
First-Order Theorem Proving and VAMPIRE�

Laura Kovács1 and Andrei Voronkov2

1 Chalmers University of Technology
2 The University of Manchester

Abstract. In this paper we give a short introduction in first-order theorem prov-
ing and the use of the theorem prover VAMPIRE. We discuss the superposition
calculus and explain the key concepts of saturation and redundancy elimination,
present saturation algorithms and preprocessing, and demonstrate how these con-
cepts are implemented in VAMPIRE. Further, we also cover more recent topics
and features of VAMPIRE designed for advanced applications, including satisfi-
ability checking, theory reasoning, interpolation, consequence elimination, and
program analysis.

1 Introduction

VAMPIRE is an automatic theorem prover for first-order logic. It was used in a number
of academic and industrial projects. This paper describes the current version (2.6, re-
vision 1692) of VAMPIRE. The first version of VAMPIRE was implemented in 1993, it
was then rewritten several times. The implementation of the current version started in
2009. It is written in C++ and comprises about 152,000 SLOC. It was mainly imple-
mented by Andrei Voronkov and Krystof Hoder. Many of the more recent developments
and ideas were contributed by Laura Kovács. Finally, recent work on SAT solving and
bound propagation is due to Ioan Dragan.

We start with an overview of some distinctive features of VAMPIRE.

– VAMPIRE is very fast. For example, it has been the winner of the world cup in first-
order theorem proving CASC [32,34] twenty seven times, see Table 1, including
two titles in the last competition held in 2012.

– VAMPIRE runs on all common platforms (Linux, Windows and MacOS) and can be
downloaded from http://vprover.org/.

– VAMPIRE can be used in a very simple way by inexperienced users.
– VAMPIRE implements a unique limited resource strategy that allows one to find

proofs quickly when the time is limited. It is especially efficient for short time
limits which makes it indispensable for use as an assistant to interactive provers or
verification systems.

– VAMPIRE implements symbol elimination, which allows one to automatically dis-
cover first-order program properties, including quantified ones. VAMPIRE is thus
the first theorem prover that can be used not only for proving, but also for generat-
ing program properties automatically.

� This research is partially supported by the FWF projects S11410-N23 and T425-N23, and the
WWTF PROSEED grant ICT C-050. This work was partially done while the first author was
affiliated with the TU Vienna.

N. Sharygina and H. Veith (Eds.): CAV 2013, LNCS 8044, pp. 1–35, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://vprover.org/

2 L. Kovács and A. Voronkov

Table 1. VAMPIRE’s trophies

CASC year FOF CNF LTB
CASC-16, Trento 1999 ✔

CASC-17, Pittsburgh 2000 ✔

CASC-JC, Sienna 2001 ✔

CASC-18, Copenhagen 2002 ✔ ✔

CASC-19, Miami 2003 ✔ ✔

CASC-J2, Cork 2004 ✔ ✔

CASC-20, Tallinn 2005 ✔ ✔

CASC-J3, Seattle 2006 ✔ ✔

CASC-21, Bremen 2007 ✔ ✔

CASC-J4, Sydney 2008 ✔ ✔

CASC-22, Montreal 2009 ✔ ✔ ✔

CASC-J5, Edinburgh 2010 ✔ ✔ ✔

CASC-23, Wroclaw 2011 ✔ ✔

CASC-J6, Manchester 2012 ✔ ✔

total 12 11 4

Notes:

– In CASC-16 VAMPIRE came second
after E-SETHEO, but E-SETHEO was
retrospectively disqualified after the
competition when one of its compo-
nents E was found unsound.

– In 2000–2001 VAMPIRE used FLOT-
TER [35] implemented at MPI In-
formatik to transform formulas into
clausal form; since 2002 clausal form
transformation was handled by VAM-
PIRE itself.

– In 2010–2012 the clausifier of VAM-
PIRE was used by iProver, that won the
EPR division of CASC.

– VAMPIRE can produce local proofs [13,19] in first-order logic with or without the-
ories and extract interpolants [5] from them. Moreover, VAMPIRE can minimise
interpolants using various measures, such as the total number of symbols or quan-
tifiers [11].

– VAMPIRE has a special mode for working with very large knowledge bases and can
answer queries to them.

– VAMPIRE can prove theorems in combinations of first-order logic and theories,
such as integer arithmetic. It implements several theory functions on integers, real
numbers, arrays, and strings. This makes VAMPIRE useful for reasoning with theo-
ries and quantifiers.

– VAMPIRE is fully compliant with the first-order part of the TPTP syntax [31,33]
used by nearly all first-order theorem provers. It understands sorts and arithmetic.
It was the first ever first-order theorem prover to implement the TPTP if-then-else
and let-in formula and term constructors useful for program analysis.

– VAMPIRE supports several other input syntaxes, including the SMTLib syntax [2].
To perform program analysis, it also can read programs written in C.

– VAMPIRE can analyse C programs with loops and generate loop invariants using
symbol elimination [18].

– VAMPIRE can produce detailed proofs. Moreover, it was the first ever theorem
prover that produced proofs for first-order (as opposed to clausal form) derivations.

– VAMPIRE implements many options to help a user to control proof-search.
– VAMPIRE has a special consequence elimination mode that can be used to quickly

remove from a set of formulas some formulas implied by other formulas in this set.
– VAMPIRE can run several proof attempts in parallel on a multi-core processor.
– VAMPIRE has a liberal licence, see [20].

First-Order Theorem Proving and VAMPIRE 3

Overview of the Paper

The rest of this paper is organised as follows. Sections 2-5 describe the underlining
principles of first-order theorem proving and address various issues that are only im-
plemented in VAMPIRE. Sections 6-11 present new and unconventional applications of
first-order theorem proving implemented in VAMPIRE. Many features described below
are implemented only in VAMPIRE.

– Section 2 (Mini-Tutorial) contains a brief tutorial explaining how to use VAMPIRE.
This simple tutorial illustrates the most common use of VAMPIRE on an example,
and is enough for inexperienced users to get started with it.

– To understand how VAMPIRE and other superposition theorem provers search for
a proof, in Section 3 (Proof-Search by Saturation) we introduce the superposition
inference system and the concept of saturation.

– To implement a superposition inference system one needs a saturation algorithm ex-
ploiting a powerful concept of redundancy. In Section 4 (Redundancy Elimination)
we introduce this concept and explain how it is used in saturation algorithms. We
also describe the three saturation algorithms used of VAMPIRE.

– The superposition inference system is operating on sets of clauses, that is formulas
of a special form. If the input problem is given by arbitrary first-order formulas,
the preprocessing steps of VAMPIRE are first applied as described in Section 5
(Preprocessing). Preprocessing is also applied to sets of clauses.

– VAMPIRE can be used in program analysis, in particular for loop invariant generation
and interpolation. The common theme of these applications is the symbol elimina-
tion method. Section 6 (Coloured Proofs, Interpolation, and Symbol Elimination)
explains symbol elimination and its use in VAMPIRE.

– In addition to standard first-order reasoning, VAMPIRE understands sorts, including
built-in sorts integers, rationals, reals and arrays. The use of sorts and reasoning
with theories in VAMPIRE is described in Section 7 (Sorts and Theories).

– In addition to checking unsatisfiability, VAMPIRE can also check satisfiability of a
first-order formula using three different methods. These methods are overviewed in
Section 8 (Satisfiability Checking Finding Finite Models).

– The proof-search, input, and output in VAMPIRE can be controlled by a number
of options and modes. One of the most efficient theorem proving modes of VAM-
PIRE, called the CASC mode, uses the strategies used in last CASC competitions.
VAMPIRE’s options and the CASC mode are presented in Section 9
(VAMPIRE Options and the CASC Mode).

– VAMPIRE implements extensions of the TPTP syntax, including the TPTP if-then-
else and let-in formula and term constructors useful for program analysis. The use
of these constructs is presented in Section 10 (Advanced TPTP Syntax).

– Proving theorems is not the only way to use VAMPIRE. One can also use it for
consequence finding, program analysis, linear arithmetic reasoning, clausification,
grounding and some other purposes. These advanced features are described in Sec-
tion 11 (Cookies).

4 L. Kovács and A. Voronkov

%---- 1 * x = 1
fof(left identity,axiom,

! [X] : mult(e,X) = X).
%---- i(x) * x = 1
fof(left inverse,axiom,

! [X] : mult(inverse(X),X) = e).
%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,

! [X,Y,Z] : mult(mult(X,Y),Z) = mult(X,mult(Y,Z))).
%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X] : mult(X,Y) = mult(Y,X)).

Fig. 1. A TPTP representation of a simple group theory problem

2 Mini-Tutorial

In this section we describe a simple way of using VAMPIRE for proving formulas. Using
VAMPIRE is very easy. All one needs is to write the formula as a problem in the TPTP
syntax [31,33] and run VAMPIRE on this problem. VAMPIRE is completely automatic.
That is, once you started a proof attempt, it can only be interrupted by terminating
VAMPIRE.

2.1 A Simple Example

Consider the following example from a group theory textbook: if all elements in a group
have order 2, then the group is commutative. We can write down this problem in first-
order logic using the language and the axioms of group theory, as follows:

∀x(1 · x = x)
Axioms (of group theory): ∀x(x−1 · x = 1)

∀x∀y∀z((x · y) · z = x · (y · z))
Assumptions: ∀x(x · x = 1)
Conjecture: ∀x∀y(x · y = y · x)

The problem stated above contains three axioms, one assumption, and a conjecture.
The axioms above can be used in any group theory problem. However, the assumption
and conjecture are specific to the example we study; they respectively express the order
property (assumption) and the commutative property (conjecture).

The next step is to write this first-order problem in the TPTP syntax. TPTP is a
Prolog-like syntax understood by all modern first-order theorem provers. A represen-
tation of our example in the TPTP syntax is shown in Figure 1. We should save this
problem to a file, for example, group.tptp, and run VAMPIRE using the command::

First-Order Theorem Proving and VAMPIRE 5

first-order logic TPTP
⊥, � $false, $true
¬F ˜F

F1 ∧ . . . ∧ Fn F1 & ... & Fn
F1 ∨ . . . ∨ Fn F1 | ... | Fn

F1 → Fn F1 => Fn
F1 ↔ Fn F1 <=> Fn

(∀x1) . . . (∀xn)F ![X1,...,Xn]:F
(∃x1) . . . (∃xn)F ?[X1,...,Xn]:F

Fig. 2. Correspondence between the first-order logic and TPTP notations

vampire group.tptp

Let us consider the TPTP representation of Figure 1 in some detail. The TPTP syntax
has comments. Any text beginning with the % symbol is considered a comment. For
example, the line %---- 1 * x = 1 is a comment. Comments are intended only as
an additional information for human users and will be ignored by VAMPIRE.

The axiom ∀x(1·x = x) appears in the input as fof(left identity, axiom,
! [X] : mult(e,X) = X). The keyword fof means “first-order formula”. One
can use the keyword tff (“typed first-order formula”) instead, see Section 7. VAMPIRE

considersfof and tff as synonyms1. The word left identity is chosen to denote
the name of this axiom. The user can choose any other name. Names of input formulas
are ignored by VAMPIRE when it searches for a proof but they can be used in the proof
output.

The variable x is written as capital X. TPTP uses the Prolog convention for vari-
ables: variable names start with upper-case letters. This means that, for example, in the
formula mult(e,x) = x, the symbol x will be a considered a constant.

The universal quantifier ∀x is written as ! [X]. Note that the use of ![x] :
mult(e,x) = x) will result in a syntax error, since x is not a valid variable name.
Unlike the Prolog syntax, the TPTP syntax does not allow one to use operators. Thus,
one cannot write a more elegant e * X instead of mult(e,X). The only exception is
the equality (=) and the inequality symbols (!=), which must be written as operators,
for example, in mult(e,X) = X. The correspondence between the first-order logic
and TPTP notation is summarised in Figure 2.

2.2 Proof by Refutation

VAMPIRE tries to prove the conjecture of Figure 1 by adding the negation of the conjec-
ture to the axioms and the assumptions and checking if the the resulting set of formulas
is unsatisfiable. If it is, then the conjecture is a logical consequence of the axioms and
the assumptions. A proof of unsatisfiability of a negation of formula is sometimes called

1 Until recently, fof(...) syntax in TPTP was a special case of tff(...). It seems that
now there is a difference between the two syntaxes in the treatment of integers, which we hope
will be removed in the next versions of the TPTP language.

6 L. Kovács and A. Voronkov

Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2,mult(X1,X2)) = X1 [forward demodulation 71,27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 18,9]
22. mult(X0,mult(X0,X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 11,12]
18. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 11,10]
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. ˜sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0,X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]

Fig. 3. VAMPIRE’s Refutation

a refutation of this formula, so such proofs are commonly referred to as proofs by
refutation.

Figure 3 shows a (slightly modified) refutation found by VAMPIRE for our simple
group theory example. Let us analyse this refutation, since it contains many concepts
discussed further in this paper.

Proof outputs by VAMPIRE are dags, whose nodes are labelled by formulas. Every
formula is assigned a unique number, in our example they are numbered 1 to 203.
Numbers are assigned to formulas during the proof search, in the order in which they
are generated. The proof consists of inferences. Each inference infers a formula, called
the conclusion of this inference, from a set of formulas, called the premises of the
inference. For example, formula 87 is inferred from formulas 71 and 27. We can also
say that formulas 71 and 27 are parents of formula 87. Some formulas (including
formulas read from the input file) have no parents. In this example these are formulas
1–5. VAMPIRE sometimes packs long chains of proof steps into a single inference,
resulting in clauses with many parents, sometimes over a hundred. The dag proof of
Figure 3 is rooted at formula 203: $false. To see that the proof is not a tree consider,
for example, formula 11: it is used to infer three different formulas (16, 18 and 20).

Each formula (or inference) in the proof is obtained using one or more inference
rules. They are shown in brackets, together with parent numbers. Some examples of
inference rules in this proof are superposition, inequality splitting and
skolemisation. All together, VAMPIRE implements 79 inference rules.

There are several kinds of inference rules. Some inferences, marked as input, in-
troduce input formulas. There are many inference rules related to preprocessing input

First-Order Theorem Proving and VAMPIRE 7

formulas, for example ennf transformation and cnf transformation. Pre-
processing is discussion in Section 5. The input formulas are finally converted to clauses,
after which VAMPIRE tries to check unsatisfiability of the resulting set of clauses using
the resolution and superposition inference system discussed in Section 3. The superpo-
sition calculus rules can generally be divided in two parts: generating and simplifying
ones. This distinction will be made more clear when we later discuss saturation and
redundancy elimination in Section 4. Though the most complex part of proof search
is the use of the resolution and superposition inference system, preprocessing is also
very important, especially when the input contains deep formulas or a large number of
formulas.

Formulas and clauses having free variables are considered implicitly universally
quantified. Normally, the conclusion of an inference is a logical consequence of its
premises, though in general this is not the case. Notable exception are inference rules
that introduce new symbols: in our example these are skolemisation andinequa-
lity splitting. Though not preserving logical consequence, inference rules used
by VAMPIRE guarantee soundness, which means that an inference cannot change a sat-
isfiable set of formulas into an unsatisfiable one.

One can see that the proof of Figure 3 is a refutation: the top line explicitly mentions
that a refutation is found, the proof derives the false formula $false in inference 203
and inference 6 negates the input conjecture.

Finally, the proof output of VAMPIRE contains only a subset of all generated for-
mulas. The refutation of Figure 3 contains 26 formulas, while 203 formulas were gen-
erated. It is not unusual that very short proofs require many generated formulas and
require a lot of time to find.

Besides the refutation, the output produced by VAMPIRE contains statistics about
the proof attempt. These statistics include the overall running time, used memory, and
the termination reason (for example, refutation found). In addition, it contains
information about the number of various kinds of clause and inferences. These statistics
are printed even when no refutation is found. An example is shown in Figure 4.

If one is only interested in provability but not in proofs, one can disable the refutation
output by using the option -- proof off, though normally this does not result in
considerable improvements in either time or memory.

In some cases, VAMPIRE might report Satisfiability detected. Remem-
ber that VAMPIRE tries to find a refutation: given a conjecture F , he tries to establish
(un)satisfiability of its negation ¬F . Hence, when a conjectureF is given, “Satisfiabil-
ity” refers not to the satisfiability of F but to the satisfiability of ¬F .

2.3 Using Time and Memory Limit Options

For very hard problems it is possible that VAMPIRE will run for a very long time with-
out finding a refutation or detecting satisfiability. As a rule of thumb, one should al-
ways run Vampire with a time limit. To this end, one should use the parameter -t or
--time limit, specifying how much time (in seconds) it is allowed to spend for
proof search. For example, vampire -t 5 group.tptp calls VAMPIRE on the
input file group.tptp with the time limit of 5 seconds. If a refutation cannot be

8 L. Kovács and A. Voronkov

Version: Vampire 2.6 (revision 1692)
Termination reason: Refutation

Active clauses: 14
Passive clauses: 35
Generated clauses: 194
Final active clauses: 8
Final passive clauses: 11
Input formulas: 5
Initial clauses: 6

Split inequalities: 1

Fw subsumption resolutions: 1
Fw demodulations: 68
Bw demodulations: 14

Forward subsumptions: 65
Backward subsumptions: 1
Fw demodulations to eq. taut.: 20
Bw demodulations to eq. taut.: 1

Forward superposition: 60
Backward superposition: 39
Self superposition: 6

Unique components: 6

Memory used [KB]: 255
Time elapsed: 0.007 s

Fig. 4. Statistics output by VAMPIRE

found within the given time limit, VAMPIRE specifies time limit expired as the
termination reason.

VAMPIRE tries to adjust the proof search pace to the time limit which might lead to
strange (but generally pleasant) effects. To illustrate it, suppose that VAMPIRE without
a time limit finds a refutation of a problem in 10 seconds. This does not mean that with
a time limit of 9 seconds VAMPIRE will be unable to find a refutation. In fact, in most
case it will be able to find it. We have examples when it can find proofs when the time
limit is set to less than 5% of the time it needs to find a proof without the time limit. A
detailed explanation of the magic used can be found in [27].

One can also specify the memory limit (in Megabytes) of VAMPIRE by using the
parameter -m or --memory limit. If VAMPIRE does not have enough memory, it
will not give up immediately. Instead, it will try to discard some clauses from the search
space and reuse the released memory.

2.4 Limitations

What if VAMPIRE can neither find a refutation nor establish satisfiability for a given
time limit? Of course, one can increase the time limit and try again. Theoretically, VAM-
PIRE is based on a complete inference system, that is, if the problem is

First-Order Theorem Proving and VAMPIRE 9

unsatisfiable, then given enough time and space VAMPIRE will eventually find a refu-
tation. In practice, theorem proving in first-order logic is a very hard problem, so it is
unreasonable to expect provers to find a refutation quickly or to find it at all. When
VAMPIRE cannot find a refutation, increasing time limit is not the only option to try.
VAMPIRE has many other parameters controlling search for a refutation, some of them
are mentioned in later sections of this paper.

3 Proof-Search by Saturation

Given a problem, VAMPIRE works as follows:

– read the problem;
– determine proof-search options to be used for this problem;
– preprocess the problem;
– convert it into conjunctive normal form (cnf);
– run a saturation algorithm on it;
– report the result, maybe including a refutation.

In this section we explain the concept of saturation-based theorem proving and present
a simple saturation algorithm. The other parts of the inference process are described in
the following sections.

Saturation is the underlying concept behind the proof-search algorithms using the
resolution and superposition inference system. In the sequel we will refer to theorem
proving using variants of this inference system as simply superposition theorem prov-
ing. This section explains the main concepts and ideas involved in superposition the-
orem proving and saturation. A detailed exposition of the theory of superposition can
be found in [1,26]. This section is more technical than the other sections of the paper:
we decided to present superposition and saturation in more details, since the concept
of saturation is relatively unknown outside of the theorem proving community. Similar
algorithms are used in some other areas, but they are not common. For example, Buch-
berger’s algorithm for computing Gröbner basis [4] can be considered as an example of
a saturation algorithm.

Given a set S of formulas and an inference system I, one can try to saturate this set
with respect to the inference system, that is, to build a set of formulas that contains S
and is closed under inferences in I. Superposition theorem provers perform inferences
on formulas of a special form, called clauses.

3.1 Basic Notions

We start with an overview of relevant definitions and properties of first-order logic, and
fix our notation. We consider the standard first-order predicate logic with equality. We
allow all standard boolean connectives and quantifiers in the language. We assume that
the language contains the logical constants � for always true and ⊥ for always false
formulas.

Throughout this paper, we denote terms by l, r, s, t, variables by x, y, z, constants
by a, b, c, d, e, function symbols by f, g, h, and predicate symbols by p, q. As usual, an

10 L. Kovács and A. Voronkov

atom is a formula of the form p(t1, . . . , tn), where p is a predicate symbol and t1, . . . , tn
are terms. The equality predicate symbol is denoted by =. Any atom of the form s = t
is called an equality. By s �= t we denote the formula ¬(s = t).

A literal is an atom A or its negation ¬A. Literals that are atoms are called positive,
while literals of the form ¬A negative. A clause is a disjunction of literals L1∨. . .∨Ln,
where n ≥ 0. When n = 0, we will speak of the empty clause, denoted by�. The empty
clause is always false. If a clause contains a single literal, that is, n = 1, it is called a
unit clause. A unit clause with = is called an equality literal. We denote atoms by A,
literals by L, clauses by C,D, and formulas by F,G,R,B, possibly with indices.

Let F be a formula with free variables x̄, then ∀F (respectively, ∃F) denotes the
formula (∀x̄)F (respectively, (∃x̄)F). A formula is called closed, or a sentence, if it has
no free variables. We call a symbol a predicate symbol, a function symbol or a constant.
Thus, variables are not symbols. We consider equality = part of the language, that is,
equality is not a symbol. A formula or a term is called ground if it has no occurrences
of variables. A formula is called universal (respectively, existential) if it has the form
(∀x̄)F (respectively, (∃x̄)F), where F is quantifier-free. We write C1, . . . , Cn 	 C to
denote that the formula C1 ∧ . . . ∧ Cn → C is a tautology. Note that C1, . . . , Cn, C
may contain free variables.

A signature is any finite set of symbols. The signature of a formula F is the set of
all symbols occurring in this formula. For example, the signature of b = g(z) is {g, b}.
The language of a formula F is the set of all formulas built from the symbols occurring
in F , that is formulas whose signatures are subsets of the signature of F .

We call a theory any set of closed formulas. If T is a theory, we write C1, . . . , Cn 	T

C to denote that the formula C1 ∧ . . . ∧ C1 → C holds in all models of T . In fact,
our notion of theory corresponds to the notion of axiomatisable theory in logic. When
we work with a theory T , we call symbols occurring in T interpreted while all other
symbols uninterpreted.

We call a substitution any expression θ of the form {x1 �→ t1, . . . , xn �→ tn}, where
n ≥ 0. An application of this substitution to an expression E, denoted by Eθ, is the
expression obtained from E by the simultaneous replacements of each xi by ti. By an
expression here we mean a term, atom, literal, or clause. An expression is ground if it
contains no variables.

We write E[s] to mean an expression E with a particular occurrence of a term s.
When we use the notation E[s] and then write E[t], the latter means the expression
obtained from E[s] by replacing the distinguished occurrence of s by the term t.

A unifier of two expressions E1 and E2 is a substitution θ such that E1θ = E2θ. It
is known that if two expressions have a unifier, then they have a so-called most general
unifier (mgu). For example, consider terms f(x1, g(x1), x2) and f(y1, y2, y2). Some of
their unifiers are θ1 = {y1 �→ x1, y2 �→ g(x1), x2 �→ g(x1)} and θ2 = {y1 �→ a, y2 �→
g(a), x2 �→ g(a), x1 �→ a}, but only θ1 is most general. There are several algorithms for
finding most general unifiers, from linear or almost linear [23] to exponential [28] ones,
see [12] for an overview. In a way, VAMPIRE uses none of them since all unification-
related operations are implemented using term indexing [30].

First-Order Theorem Proving and VAMPIRE 11

3.2 Inference Systems and Proofs

An inference rule is an n-ary relation on formulas, where n ≥ 0. The elements of such
a relation are called inferences and usually written as:

F1 . . . Fn

F
.

The formulas F1, . . . , Fn are called the premises of this inference, whereas the formula
F is the conclusion of the inference. An inference system I is a set of inference rules.
An axiom of an inference system is any conclusion of an inference with 0 premises.
Any inferences with 0 premises and a conclusion F will be written without the bar line,
simply as F .

A derivation in an inference system I is a tree built from inferences in I. If the root
of this derivation is F , then we say it is a derivation of F . A derivation of F is called
a proof of F if it is finite and all leaves in the derivation are axioms. A formula F is
called provable in I if it has a proof. We say that a derivation of F is from assump-
tions F1, . . . , Fm if the derivation is finite and every leaf in it is either an axiom or
one of the formulas F1, . . . , Fm. A formula F is said to be derivable from assump-
tions F1, . . . , Fm if there exists a derivation of F from F1, . . . , Fm. A refutation is a
derivation of ⊥.

Note that a proof is a derivation from the empty set of assumptions. Any derivation
from a set of assumptions S can be considered as a derivation from any larger set of
assumptions S′ ⊇ S.

3.3 A Simple Inference System and Completeness

We give now a simple inference system for first-order logic with equality, called the
superposition inference system. For doing so, we first introduce the notion of a simplifi-
cation ordering on terms, as follows. An ordering � on terms is called a simplification
ordering if it satisfies the following conditions:

1. � is well-founded, that is there exists no infinite sequence of terms t0, t1, . . . such
that t0 � t1 �

2. � is monotonic: if l � r, then s[l] � s[r] for all terms s, l, r.
3. � is stable under substitutions: if l � r, then lθ � rθ.
4. � has the subterm property: if r is a subterm of l and l �= r, then l � r.

Given a simplification ordering on terms, we can extend it to a simplification ordering
on atoms, literals, and even clauses. For details, see [26,1,7]. One of the important
things to know about simplification orderings is that they formalise a notion of “being
simpler” on expressions. For example, for the Knuth-Bendix ordering [14], if a ground
term s has fewer symbols than a ground term t, then t � s.

In addition, to simplification orderings, we need a concept of a selection function.
A selection function selects in every non-empty clause a non-empty subset of literals.
When we deal with a selection function, we will underline selected literals: if we write
a clause in the form L∨C, it means that L (and maybe some other literals) are selected

12 L. Kovács and A. Voronkov

in L∨C. One example of a selection function sometimes used in superposition theorem
provers is the function that selects all maximal literals with respect to the simplification
ordering used in the system.

The superposition inference system is, in fact, a family of systems, parametrised by a
simplification ordering and a selection function. We assume that a simplification order-
ing and a selection function are fixed and will now define the superposition inference
system. This inference system, denoted by Sup, consists of the following rules:
Resolution.

A ∨ C1 ¬A′ ∨ C2

(C1 ∨ C2)θ
,

where θ is a mgu or A and A′.
Factoring.

A ∨ A′ ∨ C

(A ∨ C)θ
,

where θ is a mgu or A and A′.
Superposition.

l = r ∨ C1 L[s] ∨C2

(L[r] ∨C1 ∨ C2)θ

l = r ∨ C1 t[s] = t′ ∨C2

(t[r] = t′ ∨C1 ∨C2)θ

l = r ∨ C1 t[s] �= t′ ∨ C2

(t[r] �= t′ ∨ C1 ∨C2)θ
,

where θ is a mgu of l and s, s is not a variable, rθ �� lθ, (first rule only) L[s] is not an
equality literal, and (second and third rules only) t′θ �� t[s]θ.
Equality Resolution.

s �= t ∨ C

Cθ
,

where θ is a mgu of s and t.
Equality Factoring.

s = t ∨ s′ = t′ ∨ C

(s = t ∨ t �= t′ ∨ C)θ
,

where θ is an mgu of s and s′, tθ �� sθ, and t′θ �� tθ.
VAMPIRE uses the names of inference rules in its proofs and statistics. For example,

the proof of Figure 3 and statistics displayed in Figure 4 use superposition. The
term demodulation used in them also refers to superposition, as we shall see later.

If the selection function is well-behaved, that is, it either selects a negative literal or
all maximal literals, then the superposition inference system is both sound and refuta-
tionally complete. By soundness we mean that, if the empty clause � is derivable from
a set S of formulas in Sup, then S is unsatisfiable. By (refutational) completeness we
mean that if a set S of formulas is unsatisfiable, then � is derivable from S in Sup.

Defining a sound and complete inference system is however not enough for auto-
matic theorem proving. If we want to use the sound and complete inference system of
Sup for finding a refutation, we have to understand how to organise the search for a
refutation in Sup. One can apply all possible inferences to clauses in the search space
in a certain order until we derive the empty clause. However, a simple implementation
of this idea will hardly result in an efficient theorem prover, because blind applications

First-Order Theorem Proving and VAMPIRE 13

of all possible inferences will blow up the search space very quickly. Nonetheless, the
idea of generating all clauses derivable from S is the key idea of saturation-based the-
orem proving and can be made very efficient when one exploits a powerful concept of
redundancy and uses good saturation algorithms.

3.4 Saturation

A set of clauses S is called saturated with respect to an inference system I if, for every
inference in I with premises in S, the conclusion of this inference belongs to S too.
When the inference system is clear from the context, in this paper it is always Sup, we
simply say “saturated set of clauses”. It is clear that for every set of clauses S there
exists the smallest saturated set containing S: this set consists of all clauses derivable
from S.

From the completeness of Sup we can then conclude the following important prop-
erty. A set S of clauses is unsatisfiable if and only if the smallest set of clauses contain-
ing S and saturated with respect to Sup also contains the empty clause.

To saturate a set of clauses S with respect to an inference system, in particular Sup,
we need a saturation algorithm. At every step such an algorithm should select an in-
ference, apply this inference to S, and add conclusions of the inferences to the set S.
If at some moment the empty clause is obtained, we can conclude that the input set of
clauses is unsatisfiable. A good strategy for inference selection is crucial for an effi-
cient behaviour of a saturation algorithm. If we want a saturation algorithm to preserve
completeness, that is, to guarantee that a saturated set is eventually built, the inference
selection strategy must be fair: every possible inference must be selected at some step
of the algorithm. A saturation algorithm with a fair inference selection strategy is called
a fair saturation algorithm.

By completeness of Sup, there are three possible scenarios for running a fair satura-
tion algorithm on an input set of clauses S:

1. At some moment the empty clause � is generated, in this case S is unsatisfiable.
2. Saturation terminates without ever generating �, in this case S is satisfiable.
3. Saturation runs forever, but without generating �. In this case S is satisfiable.

Note that in the third case we do not establish satisfiability of S after a finite amount of
time. In reality, in this case, a saturation-based prover will simply run out of resources,
that is terminate by time or memory limits, or will be interrupted. Even when a set of
clauses is unsatisfiable, termination by a time or memory limit is not unusual. Therefore
in practice the third possibility must be replaced by:

3’. Saturation will run until the system runs out of resources, but without generating
�. In this case it is unknown whether S is unsatisfiable.

4 Redundancy Elimination

However, a straightforward implementation of a fair saturation algorithm will not result
in an efficient prover. Such an implementation will not solve some problems rather
trivial for modern provers because of the rapid growth of the search space. This is due
to two reasons:

14 L. Kovács and A. Voronkov

1. the superposition inference system has many inferences that can be avoided;
2. some clauses can be removed from the search space without compromising

completeness.

In other words,

1. some inferences in the superposition system are redundant;
2. some clauses in the search space are redundant.

To have an efficient prover, one needs to exploit a powerful concept of redundancy and
saturation up to redundancy. This section explains the concept of redundancy and how
it influences the design and implementation of saturation algorithms.

The modern theory of resolution and superposition [1,26] deals with inference sys-
tems in which clauses can be deleted from the search space. Remember that we have
a simplification ordering �, which can also be extended to clauses. There is a general
redundancy criterion: given a set of clauses S and a clause C ∈ S, C is redundant in
S if it is a logical consequence of those clauses in S that are strictly smaller than C
w.r.t. �. However, this general redundancy criterion is undecidable, so theorem provers
use some sufficient conditions to recognise redundant clauses. Several specific redun-
dancy criteria based on various sufficient conditions will be defined below.

Tautology Deletion. A clause is called a tautology if it is a valid formula. Examples of
tautologies are clauses of the form A ∨ ¬A ∨ C and s = s ∨ C. Since tautologies are
implied by the empty set of formulas, they are redundant in every clause set. There are
more complex equational tautologies, for example, a �= b ∨ b �= c ∨ a = c. Equational
tautology checking can be implemented using congruence closure. It is implemented in
VAMPIRE and the number of removed tautologies appears in the statistics.

Subsumption. We say that a clause C subsumes a clause D if D can be obtained from
C by two operations: application of a substitution θ and adding zero or more literals. In
other words,Cθ is a submultiset ofD if we consider clauses as multisets of their literals.
For example, the clause C = p(a, x) ∨ r(x, b) subsumes the clause D = r(f(y), b) ∨
q(y) ∨ p(a, f(y)), since D can be obtained from C by applying the substitution {x �→
f(y)} and adding the literal q(y). Subsumed clauses are redundant in the following
sense: if a clause set S contains two different clauses C and D and C subsumes D, then
D is redundant in S. Although subsumption checking is NP-complete, it is a powerful
redundancy criterion. It is implemented in VAMPIRE and its use is controlled by options.

The concept of redundancy allows one to remove clauses from the search space.
Therefore, an inference process using this concept consists of steps of two kinds:

1. add to the search space a new clause obtained by an inference whose premises
belong to the search space;

2. delete a redundant clause from the search space.

First-Order Theorem Proving and VAMPIRE 15

Before defining saturation algorithms that exploit the concept of redundancy, we have to
define a new notion of inference process and reconsider the notion of fairness. Indeed,
for this kind of process we cannot formulate fairness in the same way as before, since
an inference enabled at some point of the inference process may be disabled afterwards,
if one or more of its parents are deleted as redundant.

To formalise an inference process with clause deletion, we will consider such a pro-
cess as a sequenceS0, S1, . . . of sets of clauses. Intuitively,S0 is the initial set of clauses
and Si for i ≥ 0 is the search space at the step i of the process. An inference process is
any (finite or infinite) sequence of sets of formulas S0, S1, . . ., denoted by:

S0 ⇒ S1 ⇒ S2 ⇒ . . . (1)

A step of this process is a pair Si ⇒ Si+1.
Let I be an inference system, for example the superposition inference system Sup.

An inference process is called an I-process if each of its steps Si ⇒ Si+1 has one of
the following two properties:

1. Si+1 = Si ∪ {C} and I contains an inference

C1 . . . Cn

C

such that {C1, . . . , Cn} ⊆ Si.
2. Si+1 = Si − {C} such that C is redundant in Si.

In other words, every step of an I-derivation process either adds to the search space a
conclusion of an I-inference or deletes from it a redundant clause.

An inference process can delete clauses from the search space. To define fairness we
are only interested in clauses that are never deleted. Such clauses are called persistent.
Formally, a clause C is persistent in an inference process (1) if for some step i it belongs
to all sets Sj for which j ≥ i. In other words, a persistent clause occurs in Si and is not
deleted at steps Si ⇒ Si+i ⇒ An inference process (1) is called fair if it satisfies
the following principle: every possible inference with persistent clauses as premises
must be performed at some step.

The superposition inference system Sup has a very strong completeness property
formulated below.

THEOREM 1 (COMPLETENESS). Let Sup be the superposition inference system, S0

be a set of clauses and S0 ⇒ S1 ⇒ S2 ⇒ . . . be a fair Sup-inference process. Then S0

is unsatisfiable if and only if some Si contains the empty clause.

An algorithm of saturation up to redundancy is any algorithm that implements inference
processes. Naturally, we are interested in fair saturation algorithms that guarantee fair
behaviour for every initial set of clauses S0.

4.1 Generating and Simplifying Inferences

Deletion of redundant clauses is desirable since every deletion reduces the search space.
If a newly generated clause makes some clauses in the search space redundant, adding

16 L. Kovács and A. Voronkov

such a clause to the search space comes “at no cost”, since it will be followed by deletion
of other (more complex) clauses. This observation gives rise to an idea of prioritising in-
ferences that make one or more clauses in the search space redundant. Since the general
redundancy criterion is undecidable, we cannot in advance say whether an inference
will result in a deletion. However, one can try to find “cheap” sufficient conditions for
an inference to result in a deletion and try to search for such inferences in an eager way.
This is exactly what the modern theorem provers do.

Simplifying Inferences. Let S be an inference of the form

C1 . . . Cn

C
.

We call this inference simplifying if at least one of the premises Ci becomes redundant
after the addition of the conclusion C to the search space. In this case we also say
that we simplify the clause Ci into C since this inference can be implemented as the
replacement of Ci by C. The reason for the name “simplifying” is due to the fact that C
is usually “simpler” thanCi in some strict mathematical sense. In a way, such inferences
simplify the search space by replacing clauses by simpler ones. Let us consider below
two examples of a simplifying rule. In these examples, and all further examples, we will
denote the deleted clause by drawing a line through it, for example���B ∨D.
Subsumption resolution is one of the following inference rules:

A ∨C ����¬B ∨D
D

or ¬A ∨C ���B ∨D
D

,

such that for some substitution θ we have Aθ ∨ Cθ ⊆ B ∨ D, where clauses are
considered as sets of literals. The name “subsumption resolution” is due to the fact
that the applicability of this inference can be checked in a way similar to subsumption
checking.
Demodulation is the following inference rule:

l = r ���C[lθ]

C[rθ]

where lθ � rθ and (l = r)θ � C[lθ]. Demodulation is also sometimes called rewrit-
ing by unit equalities. One can see that demodulation is a special case of superposition
where one of the parents is deleted. The difference is that, unlike superposition, demod-
ulation does not have to be applied only to selected literals or only into the larger part
of equalities.

Generating Inferences. Inferences that are not simplifying are called generating: in-
stead of simplifying one of the clauses in the search space, they generate a new clause C.

Many theorem provers, including VAMPIRE, implement the following principle:

First-Order Theorem Proving and VAMPIRE 17

apply simplifying inferences eagerly;
apply generating inferences lazily.

This principle influences the design of saturation algorithms in the following way: from
time to time provers try to search for simplifying inferences at the expense of delaying
generating inferences. More precisely, after generating each new clause C, VAMPIRE

tries to apply as many simplifying rules using C as possible. It is often the case that
a single simplifying inference gives rise to new simplifying inferences, thus producing
long chains of them after a single generating inference.

Deletion Rules. Even when simplification rules are in use, deletion of redundant clauses
is still useful and performed by VAMPIRE. VAMPIRE has a collection of deletion rules,
which check whether clauses are redundant due to the presence of other clauses in the
search space. Typical deletion rules are subsumption and tautology deletion. Normally,
these deletion rules are applied to check if a newly generated clause is redundant (for-
ward deletion rules) and then to check if one of the clauses in the search space becomes
redundant after the addition of the new clause to the search space (backward deletion
rules). An example of a forward deletion rule is forward demodulation, listed also in
the proof output of Figure 3.

4.2 A Simple Saturation Algorithm

We will now present a simple algorithm for saturation up to redundancy. This algorithm
is not exactly the saturation algorithm of VAMPIRE but it is a good approximation and
will help us to identify various parts of the inference process used by VAMPIRE. The
algorithm is given in Figure 5. In this algorithm we mark by � parts that are informally
explained in the rest of this section.

The algorithm uses three variables: a set kept of so called kept clauses, a set unpro-
cessed for storing clauses to be processed, and a clause new to represent the currently
processed clause. The set unprocessed is needed to make the algorithm search for sim-
plification eagerly: as soon as a clause has been simplified, it is added to the set of
unprocessed clauses so that we could check whether it can be simplified further or sim-
plify other clauses in the search space. Moreover, the algorithm is organised in such a
way that kept is always inter-reduced, that is, all possible simplification rules between
clauses in kept have already been applied.

Let us now briefly explain parts of the saturation algorithm marked by �.

Retention Test. This is the test to decide whether the new clause should be kept or dis-
carded. The retention test applies deletion rules, such as subsumption, to the new clause.
In addition, VAMPIRE has other criteria to decide whether a new clause should be kept,
for example, it can decide to discard too big clauses, even when this compromises com-
pleteness. VAMPIRE has several parameters to specify which deletion rules to apply
and which clauses should be discarded. Note that in the last line the algorithm returns
either satisfiable or unknown. It returns satisfiable when only redundant clauses were
discarded by the retention test. When at least one non-redundant clause was discarded,
the algorithm returns unknown.

18 L. Kovács and A. Voronkov

var kept , unprocessed : sets of clauses;
var new : clause;
unprocessed:= the initial sets of clauses;
kept:= ∅;
loop

while unprocessed �= ∅
new:=select(unprocessed);
if new = � then return unsatisfiable;

� if retained (new) then (* retention test *)
� simplify new by clauses in kept ; (* forward simplification *)

if new = � then return unsatisfiable;
� if retained(new) then (* another retention test *)
� delete and simplify clauses in kept using new ; (* backward simplification *)

move the simplified clauses from kept to unprocessed ;
add new to kept

if there exists an inference with premises in kept not selected previously then
� select such an inference; (* inference selection *)
� add to unprocessed the conclusion of this inference (* generating inference *)

else return satisfiable or unknown

Fig. 5. A Simple Saturation Algorithm

Forward Simplification. In this part of the saturation algorithm, VAMPIRE tries to
simplify the new clause by kept clauses. Note that the simplified clause can again be-
come subject to deletion rules, for example it can become simplified to a tautology. For
this reason after forward simplification another retention test may be required.

Backward Simplification. In this part, VAMPIRE tries to delete or simplify kept clauses
by the new clause. If some clauses are simplified, they become candidates for further
simplifications and are moved to unprocessed .

Inference Selection. This part of the saturation algorithm selects an inference that has
not previously been selected. Ideally, inference selection should be fair. VAMPIRE

Generating Inference. This part of the saturation algorithm applies the selected in-
ference. The inference generates a new clause, so we call it a generating inference.2

Most of the generating inferences to be used are determined by VAMPIRE but some are
user-controlled.

4.3 Saturation Algorithms of VAMPIRE

To design a saturation algorithm, one has to understand how to achieve fairness and
how to organise redundancy elimination. VAMPIRE implements three different satura-
tion algorithms. A description and comparison of these algorithms can be found in [27].

2 This inference may turn out to be simplifying inference, since the new clause generated by it
may sometimes simplify a kept clause.

First-Order Theorem Proving and VAMPIRE 19

A saturation algorithm in VAMPIRE can be chosen by setting the --saturation
algorithm option to one of the values lrs, discount, and otter. The lrs sat-
uration algorithm is the default one used by VAMPIRE and refers to the limited resource
strategy algorithm, discount is the Discount algorithm, and otter is the Otter sat-
uration algorithm. In this section we briefly describe these three saturation algorithms.

Given Clause Algorithms. All saturation algorithms implemented in VAMPIRE belong
to the family of given clause algorithms. These algorithms achieve fairness by imple-
menting inference selection using clause selection. At each iteration of the algorithm a
clause is selected and all generating inferences are performed between this clause and
previously selected clauses. The currently selected clause is called the given clause in
the terminology of [24].

Clause Selection. Clause selection in VAMPIRE is based on two parameters: the age
and the weight of a clause. VAMPIRE maintains two priority queues, in which older
and lighter clauses are respectively prioritised. The clauses are selected from one of
the queues using an age-weight ratio, that is, a pair of non-negative integers (a, w). If
the age-weight ratio is (a, w), then of each a + w selected clauses a clauses will be
selected from the age priority queue and w from the weight priority queue. In other
words, of each a + w clauses, a oldest and w lightest clauses are selected. The age-
weight ratio can be controlled by the parameter--age weight ratio. For example,
--age weight ratio 2:3 means that of each 5 clauses, 2 will be selected by age
and 3 by weight.

The age is implemented using numbering of clauses. Each kept clause is assigned a
unique number. The numbers are assigned in the increasing order, so older clauses have
smaller numbers. Each clause is also assigned a weight. By default, the weight of a
clause is equal to its size, that is, the count of symbols in it, but it can also be controlled
by the user, for example, by using the option --nongoal weight coefficient.

Active and Passive Clauses. Given clause algorithms distinguish between kept clauses
previously selected for inferences and those not previously selected. Only the former
clauses participate in generating inferences. For this reason they are called active. The
kept clauses still waiting to be selected are called passive. The interesting question is
whether passive clauses should participate in simplifying inferences.

Otter Saturation Algorithm. The first family of saturation algorithms do use passive
clauses for simplifications. Any such saturation algorithm is called an Otter satura-
tion algorithm after the theorem prover Otter [24]. The Otter saturation algorithm was
designed as a result of research in resolution theorem proving in Argonne National
Laboratory, see [22] for an overview.

Retention Test. The retention test in VAMPIRE mainly consists of deletion rules plus
the weight test. The weight test discards clauses whose weight exceeds certain limit.
By default, there is no limit on the weight. The weight limit can be controlled by using
the option --max weight. In some cases VAMPIRE may change the weight limit.
This happens when it is running out of memory or when the limited resource strategy
is on. Note that the weight test can discard a non-redundant clause. So when the weight

20 L. Kovács and A. Voronkov

limit was set for at least some time during the proof-search, VAMPIRE will never return
“satisfiable”.

The growth of the number of kept clauses in the Otter algorithm causes fast deteriora-
tion of the processing rate of active clauses. Thus, when a complete procedure based on
the Otter algorithm is used, even passive clauses with high selection priority often have
to wait indefinitely long before they become selected. In theorem provers based on the
Otter algorithm, all solutions to the completeness-versus-efficiency problem are based
on the same idea: some non-redundant clauses are discarded from the search space.

Limited Resource Strategy Algorithm. This variation of the Otter saturation algo-
rithm was introduced in one of the early versions of VAMPIRE. It is described in detail
in [27]. This strategy is based on the Otter saturation algorithm and can be used only
when a time limit is set.

The main idea of the limited resource strategy is the following. The system tries to
identify which passive and unprocessed clauses have no chance to be selected by the
time limit and discards these clauses. Such clauses will be called unreachable. Note that
unreachability is fundamentally different from redundancy: redundant clauses are dis-
carded without compromising completeness, while the notion of an unreachable clause
makes sense only in the context of reasoning with a time limit.

To identify unreachable clauses, VAMPIRE measures the time spent by processing a
given clause. Note that usually this time increases because the sets of active and passive
clauses are growing, so generating and simplifying inferences are taking increasingly
longer time. From time to time VAMPIRE estimates how the proof search pace will
develop towards the time limit and, based on this estimation, identifies potentially un-
reachable clauses. Limited resource strategy is implemented by adaptive weight limit
changes, see [27] for details. It is very powerful and is generally the best saturation
algorithm in VAMPIRE.

Discount Algorithm. Typically, the number of passive clauses is much larger than the
number of active ones. It is not unusual that the number of active clauses is less than
1% of the number of passive ones. As a result, inference pace may become dominated
by simplification operations on passive clauses. To solve this problem, one can make
passive clauses truly passive by not using them for simplifying inferences. This strategy
was first implemented in the theorem prover Discount [6] and is called the Discount
algorithm.

Since only a small subset of all clauses is involved in simplifying inferences, process-
ing a new clause is much faster. However, this comes at a price. Simplifying inferences
between a passive and a new clause performed by the Otter algorithm may result in a
valuable clause, which will not be found by the Discount algorithm. Also, in the Dis-
count algorithm the retention test and simplifications are sometimes performed twice on
the same clause: the first time when the new clause is processed and then again when
this clause is activated.

Comparison of Saturation Algorithms. Limited resource strategy is implemented
only in VAMPIRE. Thus, VAMPIRE implements all three saturation algorithms. The the-
orem provers E [29] and Waldmeister [21] only implement the Discount algorithm.
In VAMPIRE limited resource strategy gives the best results, closely followed by the

First-Order Theorem Proving and VAMPIRE 21

clauses Otter and LRS Discount
active generating inferences with the given clause;

simplifying inferences with new clauses
generating inferences with the given clause;
simplifying inferences with new clauses;
simplifying inferences with re-activated
clauses

passive simplifying inferences with new clauses
new simplifying inferences with active and pas-

sive clauses
simplifying inferences with active clauses

Fig. 6. Inferences in Saturation Algorithms

Discount algorithm. The Otter algorithm is generally weaker, but it still behaves better
on some formulas.

To give the reader an idea on the difference between the three saturation algorithms,
we show in Figure 6 the roles played by different clauses in the Otter and Discount
algorithms.

5 Preprocessing

For many problems, preprocessing them in the right way is the key to solving them.
VAMPIRE has a sophisticated preprocessor. An incomplete collection of preprocessing
steps is listed below.

1. Select a relevant subset of formulas (optional).
2. Add theory axioms (optional).
3. Rectify the formula.
4. If the formula contains any occurrence of � or ⊥, simplify the formula.
5. Remove if-then-else and let-in connectives.
6. Flatten the formula.
7. Apply pure predicate elimination.
8. Remove unused predicate definitions (optional).
9. Convert the formula into equivalence negation normal form (ennf).

10. Use a naming technique to replace some subformulas by their names.
11. Convert the formula into negation normal form (optional).
12. Skolemise the formula.
13. Replace equality axioms.
14. Determine a literal ordering to be used.
15. Transform the formula into its conjunctive normal form (cnf).
16. Function definition elimination (optional).
17. Apply inequality splitting (optional).
18. Remove tautologies.
19. Apply pure literal elimination (optional).
20. Remove clausal definitions (optional).

Optional steps are controlled by VAMPIRE’s options. Since input problems can be very
large (for example, several million formulas), VAMPIRE avoids using any algorithm that
may cause slow preprocessing. Most algorithms used by the preprocessor run in linear
or O(n · log n) time.

22 L. Kovács and A. Voronkov

6 Coloured Proofs, Interpolation, and Symbol Elimination

VAMPIRE can be used in program analysis, in particular for loop invariant genera-
tion and building interpolants. Both features have been implemented using our symbol
elimination method, introduced in [18,19]. The main ingredient of symbol elimination
is the use of coloured proofs and local proofs. Local proofs are also known as split
proofs in [13] and they are implemented using coloured proofs. In this section we intro-
duce interpolation, coloured proofs and symbol elimination and describe how they are
implemented in VAMPIRE.

6.1 Interpolation

Let R and B be two closed formulas. Their interpolant is any formula I with the fol-
lowing properties:

1. 	 R → I;
2. 	 I → B;
3. Every symbol occurring in I also occurs both in R and B.

Note that the existence of an interpolant implies that 	 R → B, that is, B is a logical
consequence of R. The first two properties mean that I is a formula “intermediate”
in power between R and B. The third property means that I uses only (function and
predicate) symbols occurring in both R and B. For example, suppose that p, q, r are
propositional symbols. Then the formulas p ∧ q and q ∨ r have an interpolant q.

Craig proved in [5] that every two formulas R and B such that 	 R → B have an in-
terpolant. In applications of interpolation in program verification, one is often interested
in finding interpolants w.r.t. a theory T , where the provability relation 	 is replaced by
	T , that is validity with respect to T . Interpolation in the presence of a theory T is
discussed in some detail in [19].

6.2 Coloured Proofs and Symbol Elimination

We will reformulate the notion of an interpolant by colouring symbols and formulas.
We assume to have three colour: red, blue and grey. Each symbol (function or predicate)
is coloured in exactly one of these colours. Symbols that are coloured in red or blue are
called coloured symbols. Thus, grey symbols are regarded as uncoloured. Similarly, a
formula that contains at least one coloured symbols is called coloured; otherwise it is
called grey. Note that coloured formulas can also contain grey symbols.

Let T be a theory and R and B be formulas such that

– each symbol in R is either red or grey;
– each symbol in B is either blue or grey;
– every formula in T is grey.

We call an interpolant of R and B any grey formula I such that 	T R → I and
	T I → B.

It is easy to see that this definition generalises that of Craig [5]: use the empty theory,
colour all symbols occurring in R but not in B in red, all symbols occurring in B but
not in R blue, and symbols occurring in both R and B in grey.

First-Order Theorem Proving and VAMPIRE 23

When we deal with refutations rather than proofs and have an unsatisfiable set
{R,B}, it is convenient to use a reverse interpolant of R and B, which is any grey
formula I such that 	T R → I and {I, B} is unsatisfiable. In applications of inter-
polation in program verification, see e.g. the pioneering works [25,13], an interpolant
is typically defined as a reverse interpolant. The use of interpolation in hardware and
software verification requires deriving (reverse) interpolants from refutations.

A local derivation [13,19] is a derivation in which no inference contains both red and
blue symbols. An inference with at least one coloured premise and a grey conclusion
is called a symbol-eliminating inference. It turns out that one can extract interpolants
from local proofs. For example, in [19] we gave an algorithm for extracting a reverse
interpolant of R and B from a local refutation of {R,B}. The extracted reverse in-
terpolant I is a boolean combination of conclusions of symbol-eliminating inferences,
and is polynomial in the size of the refutation (represented as a dag). This algorithm
is further extended in [11] to compute interpolants which are minimised w.r.t. various
measures, such as the total number of symbols or quantifiers.

Coloured proofs can also be used for another interesting application of program ver-
ification. Suppose that we have a set Π of formulas in some language L and want to
derive logical consequences of these formulas in a subset L0 of this language. Then
we declare the symbols occurring only in L \ L0 coloured, say red, and the symbols
of L0 grey; this makes some of the formulas from Π coloured. We then ask VAM-
PIRE to eliminate red symbols from Π , that is, derive grey consequences of formulas
in Π . All these grey consequences will be conclusions of symbol-eliminating infer-
ences. This technique is called symbol elimination and was used in our experiments on
automatic loop invariant generation [18,9]. It was the first ever method able to derive
loop invariants with quantifier alternations. Our results [18,19] thus suggest that sym-
bol elimination can be a unifying concept for several applications of theorem provers in
program verification.

6.3 Interpolation and Symbol Elimination in VAMPIRE

To make VAMPIRE generate local proofs and compute an interpolant we should be able
to assign colours to symbols and define which part of the input belongs to R, B, and the
theory T , respectively. We will give an example showing how VAMPIRE implements
coloured formulas, local proofs and generation of interpolants from local proofs.

Suppose that q, f , a, b are red symbols and c is a blue symbol, all other symbols are
grey. Let R be the formula q(f(a)) ∧¬q(f(b)) and define B to be (∃v.v �= c). Clearly,
	 R → B.

Specifying colours. The red and blue colours in Vampire are respectively denoted by
left and right. To specify, for example, that the predicate symbol q of arity 1 is red
and the constant c is blue, we use the following declarations:

vampire(symbol,predicate,q,1,left).
vampire(symbol,function,c,0,right).

24 L. Kovács and A. Voronkov

Specifying R and B. Using the TPTP notation, formulas R and B are specified as:

vampire(left formula). vampire(right formula).
fof(R,axiom,q(f(a))&˜q(f(b))). fof(L,conjecture,?[V].(V!=c)).

vampire(end formula). vampire(end formula).

Local proofs and interpolants. To make VAMPIRE compute an interpolant I , the fol-
lowing option is set in the VAMPIRE input:

vampire(option,show interpolant,on).

If we run VAMPIRE on this input problem, it will search for a local proof of 	 R → B.
Such a local proof will quickly be found and the interpolant ¬(∀x, y)(x = y) will
appear in the output.

Symbol elimination and invariants. To run VAMPIRE in the symbol elimination mode
with the purpose of loop invariant generation, we declare the symbols to be eliminated
coloured. For the use of symbol elimination, a single colour, for example left, is
sufficient. We ask VAMPIRE to run symbol elimination on its coloured input by setting:

vampire(option,show symbol elimination,on).

When this option is on, VAMPIRE will output all conclusions of symbol-eliminating
inferences.

7 Sorts and Theories

Standard superposition theorem provers are good in dealing with quantifiers but have
essentially no support for theory reasoning. Combining first-order theorem proving and
theory reasoning is very hard. For example, some simple fragments of predicate logic
with linear arithmetic are already Π1

1 -complete [15]. One relatively simple way of com-
bining first-order logic with theories is adding a first-order axiomatisation of the theory,
for some example an (incomplete) axiomatisation of integers.

Adding incomplete axiomatisations is the approach used in [9,18] and the one we
have followed in the development of VAMPIRE. We recently added integers, reals, and
arrays as built-in data types in VAMPIRE, and extended VAMPIRE with such data types
and theories. For example, one can use integer constants in the input instead of repre-
senting them using, for example, zero and the successor function. VAMPIRE implements
several standard predicates and functions on integers and reals, including addition, sub-
traction, multiplication, successor, division, and standard inequality relations such as ≥.
VAMPIRE also has an axiomatisations of the theory of arrays with the select and store
operations.

7.1 Sorts

For using sorts in VAMPIRE, the user should first specify the sort of each symbol. Sort
declarations need to be added to the input, by using the tff keyword (“typed first-order
formula”) of the TPTP syntax, as follows.

First-Order Theorem Proving and VAMPIRE 25

Defining sorts. For defining a new sort, say sort own, the following needs to be added
to the VAMPIRE input:

tff(own type,type,own: $tType).

Similarly to the fof declarations, the word own type is chosen to denote the name of
the declaration and is ignored by VAMPIRE when it searches for a proof. The keyword
type in this declaration is, unfortunately, both ambiguous and redundant. The only
important part of the declaration is own: $tType, which declares that own is a new
sort (type).

Let us now consider an arbitrary constant a and a function f of arity 2. Specifying
that a and the both the arguments and the values of f have sort own can be done as
follows:

tff(a has type own,type,a : own).
tff(f has type own,type,f : own * own > own).

Pre-defined sorts. The user can also use the following pre-existing sorts of VAMPIRE:

– $i: sort of individuals. This is the default sort used in VAMPIRE: if a symbol is not
declared, it has this sort;

– $o: sort of booleans;
– $int: sort of integers;
– $rat: sort of rationals;
– $real: sort of reals;
– $array1: sort of arrays of integers;
– $array2: sort of arrays of arrays of integers.

The last two are VAMPIRE-specific, all other sorts belong to the TPTP standard. For
example, declaring that p is a unary predicate symbol over integers is written as:

tff(p is int predicate,type,p : $int > $o).

7.2 Theory Reasoning

Theory reasoning in VAMPIRE is implemented by adding theory axioms to the input
problem and using the superposition calculus to prove problems with both quantifiers
and theories. In addition to the standard superposition calculus rules, VAMPIRE will
evaluate expressions involving theory functions, whenever possible, during the proof
search.

This implementation is not just a simple addition to VAMPIRE: we had to add simpli-
fication rules for theory terms and formulas, and special kinds of orderings [17]. Since
VAMPIRE’s users may not know much about combining theory reasoning and first-order
logic, VAMPIRE adds the relevant theory axiomatisation automatically. For example, if
the input problem contains the standard integer addition function symbol +, denoted by
$sum in VAMPIRE, then VAMPIRE will automatically add an axiomatisation of integer
linear arithmetic including axioms for additions.

26 L. Kovács and A. Voronkov

The user can add her own axioms in addition to those added by Vampire. More-
over, the user can also choose to use her own axiomatisation instead of those added by
VAMPIRE one by using the option --theory axioms off.

For some theories, namely for linear real and rational arithmetic, VAMPIRE also sup-
ports DPLL(T) style reasoning instead of using the superposition calculus, see Sec-
tion 11.3. However, this feature is yet highly experimental.

A partial list of interpreted function and predicate symbols over integers/reals/
rationals in VAMPIRE contains the following functions defined by the TPTP standard:

– $sum: addition (x+ y)
– $product: multiplication (x · y)
– $difference: difference (x− y)
– $uminus: unary minus (−x)
– $to rat: conversion to rationals
– $to real: conversion to reals
– $less: less than (x < y)
– $lesseq: less than or equal to (x ≤ y)
– $greater: greater than (x > y)
– $greatereq: greater than or equal to (x ≥ y)

Let us consider the formula (x+ y) ≥ 0, where x and y are integer variables. To make
VAMPIRE try to prove this formula, one needs to use sort declarations in quantifiers and
write down the formula as the typed first-order formula:

tff(example,conjecture, ? [X:$int,Y:$int]:
$greatereq($sum(X,Y),0)).

When running VAMPIRE on the formula above, VAMPIRE will automatically load the
theory axiomatisation of integers and interpret 0 as the corresponding integer constant.

The quantified variables in the above example are explicitly declared to have the sort
$int. If the input contains undeclared variables, the TPTP standard requires that they
have a predefined sort $i. Likewise, undeclared function and predicate symbols are
considered symbols over the sort $i.

8 Satisfiability Checking Finding Finite Models

Since 2012, VAMPIRE has become competitive with the best solvers on satisfiable first-
order problems. It can check satisfiability of a first-order formula or a set of clauses
using three different approaches.

1. By saturation. If a complete strategy is used and VAMPIRE builds a saturated set,
then the input set of formulas is satisfiable. Unfortunately, one cannot build a good
representation of a model satisfying this set of clauses - the only witness for satis-
fiability in this case is the saturated set.

2. VAMPIRE implements the instance generation method of Ganzinger and Korovin
[8]. It is triggered by using the option--saturation algorithm inst gen.
If this method succeeds, the satisfiability witness will also be the saturated set.

First-Order Theorem Proving and VAMPIRE 27

Table 2. Strategies in VAMPIRE

category strategies total best worst explanation
EPR 16 560 350 515 effectively propositional (decidable fragment)
UEQ 35 753 198 696 unit equality
HNE 22 536 223 469 CNF, Horn without equality
HEQ 23 436 376 131 CNF, Horn with equality
NNE 25 464 404 243 CNF, non-Horn without equality
NEQ 98 1861 1332 399 CNF, non-Horn with equality
PEQ 30 434 373 14 CNF, equality only, non-unit
FNE 34 1347 1210 585 first-order without equality
FEQ 193 4596 2866 511 first-order with equality

3. The method of building finite models using a translation to EPR formulas intro-
duced in [3]. In this case, if satisfiability is detected, VAMPIRE will output a repre-
sentation of the found finite model.

Finally, one can use --mode casc sat to treat the input problem using a cocktail of
satisfiability-checking strategies.

9 VAMPIRE Options and the CASC Mode

VAMPIRE has many options (parameter-value pairs) whose values that can be changed
by the user (in the command line). By changing values of the options, the user can con-
trol the input, preprocessing, output of proofs, statistics and, most importantly, proof
search of VAMPIRE. A collection of options is called a strategy. Changing values of
some parameters may have a drastic influence on the proof search space. It is not
unusual that one strategy results in a refutation found immediately, while for another
strategies VAMPIRE cannot find refutation in hours.

When one runs VAMPIRE on a problem, the default strategy of VAMPIRE is used.
This strategy was carefully selected to solve a reasonably large number of problems
based on the statistics collected by running VAMPIRE on problems from the TPTP li-
brary. However, it is important to understand that there is no single best strategy, so for
solving hard problems using a single strategy is not a good idea. Table 2 illustrates the
power of strategies, based on the results of running VAMPIRE using various strategies on
several problem categories. The acronyms for categories use the TPTP convention, for
example FEQ means “first-order problems with equality”, their explanation is given in
the rightmost column. The table respectively shows the total number of strategies used
in experiments, the total number of problems solved by all strategies, and the numbers
of problems solved by the best and the worst strategy. For example, the total number of
TPTP FEQ problems in this category that VAMPIRE can solve is 4596, while the best
strategy for this category can solve only 2866 problems, that is, only about 62% of all
problems. The worst strategy solves only 511 FEQ problems, but this strategy is highly
incomplete.

There is an infinite number of possible strategies, since some parameters have integer
values. Even if we fix a small finite number of values for such parameters, the total

28 L. Kovács and A. Voronkov

Hi Geoff, go and have some cold beer while I am trying to solve
this very hard problem!

% remaining time: 2999 next slice time: 7
dis+2_64_bs=off:cond=fast:drc=off:fsr=off:lcm=reverse:nwc=4:...
Time limit reached!

Termination reason: Time limit
...

% remaining time: 2991 next slice time: 7
dis+10_14_bs=off:cond=fast:drc=off:gs=on:nwc=2.5:nicw=on:sd=...
Refutation not found, incomplete strategy

Termination reason: Refutation not found, incomplete strategy
...

% remaining time: 2991 next slice time: 18
dis+1011_24_cond=fast:drc=off:nwc=10:nicw=on:ptb=off:ssec=of...
Refutation found. Thanks to Tanya!
...
% Success in time 0.816 s

Fig. 7. Running VAMPIRE in the CASC mode on SET014-3

number of possible strategies will be huge. Fortunately, VAMPIRE users do not have to
understand all the parameters. One can use a special VAMPIRE mode, called the CASC
mode and used as --mode casc, which mimics the strategies used at the last CASC
competition [32]. In this mode, VAMPIRE will treat the input problem with a cocktail
of strategies running them sequentially with various time limits.

The CASC mode of VAMPIRE is illustrated in Figure 7 and shows part of the output
produced by VAMPIRE in the CASC mode on the TPTP problem SET014-3. This
problem is very hard: according to the TPTP problems and solutions document only
VAMPIRE can solve it. One can see that VAMPIRE ran three different strategies on
this problems. Each of the strategies is given as a string showing in a succinct way
the options used. For example, the string dis+2 64 bs=off:cond=fast means
that VAMPIRE was run using the Discount saturation algorithm with literal selection 2
and age-weight ratio 64. Backward subsumption was turned off and a fast condensing
algorithm was used. In the figure, we truncated these strings since some of them are
very long and removed statistics (output after running each strategy) and proof (output
at the end).

The time in the CASC mode output is measured in deciseconds. One can see that
VAMPIRE used the first strategy with the time limit of 0.7 seconds, then the second one
with the time limit of 0.7 seconds, followed by the third strategy with the time limit of
1.8 seconds. All together it took VAMPIRE 0.816 seconds to find a refutation.

There is also a similar option for checking satisfiability: --mode casc sat. The
use of the CASC mode options, together with a time limit, is highly recommended.

First-Order Theorem Proving and VAMPIRE 29

Precondition:
{(∀ X) (p(X) => X
≥ 0)}
{(∀ X) (f(X) > 0)}
{p(a)}

Program:
if (q(a))
{ a := a+1 }
else
{ a := a + f(a)}

Postcondition:
{a > 0}

% sort declarations
tff(1,type,p : $int > $o).
tff(2,type,f : $int > $int).
tff(3,type,q : $int > $o).
tff(4,type,a : $int).

% precondition
tff(5,hypothesis,

! [X:$int] : (p(X) => $greatereq(X,0))).
tff(6,hypothesis,

! [X:$int] : ($greatereq(f(X),0))).
tff(7,hypothesis,p(a)).

% transition relation
tff(8,hypothesis,

a1 = $ite t(q(a),
$let tt(a,$sum(a,1),a),
$let tt(a,$sum(a,f(a)),a))).

% postcondition
tff(9,conjecture,$greater(a1,0)).

Fig. 8. A partial correctness statement and its VAMPIRE input representation

The total number of parameters in the current version of VAMPIRE is 158, so we
cannot describe all of them here. These options are not only related to the proof search.
There are options for preprocessing, input and output syntax, output of statistics, various
proof search limit, interpolation, SAT solving, program analysis, splitting, literal and
clause selection, proof output, syntax of new names, bound propagation, use of theories,
and some other options.

10 Advanced TPTP Syntax

VAMPIRE supports let-in and if-then-else constructs, which have recently become a
TPTP standard. VAMPIRE was the first ever first-order theorem prover to implement
these constructs. Having them makes VAMPIRE better suited for applications in pro-
gram verification. For example, given a simple program with assignments, composition
and if-then-else, one can easily express the transition relation of this programs.

Consider the example shown in Figure 8. The left column displays a simple program
together with its pre- and postconditions. Let a1 denote the next state value of a. Using
if-then-else and let-in expressions, we can express this next-state value by a simple
transformation of the text of the program as follows:

a1 = if q(a) then (let a=a+1 in a)
else (let a=a+f(a) in a)

30 L. Kovács and A. Voronkov

We can then express partial correctness of the program of Figure 8 as a TPTP problem,
as follows:

– write down the precondition as a hypothesis in the TPTP syntax;
– write down the next state value of a as as a hypothesis in the extended TPTP syntax,

by using the if-then-else ($ite t) and let-in ($let tt) constructs;
– write down the postcondition as the conjecture.

The right column of Figure 8 shows this TPTP encoding.

11 Cookies

One can use VAMPIRE not only as a theorem prover, but in several other ways. Some of
them are described in this section.

11.1 Consequence Elimination

Given a large set S of formulas, it is very likely that some formulas are consequences
of other formulas in the set. To simplify reasoning about and with S, it is desirable to
simplify S by removing formulas from S that are implied by other formulas. To address
this problem, a new mode, called the consequence-elimination mode is now added to
VAMPIRE [10]. In this mode, VAMPIRE takes a set S of clauses as an input and tries to
find its proper subset S0 equivalent to S. In the process of computing S0, VAMPIRE is
run with a small time limit. Naturally, one is interested in having S0 as small as possible.
To use VAMPIRE for consequence elimination, one should run:

vampire --mode consequence elimination set S.tptp

where set S.tptp contains the set S.
We illustrate consequence elimination on the following set of formulas:

fof(ax1, axiom, a => b).
fof(ax2, axiom, b => c).
fof(ax3, axiom, c => a).
fof(c1, claim, a | d).
fof(c2, claim, b | d).
fof(c3, claim, c | d).

The word claim is a new VAMPIRE keyword for input formulas introduced for the
purpose of consequence elimination. VAMPIRE is asked to eliminate, one by one, those
claims that are implied by other claims and axioms. The set of non-eliminated claims
will then be equivalent to the set of original claims (modulo axioms).

In this example, the axioms imply that formulas a, b and c are pairwise equivalent,
hence all claims are equivalent modulo the axioms. VAMPIRE detects that the formula
named c2 is implied by c1 (using axiom ax2), and then that c1 is implied by c3
(using axiom ax3). Formulas c1 and c2 are thus removed from the claims, resulting
in the simplified set of claims containing only c3, that is, c | d.

First-Order Theorem Proving and VAMPIRE 31

while (a ≤ m) do
if A[a] ≥ 0

then B[b] := A[a];b := b+ 1;
else C[c] := A[a];c := c+ 1;

a := a+ 1;
end do

Fig. 9. Array partition

Consequence elimination turns out to be very useful for pruning a set of automati-
cally generated loop invariants. For example, symbol elimination can generate invari-
ants implied by other generated invariants. For this reason, in the program analysis
mode of VAMPIRE, described in the next section, symbol elimination is augmented by
consequence elimination to derive a minimised set of loop invariants.

11.2 Program Analysis

Starting with 2011, VAMPIRE can be used to parse and analyse software programs writ-
ten in a subset of C, and generate properties of loops in these programs using the symbol
elimination method introduced in [10]. The subset of C consists of scalar integer vari-
ables, array variables, arithmetical expressions, assignments, conditionals and loops.
Nested loops are yet unsupported. Running VAMPIRE in the program analysis mode
can be done by using:

vampire --mode program analysis problem.c

where problem.c is the C program to be analysed.
We illustrate the program analysis part of VAMPIRE on Figure 9. This program re-

spectively fills the arrays B and C with the non-negative and negative values of the
source array A. Figure 10 shows a (slightly modified) partial output of VAMPIRE’s
program analysis on this program. VAMPIRE first extracts all loops from the input pro-
gram, ignores nested loops and analyses every non-nested loop separately. In our ex-
ample, only one loop is found (also shown in Figure 10). The following steps are then
performed for analysing each of the loops:

1. Find all loop variables and classify them into variables updated by the loop and
constant variables. In Figure 10, the program analyser of VAMPIRE detects that
variables B, C, a, b, c are updated in the loop, and variables A, m are constants.

2. Find counters, that is, updated scalar variables that are only incremented or decre-
mented by constant values. Note that expressions used as array indexes in loops are
typically counters. In Figure 10, the variables a, b, c are classified as counters.

3. Infer properties of counters. VAMPIRE adds a new constant ’$counter’ denot-
ing the “current value” of the loop counter, and program variables updated in the
loop become functions of the loop counter.

For example, the variable a becomes the unary function a(X), where a(X)
denotes the value of a at the loop iteration X ≤ ’$counter’. The value a(0)

32 L. Kovács and A. Voronkov

Loops found: 1
Analyzing loop...

while (a < m)
{
if (A[a] >= 0)
{

B[b] = A[a];
b = b + 1;

}
else
{

C[c] = A[a];
c = c + 1;

}
a = a + 1;

}

Variable: B updated
Variable: a updated
Variable: b updated
Variable: m constant
Variable: A constant
Variable: C updated
Variable: c updated
Counter: a
Counter: b
Counter: c

Collected first-order loop properties

27. iter(X0) <=> ($lesseq(0,X0) & $less(X0,’$counter’))

17. a(0) = a0

10. updbb(X0,X2,X3) => bb(X2) = X3

9. updbb(X0,X2,X3) <=>
(let b := b(X0) in (let c := c(X0) in (let a := a(X0) in
(let cc(X1) := cc(X0,X1) in (let bb(X1) := bb(X0,X1) in
($greatereq(aa(a),0) & (aa(a) = X3 & iter(X0) & b = X2)))))))

8. updbb(X0,X2) <=>
(let b := b(X0) in (let c := c(X0) in (let a := a(X0) in
(let cc(X1) := cc(X0,X1) in (let bb(X1) := bb(X0,X1) in
($greatereq(aa(a),0) & (iter(X0) & b = X2)))))))

4.
($greater(X1,X0) & $greater(c(X1),X3) & $greater(X3,c(X0)))
=> ? [X2] : (c(X2) = X3 & $greater(X2,X0) & $greater(X1,X2))

3. $greatereq(X1,X0) => $greatereq(c(X1),c(X0))

1. a(X0) = $sum(a0,X0)

Fig. 10. Partial output of VAMPIRE’s program analysis

thus denotes the initial value of the program variable a. Since we are interested
in loop properties connecting the initial and the current value of the loop variable,
we introduce a constant a0 denoting the initial value of a (see formula 17). The
predicate iter(X) in formula 27 defines that X is a loop iteration. The properties
inferred at this step include formulas 1, 3 and 4. For example, formula 3 states that
c is a monotonically increasing variable.

4. Generate update predicates of updated array variables, for example formula 10.
The update predicate updbb(X0,X1) expresses that the array B was updated
at loop iteration X0 at position X1 by value X2. The generated properties are
in the TPTP syntax, a reason why the capitalised array variables are renamed by
VAMPIRE’s program analyser. For example, the array B is denoted by bb.

5. Derive the formulas corresponding to the transition relation of the loop by using
let-in and if-then-else constructs. These properties include, for example, formulas
8 and 9.

6. Generate a symbol elimination task for VAMPIRE by colouring symbols that should
not be used in loop invariant. Such symbols are, for example, ’$counter’,
iter, and updbb.

7. Run VAMPIRE in the consequence elimination mode and output a minimised set of
loop invariants. As a result of running VAMPIRE’s program analyser on Figure 9,
one of the invariants derived by VAMPIRE is the following first-order formula:

tff(inv,claim, ![X:$int]:
($greatereq(X,0) & $greater(b,X) => $greatereq(bb(X),0) &
(? [Y:$int]: $greatereq(Y,0) & $greater(a,Y) & aa(Y)=bb(X))))

First-Order Theorem Proving and VAMPIRE 33

11.3 Bound Propagation

We have recently extended VAMPIRE with a decision procedure for quantifier-free li-
near real and rational arithmetic. Our implementation is based on the bound propagation
algorithm of [16], BPA in the sequel. When VAMPIRE is run in the BPA mode on a
system of linear inequalities, VAMPIRE tries to solve these inequalities by applying
the BPA algorithm instead of the superposition calculus. If the system is found to be
satisfiable, VAMPIRE outputs a solution. To run VAMPIRE in the BPA mode, one should
use:

vampire --mode bpa problem.smt

where problem.smt is a set of linear real and rational inequalities represented in
the SMTLIB format [2]. We also implemented various options for changing the input
syntax and the representation of real and rational numbers in VAMPIRE; we refer to [36]
for details. Our BPA implementation in VAMPIRE is the first step towards combining
superposition theorem proving with SMT style reasoning.

11.4 Clausifier

VAMPIRE has a very fast TPTP parser and clausifier. One can use VAMPIRE simply to
clausify formulas, that is, convert them to clausal normal form. To this end, one should
use --mode clausify. Note that for clausification one can use all VAMPIRE’s op-
tions for preprocessing. VAMPIRE will output the result in the TPTP syntax, so that the
result can be processed by any other prover understanding the TPTP language.

11.5 Grounding

One can use VAMPIRE to convert an EPR problem to a SAT problem. This prob-
lem will be output in the DIMACS format. To this end one uses the option --mode
grounding. Note that VAMPIRE will not try to optimise the resulting set of proposi-
tional clauses in any way, so this feature is highly experimental.

12 Conclusions

We gave a brief introduction to first-theorem proving and discussed the use and im-
plementation of VAMPIRE. VAMPIRE is fully automatic and can be used in various
applications of automated reasoning, including theorem proving, first-order satisfiabil-
ity checking, finite model finding, and reasoning with both theories and quantifiers. We
also described our recent developments of new and unconventional applications of theo-
rem proving in program verification, including interpolation, loop invariant generation,
and program analysis.

34 L. Kovács and A. Voronkov

References

1. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A.
(eds.) Handbook of Automated Reasoning, ch. 2, vol. I, pp. 19–99. Elsevier Science (2001)

2. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB)
(2010), http://www.SMT-LIB.org

3. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing Finite Models by Reduc-
tion to Function-Free Clause Logic. J. of Applied Logic 7(1), 58–74 (2009)

4. Buchberger, B.: An Algorithm for Finding the Basis Elements of the Residue Class Ring of a
Zero Dimensional Polynomial Ideal. J. of Symbolic Computation 41(3-4), 475–511 (2006);
Phd thesis 1965, University of Innsbruck, Austria

5. Craig, W.: Three uses of the Herbrand-Gentzen Theorem in Relating Model Theory and
Proof Theory. J. of Symbolic Logic 22(3), 269–285 (1957)

6. Denzinger, J., Kronenburg, M., Schulz, S.: DISCOUNT — A Distributed and Learning Equa-
tional Prover. J. of Automated Reasoning 18(2), 189–198 (1997)

7. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, A., Voronkov, A. (eds.) Handbook
of Automated Reasoning, ch. 9, vol. I, pp. 535–610. Elsevier Science (2001)

8. Ganzinger, H., Korovin, K.: New Directions in Instantiation-Based Theorem Proving. In:
Proc. of LICS, pp. 55–64 (2003)

9. Hoder, K., Kovács, L., Voronkov, A.: Case Studies on Invariant Generation Using a Sat-
uration Theorem Prover. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part I. LNCS,
vol. 7094, pp. 1–15. Springer, Heidelberg (2011)

10. Hoder, K., Kovács, L., Voronkov, A.: Invariant Generation in Vampire. In: Abdulla, P.A.,
Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 60–64. Springer, Heidelberg
(2011)

11. Hoder, K., Kovács, L., Voronkov, A.: Playing in the Grey Area of Proofs. In: Proc. of POPL,
pp. 259–272 (2012)

12. Hoder, K., Voronkov, A.: Comparing Unification Algorithms in First-Order Theorem Prov-
ing. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 435–443.
Springer, Heidelberg (2009)

13. Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Refinement. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer,
Heidelberg (2006)

14. Knuth, D., Bendix, P.: Simple Word Problems in Universal Algebras. In: Leech, J. (ed.)
Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)

15. Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superposition Calculus. In:
Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Hei-
delberg (2007)

16. Korovin, K., Voronkov, A.: Solving Systems of Linear Inequalities by Bound Propagation.
In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 369–383.
Springer, Heidelberg (2011)

17. Kovács, L., Moser, G., Voronkov, A.: On Transfinite Knuth-Bendix Orders. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 384–399. Springer, Hei-
delberg (2011)

18. Kovács, L., Voronkov, A.: Finding Loop Invariants for Programs over Arrays Using a Theo-
rem Prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 470–485.
Springer, Heidelberg (2009)

19. Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination. In: Schmidt, R.A. (ed.)
CADE-22. LNCS, vol. 5663, pp. 199–213. Springer, Heidelberg (2009)

20. Kovács, L., Voronkov, A.: Vampire Web Page (2013), http://vprover.org

http://www.SMT-LIB.org
http://vprover.org

First-Order Theorem Proving and VAMPIRE 35

21. Löchner, B., Hillenbrand, T.: A Phytography of WALDMEISTER. AI Commun. 15(2-3),
127–133 (2002)

22. Lusk, E.L.: Controlling Redundancy in Large Search Spaces: Argonne-Style Theorem Prov-
ing Through the Years. In: Proc. of LPAR, pp. 96–106 (1992)

23. Martelli, A., Montanari, U.: An Efficient Unification Algorithm. TOPLAS 4(2), 258–282
(1982)

24. McCune, W.W.: OTTER 3.0 Reference Manual and Guide. Technical Report ANL-94/6,
Argonne National Laboratory (January 1994)

25. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

26. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 7, vol. I, pp. 371–443. Else-
vier Science (2001)

27. Riazanov, A., Voronkov, A.: Limited resource strategy in resolution theorem proving. Journal
of Symbolic Computations 36(1-2), 101–115 (2003)

28. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12(1),
23–41 (1965)

29. Schulz, S.: E — a Brainiac Theorem Prover. AI Commun. 15(2-3), 111–126 (2002)
30. Sekar, R., Ramakrishnan, I.V., Voronkov, A.: Term indexing. In: Robinson, A., Voronkov, A.

(eds.) Handbook of Automated Reasoning, ch. 26, vol. II, pp. 1853–1964. Elsevier Science
(2001)

31. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. J. Autom. Reason-
ing 43(4), 337–362 (2009)

32. Sutcliffe, G.: The CADE-23 Automated Theorem Proving System Competition - CASC-23.
AI Commun. 25(1), 49–63 (2012)

33. Sutcliffe, G.: The TPTP Problem Library (2013),
http://www.cs.miami.edu/˜tptp/

34. Sutcliffe, G.: The CADE ATP System Competition (2013),
http://www.cs.miami.edu/˜tptp/CASC/

35. Weidenbach, C., Gaede, B., Rock, G.: SPASS & FLOTTER. Version 0.42. In: McRobbie,
M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 141–145. Springer, Heidelberg
(1996)

36. http://www.complang.tuwien.ac.at/ioan/boundPropagation. Vampire
with Bound Propagation

http://www.cs.miami.edu/~tptp/
http://www.cs.miami.edu/~tptp/CASC/
http://www.complang.tuwien.ac.at/ioan/boundPropagation

	First-Order Theorem Proving and
	1 Introduction
	2 Mini-Tutorial
	2.1 A Simple Example
	2.2 Proof by Refutation
	2.3 Using Time and Memory Limit Options
	2.4 Limitations

	3 Proof-Search by Saturation
	3.1 Basic Notions
	3.2 Inference Systems and Proofs
	3.3 A Simple Inference System and Completeness
	3.4 Saturation

	4 Redundancy Elimination
	4.1 Generating and Simplifying Inferences
	4.2 A Simple Saturation Algorithm
	4.3 Saturation Algorithms of

	5 Preprocessing
	6 Coloured Proofs, Interpolation, and Symbol Elimination
	6.1 Interpolation
	6.2 Coloured Proofs and Symbol Elimination
	6.3 Interpolation and Symbol Elimination in

	7 Sorts and Theories
	7.1 Sorts
	7.2 Theory Reasoning

	8 Satisfiability Checking Finding Finite Models
	9 VAMPIRE Option and the CASC Mode
	10 Advanced TPTP Syntax
	11 Cookies
	11.1 Consequence Elimination
	11.2 Program Analysis
	11.3 Bound Propagation
	11.4 Clausifier
	11.5 Grounding

	12 Conclusions
	References

