ignored the

internal structure of the conjuncts in our formulas, and treated each top-level
conjunct as an atomic unit. However, we found it necessary in practice to
decompose top-level conjuncts, retaining only the parts of the conjunct which
are true. In particular, our algorithm is able to infer stronger invariants by
examining the internal structure of existentially quantified clauses, rather than
dropping the entire clause. For instance, in the formula above, if cj is of the

form ∃e.
∧

c
j
k, then we drop sub-conjuncts c

j
k that are not implied by f ′i .

Note, however, that even if some set of sub-conjuncts K such that c
j
k ∈ K

are individually implied by f ′i , it does not necessarily follow that f ′i ⇒
∧

K:
in the presence of existential quantifiers, two sub-conjuncts may conspire to
contradict the antecedent. If we do construct such a K which fails to imply
f ′i , then we drop those conjuncts of K that mention e and try again.

Comparing our inferred loop invariant f2 with the invariant Ip, we can observe
that f2 has a number of extraneous clauses (e.g. q′ ∈ Content ∧ (∃e3. ¬e3),
and also the clause containing q8) which are not required to verify the loop or
the procedure in general. We have found no simple way to produce automat-
ically produce smaller invariants. One possible heuristic is to eliminate those
conjuncts from an inferred loop invariant which are not required for the anal-
ysis of the loop body to go through. In our experience, this strategy generates
invariants that are sound, but too weak to prove the postconditions of some
procedures, so we do not apply it.

Enforcing Termination. As presented above, our algorithm for generating
and checking trial loop invariants is not guaranteed to terminate; we can
construct contrived examples on which our algorithm does not terminate. In
practice, we are able to infer all loop invariants in our example programs in
at most three iterations.

A small change to the algorithm presented above ensures termination in all
cases where it is possible to construct a loop invariant. We limit the number of

16

iterations that the original algorithm may execute. Once the limit is reached,
the algorithm subsequently drops any non-preserved conjuncts and does not
introduce any new ones; that is,

fi+1 =
∧

j

{cj | f ′i ⇒ cj}.

This phase is guaranteed to terminate because it operates on a finite number
of conjuncts; no new conjuncts are added. If no conjuncts are dropped in a
given iteration, then the algorithm has found a loop invariant and terminates.
Otherwise, the size of the formula strictly decreases at each step.

Our algorithm, as amended, is guaranteed to never loop with an infinite se-
quence of potential invariants that are too strong. On the other hand, we can
construct an example where our algorithm produces an invariant that is not
strong enough for verifying the loop body. If a loop invariant exists, the de-
veloper can provide a hint to the inference algorithm by inserting the pair of
statements assert C; assume C; inside the loop body.

Experience with Loop Invariants. We applied our loop invariant infer-
ence algorithm to our suite of benchmarks, which includes an HTTP server,
a minesweeper implementation, and various small programs (see Section 8).
Our inference algorithm successfully inferred all 15 invariants in our bench-
mark programs. In a previous version of our system [26], we used a simpler
technique for loop invariant inference. The narrow applicability of our previous
technique required us to manually supply loop invariants for most loops in our
example programs. Because the manually written loop invariants were avail-
able to us, we were able to compare the developer-supplied loop invariants with
the automatically inferred loop invariants. In all cases, the developer-supplied
invariants are simpler than the inferred loop invariants, and the developer-
supplied invariants implied the inferred loop invariants. The main sources of
complexity in the inferred loop invariant are 1) the preservation of (an ap-
proximation of the) strongest postcondition throughout the loop, including
set equalities between primed and unprimed sets; and 2) the introduction of
existential quantifiers, as discussed above.

Discussion. We were surprised to discover that our simple loop invari-
ant inference technique was able to infer all of the invariants in our example
programs. Three properties of the Hob system seem to contribute to the feasi-
bility of inferring loop invariants. In general, it seems that loop invariants are
much easier to infer when the specification language is based on sets (contrast
this to the JML specification language, which allows full Java expressions as
specifications). The set specification language contributes to rich but focussed
specifications for invoked procedures, which the loop inference algorithm can
productively use to build its loop invariant, as we can observe in our example:
the emptiness constraint on the Content set is the crucial ingredient in con-
structing the right invariant. Furthermore, the fact that formulas in our flag
analysis are composed of a set of conjuncts (in part due to the manipulations

17

described in Section 5) allows the loop invariant inference algorithm to drop
some of the conjuncts as needed. Our experience reinforces our belief that a
set-based specification language can give a valuable, high-level description of
program behaviour, making program understanding easier for both program-
mers and programs.

7 Other Plugins

In addition to the flag analysis, we implemented a shape analysis plugin and a
theorem proving plugin. These two plugins enable the Hob system to analyze
complex properties of encapsulated data structures. To see the importance of
these two plugins, note that the flag analysis captures the sharing of objects at
the granularity of data structures represented as sets. This greatly simplifies
and improves the scalability of the flag plugin. The reason that the flag analysis
can reason in terms of abstract sets is that the other analyses verify that
complex data structures are correctly represented using sets.

The shape analysis plugin enables precise verification of tree-based data struc-
tures. It uses a previously implemented tool, the Pointer Assertion Logic En-
gine [31] (PALE). We have incorporated PALE into our framework with essen-
tially no changes to the tool itself 7 . The Hob framework effectively enabled the
PALE tool to be applied to programs to which it was previously not applicable
due to both scalability reasons and the limitations of the PALE programming
model.

To verify even more detailed and precise data structure consistency properties,
we implemented a theorem proving plugin [38]. The theorem proving plugin
generates verification conditions suitable for interactive verification using the
Isabelle proof assistant [32]. We successfully used the theorem proving plugin
to verify array-based data structures such as a priority queue implemented as
a binary heap.

8 Experience

We have implemented the Hob system, populated it with several analyses
(including the flag, shape analysis, and theorem prover plugins), and used
the system to develop several benchmark programs and applications. Fig-
ure 12 presents a subset of the benchmarks we ran through our system;
full descriptions of our benchmarks (as well as the full source code for our
modular pluggable analysis system) are available at our project homepage at
http://hob.csail.mit.edu. Minesweeper, water and httpd are complete ap-
plications; the others are either computational patterns (compiler, scheduler,
ctas) or data structures (prodcons). Compiler models a constant-folding com-
piler pass, scheduler models an operating system scheduler, and ctas models

7 We modified PALE to indicate success or failure with an exit code.

18

Number of Lines Lines
modules of spec of impl

prodcons 41 50
compiler 86 143
scheduler 37 22
ctas 53 53
board 126 222
controller 76 155
view 57 358
minesweeper 6 367 889
atom 31 64
ensemble 164 883
h2o 158 423
water 10 582 1979
sendfile 32 162
httpserver 20 79
httprequest 49 128
httpd 10 246 614

Fig. 12. Benchmark characteristics

the core of an air-traffic control system. The board, controller, and view mod-
ules are the core minesweeper modules; atom, ensemble, and h2o are the core
water modules; and sendfile, httpserver and httprequest the core httpd mod-
ules. The bold entries indicate system totals for minesweeper and water; note
that minesweeper includes several other modules, some of which are analyzed
by the shape analysis and theorem proving plugins, not the flag plugin.

We next present the impact of the formula transformation optimizations,
then discuss the properties that we were able to specify and verify in the
minesweeper and water benchmarks.

8.1 Formula Transformations

We analyzed our benchmarks on a 2.80GHz Pentium 4, running Linux, with
3 gigabytes of RAM. Figure 13 summarizes the results of our formula trans-
formation optimizations. A Xin the “Optimizations” column indicates a run
in which all optimizations are enabled; an × indicates a run in which they are
disabled. The “Number of nodes” column reports the sizes (in terms of AST
node counts) of the resulting boolean algebra formulas. Our results indicate
that the formula transformations reduce the formula size by 3.5 to greater
than 80 times (often with greater reductions for larger formulas); the Opti-
mization Ratio column presents the reduction obtained in formula size. The
“MONA time” column presents the time spent in the MONA decision proce-
dure (up to 87 seconds after optimization); the “Flag time” column presents
the time spent in the flag analysis, excluding the decision procedure (up to
46 seconds after optimization). Without optimization, MONA could not suc-
cessfully check the formulas for the compiler, board, view, ensemble and h2o
modules because of an out of memory error.

19

8.2 Minesweeper

We next illustrate how our approach enables the verification of properties
that span multiple modules. Our minesweeper implementation has several
modules: a game board module (which represents the game state), a controller
module (which responds to user input), a view module (which produces the
game’s output), an exposed cell module (which stores the exposed cells in an
array), and an unexposed cell module (which stores the unexposed cells in an
instantiated linked list). There are 787 non-blank lines of implementation code
in the 6 implementation modules and 328 non-blank lines in the specification
and abstraction modules.

Minesweeper uses the standard model-view-controller (MVC) design pattern
[16]. The board module (which stores an array of Cell objects) implements the
model part of the MVC pattern. Each Cell object may be mined, exposed
or marked. The board module represents this state information using the
isMined, isExposed and isMarked fields of Cell objects. At an abstract
level, the sets MarkedCells, MinedCells, ExposedCells, UnexposedCells,

Optimizations Number Optimization MONA Flag
of nodes ratio time time

prodcons X 465 9.64 0.21 0.09
× 4487 — 0.182 0.08

compiler X 5749 > 78.56 0.42 0.30
× > 451628 — N/A > 56.10

scheduler X 296 3.95 0.09 0.06
× 1169 — 0.126 0.06

ctas X 3152 3.58 0.31 0.14
× 11292 — 17.52 0.51

board X 11778 > 80.31 1.41 0.81
× > 945887 — N/A > 138.25

controller X 4528 6.38 0.69 0.19
× 28904 — 3.20 0.80

view X 19311 N/A 5.45 1.48
× N/A — N/A > 438.50

atom X 28317 20.65 5.33 0.74
× 584834 — 1017.09 27.76

ensemble X 668110 N/A 86.99 46.05
× N/A — N/A > 4070.00

h2o X 79249 > 15.87 15.96 25.70
× > 1257883 N/A N/A > 3282.08

sendfile X 2672 44.64 0.87 0.13
× 119287 — 265.01 5.26

httpserver X 1094 62.34 0.36 0.21
× 68198 — 36.68 5.75

httprequest X 9521 6.41 0.67 0.34
× 61041 — 12.589 3.79

Fig. 13. Formula sizes before and after transformation

20

and U (for Universe) represent sets of cells with various properties; the U set
contains all cells known to the board. The board also uses a global boolean
variable gameOver, which it sets to true when the game ends.

Our system verifies that our implementation has the following properties
(among others):

• The sets of exposed and unexposed cells are disjoint; unless the game is
over, the sets of mined and exposed cells are also disjoint.

• The set of unexposed cells maintained in the board module is identical to
the set of unexposed cells maintained in the UnexposedList list.

• The set of exposed cells maintained in the board module is identical to the
set of exposed cells maintained in the ExposedSet array.

• At the end of the game, all cells are revealed; i.e. the set of unexposed cells
is empty.

Although our system focuses on using sets to model program state, not every
module needs to define its own abstract sets. Indeed, certain modules may not
define any abstract sets of their own, but instead coordinate the activity of
other modules to accomplish tasks. The view and controller modules are
examples of such modules. The view module has no state at all; it queries
the board for the current game state and calls the system graphics libraries
to display the state.

Because these modules coordinate the actions of other modules—and do not
encapsulate any data structures of their own—the analysis of these modules
must operate solely at the level of abstract sets. Our analysis is capable of
ensuring the validity of these modules, since it can track abstract set member-
ship, solve formulas in the boolean algebra of sets, and incorporate the effects
of invoked procedures as it analyzes each module. Note that for these modules,
our analysis need not reason about any correspondence between concrete data
structure representations and abstract sets.

The set abstraction supports typestate-style reasoning at the level of individ-
ual objects (for example, all objects in the ExposedCells set can be viewed as
having a conceptual typestate Exposed). Our system also supports the notion
of global typestate. The board module, for example, has a global gameOver
variable which indicates whether or not the game is over. The system uses this
variable and the definitions of relevant sets to maintain the global invariant
gameOver | disjoint(MinedCells, ExposedCells).

This global invariant connects a global typestate property—is the game
over?—with a object-based typestate state property evaluated on objects in
the program—there are no mined cells that are also exposed. Our analysis
plugins verify these global invariants by conjoining them to the preconditions
and postconditions of methods. Note that global invariants must be true in
the initial state of the program. If some initializer must execute to establish

21

an invariant, then the invariant can be guarded by a global typestate variable.

Another invariant concerns the correspondence between the ExposedCells,
UnexposedCells, ExposedSet.Content, and UnexposedList.Content sets:

(ExposedCells = ExposedSet.Content) & (UnexposedCells = UnexposedList.Content)

Our analysis verifies this property by conjoining it to the ensures and
requires clauses of the appropriate procedures. The board module is re-
sponsible for maintaining this invariant. Yet the analysis of the board mod-
ule does not, in isolation, have the ability to completely verify the invari-
ant: it cannot reason about the concrete state of ExposedSet.Content or
UnexposedList.Content (which are defined in other modules). However, the
ensures clauses of its callees, in combination with its own reasoning that
tracks membership in the ExposedCells set, enables our analysis to verify the
invariant (assuming that ExposedSet and UnexposedList work correctly).

Our system found a number of errors during the development and maintenance
of our minesweeper implementation. We next present one of these errors. At
the end of the game, minesweeper exposes the entire game board; we use
removeFirst to remove all elements from the unexposed list, one at a time.
After we have exposed the entire board, we can guarantee that the list of
unexposed cells is empty:

proc drawFieldEnd()
requires ExposedList.setInit & Board.gameOver &

(UnexposedList.Content <= Board.U)
modifies UnexposedList.Content, Board.ExposedCells,

Board.UnexposedCells, ExposedList.Content,
UnexposedList.Content

ensures card(UnexposedList.Content’) = 0;

because the implementation of the drawFieldEnd procedure loops
until isEmpty returns true, which also guarantees that the
UnexposedList.Content set is empty. The natural way to write the
iteration in this procedure would be:

while (UnexposedList.isEmpty()) {
Cell c = UnexposedList.removeFirst();
drawCellEnd(c);

}

and indeed, this was the initial implementation of that code. However, when
we attempted to analyze this code, we got the following error message:

Analyzing proc drawFieldEnd...
Error found analyzing procedure drawFieldEnd:

requires clause in a call to procedure View.drawCellEnd.

Upon further examination, we found that we were breaking the invariant
Board.ExposedCells = UnexposedList.Content. The correct way to preserve
the invariant is by calling Board.setExposed, which simultaneously sets the

22

isExposed flag and removes the cell from the UnexposedList:

Cell c = UnexposedList.getFirst();
Board.setExposed(c, true);
drawCellEnd(c);

8.3 Water

Water is a port of the Perfect Club benchmark MDG [2]. It uses a predic-
tor/corrector method to evaluate forces and potentials in a system of water
molecules in the liquid state. The central loop of the computation performs a
time step simulation. Each step predicts the state of the simulation, uses the
predicted state to compute the forces acting on each molecule, uses the com-
puted forces to correct the prediction and obtain a new simulation state, then
uses the new simulation state to compute the potential and kinetic energy of
the system.

Water consists of several modules, including the simparm, atom, H2O,
ensemble, and main modules. These modules contain 2000 lines of implemen-
tation and 500 lines of specification. Each module defines sets and boolean
variables; we use these sets and variables to express safety properties about
the computation.

The simparm module, for instance, is responsible for recording simulation pa-
rameters, which are stored in a text file and loaded at the start of the compu-
tation. This module defines two boolean variables, Init and ParmsLoaded. If
Init is true, then the module has been initialized, i.e. the appropriate arrays
have been allocated on the heap. If ParmsLoaded is true, then the simulation
parameters have been loaded from disk and written into these arrays. Our
analysis verifies that the program does not load simulation parameters until
the arrays have been allocated and does not read simulation parameters until
they have been loaded from the disk and written into the arrays.

The fundamental unit of the simulation is the atom, which is encapsulated
within the atom module. Atoms cycle between the predicted and corrected

states, with the predic and correc procedures performing the computations
necessary to effect these state changes. A correct computation will only predict
a corrected atom or correct a predicted atom. To enforce this property, we
define two sets Predic and Correc and populate them with the predicted
and corrected atoms, respectively. The correc procedure operates on a single
atom; its precondition requires this atom to be a member of the Predic set. Its
postcondition ensures that, after successful completion, the atom is no longer
in the Predic set, but is instead in the Correc set. The predic procedure has
a corresponding symmetric specification.

Atoms belong to molecules, which are handled by the H2O module. A molecule
tracks the position and velocity of its three atoms. Like atoms, each module
can be in a variety of conceptual states. These states indicate not only whether

23

the program has predicted or corrected the position of the molecule’s atoms
but also whether the program has applied the intra-molecule force corrections,
whether it has scaled the forces acting on the molecule, etc. We verify the
invariant that when the molecule is in the predicted or corrected state, the
atoms in the molecule are also in the same state. The interface of the H2O

module ensures that the program performs the operations on each molecule
in the correct order — for example, the bndry procedure may operate only on
molecules in the Kineti set (which have had their kinetic energy calculated
by the kineti procedure).

The ensemble module manages the collection of molecule objects. This module
stages the entire simulation by iterating over all molecules and computing
their positions and velocities over time. The ensemble module uses boolean
predicates to track the state of the computation. When the boolean predicate
INTERF is true, for example, then the program has completed the interforce
computation for all molecules in the simulation. Our analysis verifies that the
boolean predicates, representing program state, satisfy the following ordering
relationship:

Init ; INITIA ; PREDIC ; INTRAF ; VIR ; INTERF ; · · ·

Our specification relies on an implication from boolean predicates to properties
ranging over the collection of molecule objects, which can be ensured by a
separate array analysis plugin [24].

These properties help ensure that the computation’s phases execute in the cor-
rect order; they are especially valuable in the maintenance phase of a program’s
life, when the original designer, if available, may have long since forgotten the
program’s phase ordering constraints. Our analysis’ set cardinality constraints
also prevent empty sets (and null pointers) from being passed to procedures
that expect non-empty sets or non-null pointers.

9 Related Work

In this section we discuss related work in the general area of program checking
tools and other typestate systems in particular. We start by comparing the
Hob framework to the approach taken by the ESC/Java and Boogie program
checking tools; next, we discuss general properties of typestate systems and
compare Hob’s sets to typestate systems.

Program checking tools. ESC/Java [14] is a program checking tool whose
purpose is to identify common errors in programs using program specifications
in a subset of the Java Modelling Language (JML) [3]. ESC/Java sacrifices
soundness in that it does not model all details of the program heap, but can
detect some common programming errors. The Spec# programming system [1]
adds similar features to C#, including the ability to specify method contracts,

24

frame conditions and class contracts. These contracts may be verified at run-
time or by the Boogie static verifier, which uses a theorem prover to discharge
its verification conditions.

We discuss two key differences between our approach and the proposed Boogie
approach. First, Boogie envisions the use of a single general-purpose theorem
prover to discharge the generated verification conditions. Hob, on the other
hand, is designed to support a diverse range of potentially narrow, specialized
analyses (this range includes shape analyses, typestate analyses [26] and even
interactive theorem provers [38] as well as less detailed analyses). This goal
is reflected in Hob’s format construct and in its abstract set specification
language, both of which are designed to support a strong separation between
different analyses (such a separation is necessary, of course, if multiple analyses
are to cooperate to successfully analyze a single program). This approach
minimizes the amount of expertise required to work within the Hob system
and maximizes the ability of developers with specialized skills to contribute.
We believe that enabling as many developers to contribute as possible will
lead to a richer, more powerful analysis system.

Second, Boogie is designed to verify object invariants, with an object own-
ership mechanism supporting the hierarchical specification and verification of
invariants that involve hierarchies of linked objects. This mechanism eliminates
a form of specification aggregation for computations that traverse a hierarchy
of owned objects—if the procedure call hierarchy matches the ownership hier-
archy, each procedure need only state consistency requirements for the object
that it directly accesses, not all of the child objects that that object owns. This
hierarchical specification approach is reminiscent of hierarchical access speci-
fications in Jade [33] and hierarchical locking mechanisms in databases [36].

Hob, on the other hand, is designed to support computations organized around
a flat set of data structures. The constructs that eliminate specification aggre-
gation cut across the procedure call hierarchy rather than working within it.
This adoption of cross-cutting organizational approaches reflects the matura-
tion of computer science as a discipline—over time, the overwhelming domi-
nance of hierarchical approaches will fade as the effectiveness of using other
approaches in addition to hierarchies becomes obvious.

Typestate systems. Typestate systems track the conceptual states that
each object goes through during its lifetime in the computation [7, 9–12, 37].
They generalize standard type systems in that the typestate of an object
may change during the computation. Aliasing (or more generally, any kind of
sharing) is the key problem for typestate systems—if the program uses one
reference to change the typestate of an object, the typestate system must
ensure that either the declared typestate of the other references is updated to
reflect the new typestate or that the new typestate is compatible with the old
declared typestate at the other references.

25

Most typestate systems avoid this problem altogether by eliminating the pos-
sibility of aliasing [37]. Generalizations support monotonic typestate changes
(which ensure that the new typestate remains compatible with all existing
aliases) [12] and enable the program to temporarily prevent the program
from using a set of potential aliases, change the typestate of an object with
aliases only in that set, then restore the typestate and reenable the use of
the aliases [10]. It is also possible to support object-oriented constructs such
as inheritance [8]. Finally, in the role system, the declared typestate of each
object characterizes all of the references to the object, which enables the type-
state system to check that the new typestate is compatible with all remaining
aliases after a nonmonotonic typestate change [21].

In our approach, the typestate of each object is determined by its member-
ship in abstract sets as determined by the values of its encapsulated fields
and its participation in encapsulated data structures. Our system supports
generalizations of the standard typestate approach such as orthogonal types-
tate composition and hierarchical typestate classification. The connection with
data structure participation enables the verification of both local and global
data structure consistency properties.

10 Conclusion

Typestate systems have traditionally been designed to enforce safety condi-
tions that involve objects whose state may change during the course of the
computation. In particular, the standard goal of typestate systems is to en-
sure that operations are invoked only on objects that are in appropriate states.
Most existing typestate systems support a flat set of object states and limit
typestate changes in the presence of sharing caused by aliasing. We have pre-
sented a reformulation of typestate systems in which the typestate of each
object is determined by its membership in abstract typestate sets. This refor-
mulation supports important generalizations of the typestate concept such as
typestates that capture membership in data structures, composite typestates
in which objects are members of multiple typestate sets, hierarchical types-
tates, and cardinality constraints on the number of objects that are in a given
typestate. In the context of our Hob modular pluggable analysis framework,
our system also enables the specification and effective verification of detailed
local and global data structure consistency properties, including arbitrary in-
ternal consistency properties of linked and array-based data structures. Our
system therefore effectively supports tasks such as understanding the global
sharing patterns in large programs, verifying the absence of undesirable inter-
actions, and ensuring the preservation of critical properties necessary for the
correct operation of the program.

26

References

[1] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview. In CASSIS:
Int. Workshop on Construction and Analysis of Safe, Secure and Interoperable Smart devices, 2004.

[2] W. Blume and R. Eigenmann. Performance analysis of parallelizing compilers on the Perfect
Benchmarks programs. IEEE Transactions on Parallel and Distributed Systems, 3(6):643–656, Nov.
1992.

[3] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, and E. Poll. An
overview of JML tools and applications. Technical Report NII-R0309, Computing Science Institute,
Univ. of Nijmegen, March 2003.

[4] L. Clarke and D. Richardson. Symbolic evaluation methods for program analysis. In Program Flow
Analysis: Theory and Applications, chapter 9. Prentice-Hall, Inc., 1981.

[5] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proc. 6th POPL,
pages 269–282, San Antonio, Texas, 1979. ACM Press, New York, NY.

[6] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program.
In Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 84–97, Tucson, Arizona, 1978. ACM Press, New York, NY.

[7] R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level software. In Proc. ACM PLDI,
2001.

[8] R. DeLine and M. Fähndrich. Typestates for objects. In Proc. 18th ECOOP, June 2004.

[9] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. Fickle: Dynamic object re-
classification. In Proc. 15th ECOOP, LNCS 2072, pages 130–149. Springer, 2001.

[10] M. Fahndrich and R. DeLine. Adoption and focus: Practical linear types for imperative programming.
In Proc. ACM PLDI, 2002.

[11] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types in an object-oriented
language. In Proceedings of the 18th ACM SIGPLAN conference on Object-oriented programing,
systems, languages, and applications, pages 302–312. ACM Press, 2003.

[12] M. Fähndrich and K. R. M. Leino. Heap monotonic typestates. In International Workshop on Aliasing,
Confinement and Ownership in object-oriented programming (IWACO), 2003.

[13] J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate verification: Abstraction techniques and
complexity results. In Static Analysis, 10th International Symposium, SAS 2003, San Diego, CA,
USA, June 11-13, 2003, Proceedings, volume 2694 of Lecture Notes in Computer Science. Springer,
2003.

[14] C. Flanagan, K. R. M. Leino, M. Lilibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended Static
Checking for Java. In ACM Conf. Programming Language Design and Implementation (PLDI), 2002.

[15] C. Flanagan and J. B. Saxe. Avoiding exponential explosion: Generating compact verification
conditions. In Proc. 28th ACM POPL, 2001.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlisside. Design Patterns. Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, Mass., 1994.

[17] B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to interprocedural shape analysis.
In 11th SAS, 2004.

[18] N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS Notes Series NS-01-1, Department
of Computer Science, University of Aarhus, January 2001.

[19] N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA implementation secrets. In Proc. 5th
International Conference on Implementation and Application of Automata. LNCS, 2000.

[20] D. Kozen. Complexity of boolean algebras. Theoretical Computer Science, 10:221–247, 1980.

[21] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In Annual ACM Symp. on Principles of
Programming Languages (POPL), 2002.

[22] V. Kuncak, H. H. Nguyen, and M. Rinard. An algorithm for deciding BAPA: Boolean Algebra with
Presburger Arithmetic. In 20th International Conference on Automated Deduction, CADE-20, Tallinn,
Estonia, July 2005.

[23] V. Kuncak and M. Rinard. The first-order theory of sets with cardinality constraints is decidable.
Technical Report 958, MIT CSAIL, July 2004.

[24] P. Lam, V. Kuncak, and M. Rinard. On our experience with modular pluggable analyses. Technical
Report 965, MIT CSAIL, September 2004.

[25] P. Lam, V. Kuncak, and M. Rinard. Cross-cutting techniques in program specification and analysis.
In 4th International Conference on Aspect-Oriented Software Development (AOSD’05), 2005.

[26] P. Lam, V. Kuncak, and M. Rinard. Generalized typestate checking for data structure consistency. In
6th International Conference on Verification, Model Checking and Abstract Interpretation, 2005.

27

[27] P. Lam, V. Kuncak, and M. Rinard. Hob: A tool for verifying data structure consistency. In 14th
International Conference on Compiler Construction (tool demo), April 2005.

[28] P. Lam, V. Kuncak, K. Zee, and M. Rinard. The Hob project web page. http://hob.csail.mit.edu, 2004.

[29] K. R. M. Leino. Efficient weakest preconditions. KRML114a, 2003.

[30] L. Loewenheim. Über Mögligkeiten im Relativkalkül. Math. Annalen, 76:228–251, 1915.

[31] A. Møller and M. I. Schwartzbach. The Pointer Assertion Logic Engine. In Programming Language
Design and Implementation, 2001.

[32] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order Logic,
volume 2283 of LNCS. Springer-Verlag, 2002.

[33] M. C. Rinard. The Design, Implementation and Evaluation of Jade, a Portable, Implicitly Parallel
Programming Language. PhD thesis, Stanford University, 1994.

[34] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. ACM TOPLAS,
24(3):217–298, 2002.

[35] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis problems. In Program
Flow Analysis: Theory and Applications. Prentice-Hall, Inc., 1981.

[36] A. Silberschatz and Z. Kedem. Consistency in hierarchical database systems. Journal of the ACM,
27(1):72–80, January 1980.

[37] R. E. Strom and S. Yemini. Typestate: A programming language concept for enhancing software
reliability. IEEE TSE, January 1986.

[38] K. Zee, P. Lam, V. Kuncak, and M. Rinard. Combining theorem proving with static analysis for data
structure consistency. In International Workshop on Software Verification and Validation (SVV 2004),
Seattle, November 2004.

A Transfer Functions

This section presents the transfer functions for the flag analysis.

Assignment statements. We first define a generic frame condition genera-
tor, used in our transfer functions,

framex =
∧

S 6=x, S not derived

S′ = S ∧
∧

p 6=x

(p′ ⇔ p),

where S ranges over sets and p over boolean predicates. Note that derived
sets are not preserved by frame conditions; instead, the analysis preserves the
anonymous sets contained in the derived set definitions and conjoins these
definitions to formulas before applying the decision procedure.

Our flag analysis also tracks values of boolean variables:

F(b = true) = b′ ∧ frameb

F(b = false) = (¬b′) ∧ frameb

F(b = y) = (b′ ⇔ y) ∧ frameb

F(b = 〈if cond〉) = (b′ ⇔ f+(〈if cond〉)) ∧ frameb

F(b =!e) = F(b = e) ◦ ((b′ ⇔ ¬b) ∧ frameb)

where f+(e) is the result of evaluating e, defined below in our analysis of
conditionals.

The analysis also track local variable object references:

F(x = y) = (x′ = y) ∧ framex F(x = null) = (x′ = ∅) ∧ framex

F(x = new t) = ¬(x′ = ∅) ∧
∧

S(x′ ∩ S = ∅) ∧ framex

28

We next present the transfer function for changing set membership. If R =
{x : T | x.f = c} is a set definition in the abstraction section, we have:

F(x.f = c) = R′ = R ∪ x ∧
∧

S∈alts(R) S′ = S \ x ∧ frame{R}∪ alts(R)

where alts(R) = {S | abstraction module contains S = {x : T | x.f = c1}, c1 6= c.}

The rules for reads and writes of boolean fields are similar but, because our
analysis tracks the flow of boolean values, more detailed:

F(x.f = b) =

(

b ∧ B+′ = B+ ∪ x

∧
∧

S∈alts(B+) S′ = S \ x

)

∧

(

¬b ∧ B−
′
= B− ∪ x

∧
∧

S∈alts(B−) S′ = S \ x

)

∧frame{B}∪alts(B)

F(b = y.f) = (b′ ⇔ y ∈ B+) ∧ frameb.

where B+ = {x : T | x.f = true} and B− = {x : T | x.f = false}.

Finally, we have some default rules to conservatively account for expressions
not otherwise handled,

F(x.f = ∗) = framex F(x = ∗) = framex.

Procedure calls. For a procedure call x=proc(y), our transfer function

checks that the callee’s requires condition holds, then incorporates proc’s en-
sures condition as follows:

F(x = proc(y)) = ensures1(proc) ∧
∧

S

S′ = S

where both ensures1 and requires1 substitute caller actuals for formals of proc
(including the return value), and where S ranges over all local variables.

Conditionals. The analysis produces a different formula for each branch
of an if statement if (e). We define functions f+(e), f−(e) to summarize
the additional information available on each branch of the conditional; the
transfer functions for the true and false branches of the conditional are thus,
respectively,

Jif (e)K+(B) = f+(e) ∧ B Jif (e)K−(B) = f−(e) ∧ B.

For constants and logical operations, we define the obvious f+, f−:

f+(true) = true f−(true) = false

f+(false) = false f−(false) = true

f+(!e) = f−(e) f−(!e) = f+(e)
f+(x!=e) = f−(x==e) f−(x!=e) = f+(x==e)

f+(e1 && e2) = f+(e1) ∧ f+(e2) f−(e1 && e2) = f−(e1) ∨ f−(e2)

We define f+, f− for boolean fields as follows:

f+(x.f) = x ⊆ B f−(x.f) = x 6⊆ B

f+(x.f==false) = x 6⊆ B f−(x.f==false) = x ⊆ B

29

where B = {x : T | x.f = true}; analogously, let R = {x : T | x.f = c}. Then,

f+(x.f==c) = x ⊆ R f−(x.f==c) = x 6⊆ R.

We also predicate the analysis on whether a reference is null or not:

f+(x==null) = x = ∅ f−(x==null) = x 6= ∅.

Finally, we have a catch-all condition,

f+(∗) = true f−(∗) = true

which conservatively captures the effect of unknown conditions.

Assertions and Assume Statements. We analyze statement s of the form
assert A by showing that the formula for the program point s implies A.
Assertions allow developers to check that a given set-based property holds at
an intermediate point of a procedure. Using assume statements, we allow the
developer to specify properties that are known to be true, but which have not
been shown to hold by this analysis. Our analysis prints out a warning mes-
sage when it processes assume statements, and conjoins the assumption to the
current dataflow fact. Assume statements have proven to be valuable in under-
standing analysis outcomes during the debugging of procedure specifications
and implementations. Assume statements may also be used to communicate
properties of the implementation that go beyond the abstract representation
used by the analysis.

Return Statements. Our analysis processes the statement return x as an
assignment rv = x, where rv is the name given to the return value in the
procedure declaration. For all return statements (whether or not a value is
returned), our analysis checks that the current formula implies the procedure’s
postcondition and stops propagating that formula through the procedure.

30

