
The Semantics of Progress in Lock-Based Transactional Memory

Rachid Guerraoui Michał Kapałka
EPFL, Switzerland

{rachid.guerraoui, michal.kapalka}@epfl.ch

Abstract
Transactional memory (TM) is a promising paradigm for concur-
rent programming. Whereas the number of TM implementations is
growing, however, little research has been conducted to precisely
define TM semantics, especially their progress guarantees. This pa-
per is the first to formally define the progress semantics of lock-
based TMs, which are considered the most effective in practice.

We use our semantics to reduce the problems of reasoning
about the correctness and computability power of lock-based TMs
to those of simple try-lock objects. More specifically, we prove
that checking the progress of any set of transactions accessing an
arbitrarily large set of shared variables can be reduced to verifying a
simple property of each individual (logical) try-lock used by those
transactions. We use this theorem to determine the correctness of
state-of-the-art lock-based TMs and highlight various configuration
ambiguities. We also prove that lock-based TMs have consensus
number 2. This means that, on the one hand, a lock-based TM
cannot be implemented using only read-write memory, but, on the
other hand, it does not need very powerful instructions such as the
commonly used compare-and-swap.

We finally use our semantics to formally capture an inherent
trade-off in the performance of lock-based TM implementations.
Namely, we show that the space complexity of every lock-based
software TM implementation that uses invisible reads is at least
exponential in the number of objects accessible to transactions.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Prob-
lems

General Terms Theory, Algorithms, Verification

Keywords Transactional memory, lock, try-lock, consensus num-
ber, impossibility, lower bound, reduction, semantics

1. Introduction
Multi-core processors are predicted to be common in home com-
puters, laptops, and maybe even smoke detectors. To exploit the
power of modern hardware, applications will need to become in-
creasingly parallel. However, writing scalable concurrent programs
is hard and error-prone with traditional locking techniques. On the
one hand, coarse-grained locking throttles parallelism and causes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’09, January 18–24, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-379-2/09/01. . . $5.00

lock contention. On the other hand, fine-grained locking is usually
an engineering challenge, and as such is not suitable for use by the
masses of programmers.

Transactional memory (TM) (Herlihy and Moss 1993) is a
promising technique to facilitate concurrent programming while
delivering comparable performance to fine-grained locking imple-
mentations. In short, a TM allows concurrent threads of an applica-
tion to communicate by executing lightweight, in-memory transac-
tions. A transaction accesses shared data and then either commits
or aborts. If it commits, its operations are applied to the shared state
atomically. If it aborts, however, its changes to the shared data are
lost and never visible to other transactions.

While a large number of TM implementations have been pro-
posed so far, there is still no precise and complete description of the
semantics of a TM. Indeed, a correctness criterion for TM, called
opacity, has been proposed (Guerraoui and Kapałka 2008a), and the
progress properties of obstruction-free TM implementations have
been defined (Guerraoui and Kapałka 2008c). However, opacity is
only concerned with safety—it does not specify when transactions
need to commit. (For example, a TM that aborts every transac-
tion could trivially ensure opacity.) Moreover, TM implementations
that are considered effective (Ennals 2006), e.g., TL2 (Dice et al.
2006), TinySTM (Felber et al. 2008), a version of RSTM (Marathe
et al. 2006), BartokSTM (Harris et al. 2006), or McRT-STM (Adl-
Tabatabai et al. 2006) are not obstruction-free. They internally use
locking, in order to reduce the overheads of TM mechanisms, and
do not ensure obstruction-freedom, which inherently precludes the
use of locks.

Lock-based TMs do ensure some progress for transactions, for
otherwise nobody would use them. However, this has never been
precisely defined. The lack of such a definition hampers the porta-
bility of applications that use lock-based TMs, and makes it dif-
ficult to reason formally about their correctness or to establish
whether any performance limitation is inherent or simply an arti-
fact of a specific implementation.

This paper defines the progress semantics of lock-based TMs.
We do so by introducing a new property, which we call strong pro-
gressiveness,1 and which stipulates the two following requirements.

1. A transaction that encounters no conflict must be able to com-
mit. (Basically, a conflict occurs when two or more concurrent
transactions access the same transactional variable and at least
one of those accesses is not read-only.)

2. If a number of transactions have only a “simple” conflict, i.e.,
on a single transactional variable, then at least one of them must
be able to commit.

The former property captures the common intuition about the
progress of any TM (see (Scott 2006)). The second property en-
sures that conflicts that are easy to resolve do not cause all con-

1 We call it “strong” by opposition to a weaker form of progressiveness that
we also introduce in this paper.

404

flicting transactions to be aborted. This is especially important
when non-transactional accesses to shared variables are encapsu-
lated inside unit transactions to ensure strong atomicity (Blun-
dell et al. 2006). Strong progressiveness, together with opacity and
operation-level wait-freedom,2 is ensured by state of the art lock-
based implementations, such as TL2, TinySTM, RSTM, Bartok-
STM, and McRT-STM.3

We use our strong progressive semantics to reduce the prob-
lems of reasoning about the correctness and computability power
of lock-based TMs to those of simple try-lock objects (Scott and
Scherer III 2001; Jayanti 2003). We first show that proving strong
progressiveness of a set of transactions accessing any number of
shared variables can be reduced to proving a simple property of
every individual logical try-lock that protects those variables. Ba-
sically, we prove that if it is possible to say which parts of a TM
algorithm can be viewed as logical try-locks (in a precise sense we
define in the paper), and if those logical try-locks are strong, then
the TM is strongly progressive. Intuitively, a try-lock is strong if it
guarantees that among processes that compete for the unlocked try-
lock, one always acquires the try-lock (most try-locks in the liter-
ature that are implemented from compare-and-swap or test-and-set
are strong). We illustrate our reduction approach on state-of-the-art
lock-based TMs. We formally establish and prove their correctness
while highlighting some of their configurations that, maybe unex-
pectedly, violate the progress semantics.

Then, still using the try-lock reduction, we show that a lock-
based TM has consensus number 2 in the parlance of (Herlihy
1991). The consensus number is a commonly used metric for the
computational power of a shared-memory abstraction, and is ex-
pressed as the maximum number of processes that can solve a non-
trivial agreement problem (namely consensus (Herlihy 1991)) in a
wait-free manner using this abstraction. The fact that a lock-based
TM has consensus number 2 means that such a TM cannot be im-
plemented using only read-write memory instructions, but, on the
other hand, powerful instructions such as compare-and-swap are
not necessary to implement a lock-based TM.

In fact, we give an implementation of a lock-based TM us-
ing read-write and test-and-set instructions. This implementation
might be interesting in its own right when compare-and-swap in-
structions are not available or simply too expensive. Interestingly,
we highlight an alternative semantics we call weak progressive-
ness which enables TMs with consensus number 1 and can thus
be implemented using only read-write memory. Intuitively, weak
progressiveness requires only that a transaction that encounters no
conflicts commits. This might be considered a viable alternative to
strong progressiveness for “lightweight” lock-based implementa-
tions.

We finally use our progress semantics to determine an inher-
ent trade-off between the required memory and the latency of reads
in lock-based TMs. This trade-off impacts the performance and/or
progress guarantees of a TM but it was never formally established,
precisely because of the lack of any precise semantics. We show
that the space complexity of every lock-based TM that uses the in-
visible reads strategy4 is at least exponential in the number of vari-
ables available to transactions. This might seem surprising, since it

2 Wait-freedom (Herlihy 1991) requires threads executing operations on
transactional data within transactions to make progress independently, i.e.,
without waiting for each other. Maybe surprisingly, this property can easily
be ensured by lock-based TMs.
3 The source code of the implementations of BartokSTM and McRT-STM
is not publicly available. We could thus verify strong progressiveness of
those TMs only from their algorithm descriptions in (Harris et al. 2006) and
(Adl-Tabatabai et al. 2006), respectively.
4 With invisible reads, the reading of transactional variables is performed
optimistically, without any (shared or exclusive) locking or updates to

is not obvious that modern lock-based TMs have non-linear space
complexity. The exponential (or, in fact, unbounded) complexity
comes from the use of timestamps that determine version num-
bers of shared variables. TM implementations usually reserve a
constant-size word for each version number (which gives linear
space complexity). However, an overflow can happen and has to
be handled in order to guarantee correctness (opacity). As we ex-
plain in Section 6.3, this requires (a) limiting the progress of trans-
actions when overflow occurs and (b) preventing read-only trans-
actions from being completely invisible. Concretely speaking, our
result means that efficient TM implementations (the ones that use
invisible reads) must either intermittently (albeit very rarely) vio-
late progress guarantees, or use unbounded timestamps.

Summary of contributions. To summarize, this paper contributes
to the understanding of TM design and implementations by present-
ing the first precise semantics of a large class of popular TMs—
lock-based ones. We precisely define the progress semantics of
such TMs and propose reduction approaches to simplify their ver-
ification and computational study. We also use our semantics to
study their inherent performance bottlenecks.

Roadmap. The rest of the paper proceeds as follows. First, in
Section 2, we describe the basic model and terminology used to
state our semantics and prove our results. Then, in Section 3, we
define the progress semantics of lock-based TMs. In Section 4, we
show how to simplify the verification of strong progressiveness.
Next, in Sections 5 and 6, we establish the fundamental power and
limitations of lock-based TMs. We also discuss in those sections
the impact of weakening progress properties. Finally, in Section 7,
we discuss possible extensions of the results presented in this paper.

Related work. It is worth noting that there has been an attempt to
describe the overall semantics of TMs (Scott 2006) (including lock-
based ones). However, the approach taken there is very low-level—
the properties are defined with respect to specific TM protocols and
strategies. Our approach is more general: we define semantics that
is implementation-agnostic and that is visible through the public
interface of a TM to a user. We also show how this semantics can
be verified.

There have also been other attempts to describe the semantics
of a TM, e.g., in (Vitek et al. 2004; Jagannathan et al. 2005; Abadi
et al. 2008; Moore and Grossman 2008; Menon et al. 2008). Those
papers, however, focus on safety, i.e., serializability. In (Moore
and Grossman 2008) there is a notion of progress, but it refers to
deadlock-freedom of the whole system (i.e., making sure at least
one thread can execute a step at any given time) rather than progress
of individual transactions.

2. Preliminaries
2.1 Shared Objects and their Implementations
We consider an asynchronous shared memory system of n pro-
cesses (threads) p1, . . . , pn that communicate by executing oper-
ations on (shared) objects. (At the hardware level, a shared object
is simply a word in shared memory with the instructions supported
by a given processor, e.g., read, write, or compare-and-swap.) An
example of a very simple shared object is a register,5 which exports
only read and write operations. Operation read returns the current
state (value) of the register, and write(v) sets the state of the register
to value v. Hence, a register provides the basic read-write memory
semantics.

shared state. Invisible reads are used by most TM implementations and
considered crucial for good performance in read-dominated workloads.
5 Note that we use here the term “register” in its distributed computing
sense: a read-write abstraction.

405

Consider a single run of any algorithm. A history is a sequence
of invocations and responses of operations that were executed by
processes on (shared) objects in this run. A history of an object x
is a history that contains only operations executed on x. (Note here
that we assume that events executed in a given run can be totally
ordered by their execution time; events that are issued at the same
time, e.g., on multi-processor systems, can be ordered arbitrarily.)

An object x may be implemented either directly in hardware,
or from other, possibly more primitive, objects, which we call base
objects. If Ix is an implementation of an object x, then an imple-
mentation history of Ix is a sequence of (1) invocations and re-
sponses of operations on x, and (2) corresponding operations on
base objects (called steps) that were executed by Ix (i.e., by pro-
cesses executing Ix) in some run. Hence, intuitively, a history of
an object x represents what happened in some run at the (public)
interface of x. An implementation history, in addition, shows what
steps the implementation of x executed in response to the opera-
tions invoked on x.

In algorithms, for simplicity, we assume that base objects
such as registers and test-and-set objects are atomic, i.e., lineariz-
able (Herlihy and Wing 1990). That is, operations on those objects
appear (to the application) as if they happened instantaneously at
some unique point in time between their invocation and response
events. (For example, in Java, a “volatile” variable is an atomic reg-
ister, while an object of class AtomicInteger is an atomic object
that supports operations such as get, set, incrementAndGet, etc.)

However, assuming a weaker memory model does not impact
our results: the progress properties we define do not rely on atom-
icity, strong try-lock objects are not linearizable, and atomic reg-
isters of any size can be implemented out of 1-bit safe (the most
primitive) registers (Lamport 1986).

If E is an (implementation) history, then E|pi denotes the
restriction of E to events (including steps) executed by process pi,
and E|x denotes the restriction of E to events on object x and
steps of the implementation of x. We assume that processes execute
operations on objects sequentially. That is, in every restriction E|pi

of an (implementation) history E, no two operations and no two
steps overlap.

We focus on object implementations that are wait-free (Herlihy
1991). Intuitively, an implementation Ix of an object x is wait-free
if a process that invokes an operation on x is never blocked indef-
initely long inside the operation, e.g., waiting for other processes.
Hence, processes can make progress independently of each other.
More precisely:

DEFINITION 1. An implementation Ix of an object x is wait-free,
if whenever any process pi invokes an operation on x, pi returns
from the operation within a finite number of its own steps.

2.2 Transactional Memory (TM)
A TM enables processes to communicate by executing transactions.
For simplicity, we will say that a transaction T performs some ac-
tion, meaning that the process executing T performs this action
within the transactional context of T . A transaction T may perform
operations on transactional variables, which we call t-variables
for short. For simplicity, we assume that every t-variable x sup-
ports only two operations: read that returns the current state (value)
of x, and write(v) that sets the state of x to value v. We discuss
in Section 7 what changes when t-variables are arbitrary objects,
i.e., objects that have operations beyond read and write (e.g., incre-
mentAndGet). Note, however, that most existing TMs either pro-
vide only read-write t-variables (e.g., word-based TMs), or effec-
tively treat all operations on t-variables as reads and writes (e.g.,
without exploiting the commutativity relations between non-read-
only operations).

Each transaction has its own unique identifier, e.g., T1, T2, etc.
A transaction Tk may access (read or write) any number of t-
variables. Then, Tk may either commit or abort. We assume that
once Tk commits or aborts Tk does not perform any further actions.
In this sense, restarting a transaction Tk (i.e., the computation Tk

was supposed to perform) is considered in our model as a different
transaction (with a different identifier).

We can treat a TM as an object with the following operations:

• treadk(x) and twritek(x, v) that perform, respectively, a read or
a write(v) operation on a t-variable x within a transaction Tk,

• tryCk that is a request to commit transaction Tk,
• tryAk that is a request to abort transaction Tk.

Each of the above operations can return a special value Ak that in-
dicates that the operation has failed and the respective transaction
Tk has been aborted. Operation tryCk returns value Ck if commit-
ting Tk has been successful. Operation tryAk always returns Ak

(i.e., it always succeeds in aborting transaction Tk).
The above operations of a TM, in some form, are either explic-

itly used by a programmer (e.g., in TL2, TinySTM, RSTM), or in-
serted by a TM-aware compiler (e.g., in McRT-TM, Bartok-STM).
Even if the compiler is responsible for inserting those operations,
the programmer must specify which blocks of code are parts of
transactions, and retains full control of what operations on which t-
variables those transactions perform. Hence, in either case, this TM
interface is visible to a programmer, and so are properties defined
with respect to this interface.

If H is an (implementation) history of a TM object, then H|Tk

denotes the restriction of H to only events of transaction Tk. We
say that a transaction Tk is in a history H , and write Tk ∈ H , if
H|Tk is a non-empty sequence.

Let H be any history and Tk be any transaction in H . We say
that Tk is committed in H , if H contains response Ck of operation
tryCk. We say that Tk is aborted in H , if H contains response Ak

of any TM operation.
We say that a transaction Tk follows a transaction Ti in a history

H , if Ti is committed or aborted in H and the first event of Tk in
H follows the last event of Ti in H . If neither Tk follows Ti in H ,
nor Ti follows Tk in H , then we say that Ti and Tk are concurrent
in H .

We assume that every transaction itself is sequential. That is, for
every history H of a TM and every transaction Tk ∈ H , H|Tk is
a sequence of non-overlapping TM operations. Clearly, operations
of different transactions can overlap. We also assume that each
transaction is executed by a single process, and that each process
executes only one transaction at a time (i.e., transactions at the same
process are never concurrent).

2.3 Try-Locks
All lock-based TMs we know of use (often implicitly) a special
kind of locks, usually called try-locks (Scott and Scherer III 2001).
Intuitively, a try-lock is an object that provides mutual exclusion
(like a lock), but does not block processes indefinitely. That is, if
a process pi requests a try-lock L but L is already acquired by
a different process, pi is returned the information that its request
failed instead of being blocked waiting until L is released.

Try-locks keep the TM implementation simple and avoid dead-
locks. Moreover, if any form of fairness is needed, it is provided
at a higher level than at the level of individual locks—then more
information about a transaction can be used to resolve conflicts and
provide progress. Ensuring safety and progress can be effectively
separate tasks.

More precisely, a try-lock is an object with the following oper-
ations:

406

1. trylock, that returns true or false; and

2. unlock, that always returns ok.

Let L be any try-lock. If a process pi invokes trylock on L and
is returned true, then we say that pi has acquired L. Once pi ac-
quires L, we say that (1) pi holds L until pi invokes operation un-
lock on L, and (2) L is locked until pi returns from operation unlock
on L. (Hence, L might be locked even if no process holds L—when
some process that was holding L is still executing operation unlock
on L.)

Every try-lock L guarantees the following property, called mu-
tual exclusion: no two processes hold L at the same time.

For simplicity, we assume that try-locks are not reentrant. That
is, a process pi may invoke trylock on a try-lock L only when pi

does not hold L. Conversely, pi may invoke unlock on L only when
pi holds L.

Intuitively, we say that a try-lock L is strong if whenever several
processes compete for L, then one should be able to acquire L.
This property corresponds to deadlock-freedom, livelock-freedom,
or progress (Raynal 1986) properties of (blocking) locks.

DEFINITION 2. We say that a try-lock L is strong, if L ensures the
following property, in every run: if L is not locked at some time t
and some process invokes operation trylock on L at t, then some
process acquires L after t.

While there exists a large number of lock implementations,
only a few are try-locks or can be converted to try-locks in a
straightforward way. The technical problems of transforming a
queue (blocking) lock into a try-lock are highlighted in (Scott and
Scherer III 2001). It is trivial to transform a typical TAS or TATAS
lock (Raynal 1986) into a strong try-lock (e.g., Algorithm 4 in
Section 5.2).

3. Progress of a Lock-Based TM
Lock-based TMs are TM implementations that use (internally)
mutual exclusion to handle some phases of a transaction. Most
of them use some variant of the two-phase locking protocol, well-
known in the database world (Eswaran et al. 1976).

From the user’s perspective, however, the choice of the mecha-
nism used internally by a TM implementation is not very important.
What is important is the semantics the TM manifests on its public
interface, and the time/space complexities of the implementation. If
those properties are known, then the designer of a lock-based TM
is free to choose the techniques that are best for a given hardware
platform, without the fear of breaking existing applications that use
a TM.

As we already mentioned, the correctness criterion for TMs, in-
cluding lock-based ones, is usually opacity (Guerraoui and Kapałka
2008a). This property says, intuitively, that (1) committed trans-
actions should appear as if they were executed sequentially, in
an order that agrees with their real-time ordering, (2) no trans-
action should ever observe the modifications to shared state done
by aborted or live transactions, and (3) all transactions, including
aborted and live ones, should always observe a consistent state of
the system. The first two properties correspond, roughly, to the clas-
sical database properties: strict serializability (Papadimitriou 1979)
and the strongest variant of recoverability (Hadzilacos 1988), re-
spectively. The last property is unique to TMs, and needs to be
ensured to prevent unexpected crashes or incorrect behavior of ap-
plications that use a TM.

However, opacity is not enough. A TM that always aborts every
transaction, or that blocks transactions infinitely long, could ensure
opacity and still be useless from the user’s perspective. In this
section, we define the progress properties of a lock-based TM.
These involve individual operations of transactions, where it is

typical to require wait-freedom, and entire transactions, for which
we will require our notion of strong progressiveness.

3.1 Liveness of TM Operations
If a process pi invokes an operation (tread, twrite, tryC, or tryA)
on a TM, we expect that pi eventually gets a response from the
operation. The response might be the special value Ak that informs
pi that its current transaction Tk has been aborted.

We assume that each implementation of a TM is a wait-free
object. That is, a TM ensures wait-freedom on the level of its oper-
ations. This property is indeed ensured by many current lock-based
TMs: if a transaction Tk encounters a conflict, Tk is immediately
aborted and the control is returned to the process executing Tk.

Note that a TM may use a contention manager to decide what to
do in case of a conflict. A contention manager is a logically external
module that can reduce contention by delaying or aborting some of
the transactions that conflict. In principle, a contention manager
could make transactions wait for each other, in which case wait-
freedom would be violated. However, such contention managers
change the progress properties of a TM significantly and as such
should be considered separately.

Operation wait-freedom may also be violated periodically by
some TM mechanisms that handle overflows. While those can be
unavoidable, as we discuss in Section 6.3, they are executed very
rarely. Moreover, one can easily predict when they could start. In
this sense, wait-freedom can be guaranteed except for some short
periods that can be signalled in advance to processes by, e.g., setting
a global flag.

3.2 Progress of Transactions
Intuitively, a transaction makes progress when it commits. One
would like most transactions to commit, except those that were
explicitly requested by the application to be aborted (using a tryA
operation of a TM). However, a TM may be often forced to abort
some transactions when the conflicts between them cannot be easily
resolved. We will call such transactions forcefully aborted. The
strong progressiveness property we introduce here defines when
precisely a transaction can be forcefully aborted.

Intuitively, strong progressiveness says that (1) if a transaction
has no conflict then it cannot be forcefully aborted, and (2) if a
group of transactions conflict on a single t-variable, then not all
of those transactions can be forcefully aborted. Roughly speaking,
two or more transactions conflict if they access the same t-variable
in a conflicting way, i.e., if at least one of those accesses is a write
operation. (It is worth noting that the notion of a conflict can be
easily generalized to t-variables with arbitrary operations, and to
arbitrary mappings between t-variables and locks that may allow
false conflicts. We discuss this in Section 7.)

Strong progressiveness is not the strongest possible progress
property. The strongest one, which requires that no transaction is
ever forcefully aborted, cannot be implemented without throttling
significantly the parallelism between transactions, and is thus im-
practical in multi-processor systems.

Strong progressiveness, however, still gives a programmer the
following important advantages. First, it guarantees that if two in-
dependent subsystems of an application do not share any mem-
ory locations (or t-variables), then their transactions are completely
isolated from each other (i.e., a transaction executed by a sub-
system A does not cause a transaction in a subsystem B to be
forcefully aborted). Second, it avoids “spurious” aborts: the cases
when a transaction can abort are strictly defined. Third, it ensures
global progress for single-operation transactions, which is impor-
tant when non-transactional accesses to t-variables are encapsu-
lated into transactions in order to ensure strong atomicity (Blundell
et al. 2006). Finally, it ensures that processes are able to eventu-

407

ally communicate via transactions (albeit in a simplified manner—
through a single t-variable at a time). Nevertheless, one can imag-
ine many other reasonable progress properties, for which strong
progressiveness can be a good reference point.

More precisely, let H be any history of a TM and Tk be any
transaction in H . We say that Tk is forcefully aborted in H , if Tk

is aborted in H and there is no invocation of operation tryAk in H .
We denote by WSetH(Tk) and RSetH(Tk) the sets of t-variables
on which Tk executed, respectively, a write or a read operation
in H . We denote by RWSetH(Tk) the union of sets RSetH(Tk) and
WSetH(Tk), i.e., the set of t-variables accessed (read or written)
by Tk in history H . We say that two transactions Ti and Tk in H
conflict on a t-variable x, if (1) Ti and Tk are concurrent in H ,
and (2) either x is in WSetH(Tk) and in RWSetH(Ti), or x is in
WSetH(Ti) and in RWSetH(Tk). We say that Tk conflicts with a
transaction Ti in H if Ti and Tk conflict in H on some t-variable.

Let H be any history, and Ti be any transaction in H . We denote
by CVarH(Ti) the set of t-variables on which Ti conflicts with
any other transaction in history H . That is, a t-variable x is in
CVarH(Ti) if there exists a transaction Tk ∈ H , k 6= i, such
that Ti conflicts with Tk on t-variable x.

Let Q be any subset of the set of transactions in a history H .
We denote by CVarH(Q) the union of sets CVarH(Ti) for all
Ti ∈ Q.

Let CTrans(H) be the set of subsets of transactions in a his-
tory H , such that a set Q is in CTrans(H) if no transaction in
Q conflicts with a transaction not in Q. In particular, if Ti is a
transaction in a history H and Ti does not conflict with any other
transaction in H , then {Ti} ∈ CTrans(H).

DEFINITION 3. A TM implementation M is strongly progressive,
if in every history H of M the following property is satisfied:
for every set Q ∈ CTrans(H), if |CVarH(Q)| ≤ 1, then some
transaction in Q is not forcefully aborted in H .

4. Verifying Strong Progressiveness
Verifying that a given TM implementation M ensures a given prop-
erty P might often be difficult as one has to reason about a large
number of histories involving an arbitrary number of transactions
accessing an arbitrary number of t-variables. This complexity is
greatly reduced if one can reduce the verification task to some
small subset of histories of M , e.g., involving a limited num-
ber of t-variables or transactions. This approach has been used,
e.g., in (Guerraoui et al. 2008) to automatically check opacity,
obstruction-freedom, and lock-freedom of TMs that feature certain
symmetry properties.

In this section, we show how to reduce the problem of prov-
ing strong progressiveness of histories with arbitrary numbers of
transactions and t-variables to proving a simple property of each
individual (logical) try-lock used in those histories. Basically, we
show that if a TM implementation M uses try-locks, or if one can
assign “logical” try-locks to some parts of the algorithm of M , and
if each of those try-locks is strong, then M ensures strong progres-
siveness. Unlike in (Guerraoui et al. 2008), we do not assume any
symmetry properties of a TM. Our result is thus complementary
to that of (Guerraoui et al. 2008), not only because it concerns a
different property, but also because it uses a different approach.

Our reduction theorem is general as it encompasses lock-based
TMs that use invisible reads, i.e., in which readers of a t-variable
are not visible to other transactions, as well as those that use
visible ones. We show also how the theory presented here can be
used to prove strong progressiveness of TL2, TinySTM, RSTM,
and McRT-STM. Finally, we point out one of the ambiguities of
ensuring strong progressiveness with visible reads.

4.1 Reduction Theorem
Let M be any TM implementation, and E be any implementation
history of M . Let E′ be any implementation history that is ob-
tained from E by inserting into E any number of invocations and
responses of operations of a try-lock Lx for every t-variable x. We
say that E′ is a strong try-lock extension of E, if the following
conditions are satisfied in E′:

STLE1. For every t-variable x, E′|Lx is a valid history of a strong
try-lock object;

STLE2. For every process pi and every t-variable x, if, at some
time t, pi invokes trylock on Lx or pi holds Lx, then pi executes
at t in E′ a transaction Tk such that x ∈ WSetE′(Tk);

STLE3. For every process pi and every transaction Tk ∈ E′|pi, if
Tk is forcefully aborted in E′, then either (1) pi while executing
Tk is returned false from every operation trylock on some try-
lock Lx, or (2) there is a t-variable x ∈ RSetE′(Tk), such that
some process other than pi holds Lx at some point while pi

executes Tk but before Tk acquires Lx (if at all).

THEOREM 4. For any TM implementation M , if there exists a
strong try-lock extension of every implementation history of M ,
then M is strongly progressive.

Proof. Assume, by contradiction, that there exists a TM implemen-
tation M , such that some implementation history E of M has a
strong try-lock extension E′, but E violates strong progressive-
ness. This means that there is a set Q in CTrans(E), such that
|CVarE(Q)| ≤ 1 and every transaction in Q is forcefully aborted
in E. Recall that Q is a subset of transactions, such that no trans-
action in Q has a conflict with a transaction outside of Q.

Assume first that CVarE(Q) = ∅. But then no transaction
in set Q has a conflict, and so, by STLE1–2, no transaction in Q
can fail to acquire a try-lock, or read a t-variable x such that try-
lock Lx is held by a concurrent transaction. Hence, by STLE3, no
transaction in Q can be forcefully aborted—a contradiction.

Let x be the t-variable that is the only element of set
CVarE(Q). Note first that if a transaction Tk in Q invokes opera-
tion trylock on some try-lock Ly (where y is a different t-variable
than x) then, by STLE2, no other transaction concurrent to Tk in-
vokes trylock on Ly or reads t-variable y. This is because no trans-
action in Q conflicts on a t-variable different than x.

Assume first that no transaction in set Q acquires try-lock Lx.
But then, by STLE1–3, no transaction in Q can be forcefully
aborted—a contradiction.

Let Tk be the first transaction from set Q to acquire try-lock Lx.
By STLE3, and because Tk is forcefully aborted, there is a trans-
action Ti that holds Lx after Tk starts and before Tk acquires Lx.
Clearly, by STLE2, x must be in WSetE(Ti), and so Ti must be in
set Q. But then Ti acquires Lx before Tk—a contradiction with the
assumption that Tk is the first transaction from set Q to acquire Lx.

�

4.2 Examples
We show here how our reduction theorems can be used to prove
the strong progressiveness of TL2, TinySTM, RSTM (one of its
variants), and McRT-STM. None of those TM implementations
explicitly use try-locks, and so we need to show which parts of
their algorithms correspond to operations on “logical” try-locks for
respective t-variables. We assume the use of a simple contention
manager that makes each transaction that encounters a conflict
abort itself. Such a contention manager (possibly with a back-off
protocol) is usually the default one in word-based TMs. We also
assume that the mapping between t-variables and locks is a one-to-

408

one function (which is the default in RSTM). This assumption is
revisited in Section 7.

TL2. This TM uses commit-time locking and deferred updates.
That is, locking and updating t-variables is delayed until the com-
mit time of transactions. The TL2 algorithm is roughly the follow-
ing (for a process pi executing a transaction Tk):

1. When Tk starts, pi reads the read timestamp of Tk from a global
counter C.

2. If Tk reads a t-variable x, pi checks whether x is not locked and
whether the version number of x is lower or equal to the read
timestamp of Tk. If any of those conditions is violated then Tk

is aborted.

3. Once Tk invokes tryCk, pi first tries to lock all t-variables that
were written to by Tk. Locking of a t-variable x is done by
executing a compare-and-swap (CAS) operation on a memory
word w(x) that contains, among other information, a locked
flag. If pi successfully changes the locked flag from false to
true, then pi becomes the exclusive owner of x and can up-
date x. If CAS fails, however, Tk is aborted.

4. Once all t-variables written to by Tk are locked, pi atomically
increments and reads the value of the global counter C. The
read value is the write timestamp of Tk.

5. Next, pi validates transaction Tk by checking, for every t-
variable x read by Tk, whether x is not locked by a transaction
other than Tk and whether the version number of x is lower
or equal to the read timestamp of Tk. Again, if any of those
conditions is violated then transaction Tk is aborted (and its
locks released).

6. Then, pi updates all the states of the locked t-variables with the
values written by Tk and the write timestamp of Tk.

7. Finally, Tk releases all the locked t-variables.

It is easy to assign logical try-locks to the above algorithm of
TL2, i.e., to build a try-lock extension of every implementation
history E of TL2. Basically, we put an invocation and response of
operation trylock on a try-lock Lx around any CAS operation that
operates on the locked flag of any t-variable x. The response is true
if CAS succeeds, and false otherwise. We also put an invocation
and response of operation unlock on Lx around the write operation
that sets the locked flag of x to false. It is straightforward to see
that this way we indeed obtain a valid try-lock extension of any
implementation history E of TL2:

1. Property STLE1 is ensured because a CAS on a word w(x) can
fail only when some other CAS on w(x) already succeeded,
and once a CAS on w(x) succeeds, no other CAS on w(x) can
succeed until the locked flag is reset. Hence, the single CAS
operation indeed implements a strong try-lock.

2. Property STLE2 is ensured because a transaction Ti invokes
CAS on a word w(x) only when (1) Ti wrote to t-variable x,
and (2) Ti is in its commit phase.

3. To prove that TL2 ensures property STLE3, consider any force-
fully aborted transaction Tk executed by some process pi (in
some implementation history E of TL2). Assume first that a
CAS operation executed by Tk (i.e., by pi while executing Tk)
on some word w(x) fails. But then (1) Tk could not have locked
try-lock Lx before, and (2) Tk is immediately aborted after-
wards. Hence, property STLE3 is trivially ensured. This means
that Tk reads some t-variable x and either (1) w(x) has the
locked flag set to true when Tk reads x (and w(x) is not locked
by Tk), or (2) the version number of x is larger than the read
timestamp of Tk. In case (1) property STLE3 is trivially en-

sured. Assume then case (2). This means that some transaction
Tm that has a write timestamp greater than the read timestamp
of Tk wrote to x either (a) before Tk read x, or (b) after Tk

read x and before Tk locked w(x). But then Tm must have ac-
quired its write timestamp, while holding try-lock Lx, after Tk

acquired its read timestamp and before Tk locked Lx (if at all).
Hence, STLE3 is ensured.

We thus obtain the following theorem:

THEOREM 5. TL2 (with a one-to-one t-variable to try-lock map-
ping) is strongly progressive.

TinySTM. There are two major differences with TL2. First,
TinySTM locks a t-variable x already inside any write operation
on x, i.e., locking is not delayed until the commit time of trans-
actions. Second, if a transaction Tk reads a t-variable x that has
a version number higher than the read timestamp of Tk, then Tk

tries to validate itself to avoid being aborted, instead of aborting
itself immediately. TinySTM uses CAS for locking, in the same
way as TL2. Hence, we can insert the invocations and responses of
operations on logical try-locks into any implementation history of
TinySTM in the same way as for TL2.

It is worth noting, however, that the overflow handling mecha-
nism, which can be turned on at compile time, breaks strong pro-
gressiveness in very long histories. As we discuss in Section 6.3,
this mechanism is necessary to overcome the complexity lower
bound and still guarantee correctness. However, strong progressive-
ness is still ensured in histories with the number of transactions
lower than the maximum value of the t-variable version number, or
between version number overflows.

THEOREM 6. TinySTM (with the overflow handling mechanism
turned off, and with a one-to-one t-variable to try-lock mapping)
is strongly progressive.

RSTM. This TM is highly configurable: currently there are four
TM backends to choose from, and each has a number of configura-
tion options. The two backends that are of interest here are LLT and
RedoLock. LLT is virtually identical to TL2. RedoLock has object-
level lock granularity. That is, transactions conflict if they access
(in a conflicting way) the same object, not necessarily the same
memory location (i.e., t-variables in RSTM are objects, not single
memory words as in TL2 and TinySTM). However, the algorithm
of RedoLock is, depending on the configuration option, similar to
either TL2 or TinySTM. The main difference is in the validation
heuristic that decides when a transaction needs to validate its read
set, but this does not impact strong progressiveness (the heuristic
does not by itself abort any transaction—it just determines when to
validate the read set of a transaction). Like in TL2 and TinySTM,
RedoLock uses CAS for locking, and so the same technique as for
TL2 and TinySTM can be used to prove that RSTM with RedoLock
backend is strongly progressive.

THEOREM 7. RSTM with the RedoLock backend is strongly pro-
gressive.

McRT-STM. The algorithm of McRT-STM (as described in (Adl-
Tabatabai et al. 2006)) is essentially the same as the one of
TinySTM, except that McRT-STM does not validate reads until
the commit time of a transaction (and so the timestamp-based read
validation technique is not necessary). McRT-STM also does not
handle timestamp overflows. Hence, as McRT-STM uses CAS for
locking, it is immediate that McRT-STM is strongly progressive.

THEOREM 8. McRT-STM is strongly progressive.

409

Visible reads. It may seem that the simplest way of implement-
ing a strongly progressive TM that uses visible reads is to use
read-write try-locks. Then, if a transaction Ti wants to read a t-
variable x, Ti must first acquire a shared (read) try-lock on x, and
if Ti wants to write to x, Ti must acquire an exclusive (write) try-
lock on x. However, this simple algorithm does not ensure strong
progressiveness, even if the read-write try-locks are (in some sense)
strong. Consider transactions Ti and Tk that read a t-variable x.
Clearly, both transaction acquire a shared lock on x. But then, if
both Ti and Tk want to write to x, it may happen that both get
aborted. This is because a transaction Tk cannot acquire an exclu-
sive try-lock on x if any other transaction holds a shared try-lock
on x.

A simple way to implement a strongly progressive TM with in-
visible reads is to use (standard) try-locks. Then, only the writing to
a t-variable x requires acquiring a try-lock on x. A transaction that
wants to reads x simply adds itself to the list of readers of x (if the
try-lock of x is unlocked). This list, however, is not used to imple-
ment a read-write try-lock semantics, but to allow a transaction that
writes to x to invalidate and abort all the current readers of x. Such
a TM can be verified to be strongly progressive using our reduc-
tion theorem. A separate reduction theorem, based on read-write
try-locks, is thus not necessary, and would probably be incorrect
(trying to provide such a theorem allowed us to discover this ambi-
guity).

5. The Power of a Lock-Based TM
In this section, we use our semantics to determine the computa-
tional power of lock-based TMs. We use the notion of consensus
number (Herlihy 1991) as the metric of power of an object. The
consensus number of an object x is defined as the maximum num-
ber of processes for which one can implement a wait-free consensus
object using any number of instances of x (i.e., objects of the same
type as x) and registers. A consensus object, intuitively, allows pro-
cesses to agree on a single value chosen from the values those pro-
cesses have proposed. More formally, a consensus object imple-
ments a single operation: propose(v). When a process pi invokes
propose(v), we say that pi proposes value v. When pi is returned
value v′ from propose(v), we say that pi decides value v′. Every
consensus object ensures the following properties in every execu-
tion: (1) no two processes decide different values (agreement), and
(2) every value decided is a value proposed by some process (va-
lidity).

According to (Herlihy 1991), if an object x has consensus num-
ber k, then one cannot implement x using objects with consensus
number lower than k. For example, a queue and test-and-set have
consensus number 2, and so they cannot be implemented from only
registers (which have consensus number 1).

We prove here that the consensus number of a strongly progres-
sive TM is 2. We do so in the following way. First, we prove that a
strongly progressive TM is computationally equivalent to a strong
try-lock. That is, one can implement a strongly progressive TM
from (a number of) strong try-locks and registers, and vice versa.
Second, we determine that the consensus number of a strong try-
lock is 2.

The equivalence to a strong try-lock is interesting in its own
right. It might also help proving further impossibility results as a
strong try-lock is a much simpler object to reason about than a lock-
based TM.

5.1 Equivalence between Lock-Based TMs and Try-Locks
To prove that a strongly progressive TM is (computationally) equiv-
alent to a strong try-lock, we exhibit two algorithms: Algorithm 1
that implements a strong try-lock from a strongly progressive TM
object and a shared memory register, and Algorithm 2 that imple-

Algorithm 1: An implementation of a strong try-lock from
a strongly progressive TM object (k is a unique transaction
identifier generated for every operation call)

uses: M—TM object, x1, x2, . . .—binary t-variables,
V —register

initially: x1, x2, . . . = false, V = 1

operation trylock1
v ← V.read;2
locked←M.treadk(xv);3
if locked = Ak or locked = true then return false;4
s←M.twritek(xv, true);5
if s = Ak then return false;6
s←M.tryCk;7
if s = Ak then return false;8
else return true;9

operation unlock10
v ← V.read;11
V.write(v + 1);12
return ok;13

ments a strongly progressive TM from a number of strong try-locks
and registers. Both algorithms are not meant to be efficient or prac-
tical: their sole purpose is to prove the equivalence result.

The intuition behind Algorithm 1 is the following. We use an
unbounded number of binary t-variables x1, x2, . . . (each initial-
ized to false) and a single register V holding an integer (initialized
to 1). If the value of V is v, then the next operation (trylock or
unlock) will use t-variable xv . If xv equals true, then the lock is
locked. A process pi acquires the lock when pi manages to execute
a transaction Tk that changes the value of xv from false to true.
Then, pi releases the lock by incrementing the value of register V ,
so that xv′ = false where v′ is the new value of V . (Note that in-
crementing V in two steps is safe here, as only one process—the
one that holds the lock—may execute lines 11–12 at a time.) The
implemented try-lock is strong because whenever several processes
invoke trylock, at least one of those processes will commit its trans-
action (as the TM is strongly progressive) and acquire the try-lock.

Due to space constraints, the following lemma is proved in the
extended version of this paper (Guerraoui and Kapałka 2008b).

LEMMA 9. Algorithm 1 implements a strong try-lock.

The intuition behind Algorithm 2 is the following. We use a
typical two-phase locking scheme with eager updates, optimistic
(invisible) reads, and incremental validation (this can be viewed
as a simplified version of TinySTM that explicitly uses strong try-
locks). Basically, whenever a transaction Ti invokes operation write
on a t-variable x for the first time, Ti acquires the corresponding
try-lock Lx (line 13) and marks x as locked (line 21). Then, Ti may
update the state of x in TVar[x] any number of times. The original
state of x is saved by Ti in oldval[x], so that if Ti aborts then all
the updates of t-variables done by Ti can be rolled back (line 39).
If, at any time, Ti fails to acquire a try-lock, Ti aborts. This ensures
freedom from deadlocks.

If Ti invokes operation read on a t-variable y that Ti has not
written to before, Ti reads the current value of y (line 2) and
validates itself (function validate). Validation ensures that none of
the t-variables that Ti read so far has changed or has been locked,
thus preventing Ti from having an inconsistent view of the system.
If validation fails, Ti is aborted. Because values written to any
t-variable are not guaranteed to be unique, and because, in our

410

Algorithm 2: An implementation of a strongly progressive
TM from strong try-locks and registers

uses: Lx—strong try-lock (for each t-variable x),
TVar—array of registers (other variables are local)

initially: TVar[x] = (0, 0, false) for each t-variable x,
rset = wset = ∅

operation treadk(x)1
(v, ts, locked)← TVar[x].read;2
if x ∈ wset then return v;3
if x /∈ rset then4

readts[x]← ts;5
rset← rset ∪ {x};6

if (not validate) or locked then7
abort;8
return Ak;9

return v;10

operation twritek(x, v)11
if x /∈ wset then12

locked← Lx.trylock;13
if not locked then14

abort;15
return Ak;16

(v′, ts, locked)← TVar[x].read;17
if x /∈ wset then18

oldval[x]← v′;19
wset← wset ∪ {x};20

TVar[x].write(v, ts, true);21
return ok;22

operation tryCk23
if not validate then24

abort;25
return Ak;26

for x ∈ wset do27
(v, ts, locked)← TVar[x].read;28
TVar[x].write(v, ts + 1, false);29
Lx.unlock;30

wset← rset← ∅;31
return Ck;32

operation tryAk33
abort;34
return Ak;35

function abort36
for x ∈ wset do37

(v, ts, locked)← TVar[x].read;38
TVar[x].write(oldval[x], ts, false);39
Lx.unlock;40

wset← rset← ∅;41

function validate42
for x ∈ rset do43

(v, ts, locked)← TVar[x];44
if (locked and x /∈ wset) or ts 6= readts[x] then45

return false;46

return true;47

Algorithm 3: An implementation of wait-free consensus from
a strong try-lock in a system of 2 processes (code for process
pi, i = 1, 2)

uses: L—strong try-lock, V1, V2—registers

operation propose(v)1
Vi.write(v);2
locked← L.trylock;3
if locked then return v;4
else return V(3−i).read;5

simplified model, a try-lock does not have an operation that would
read its state, we store with the state of each t-variable x a (unique)
timestamp (version number) of x and a locked flag that is set to
true if x is being written to by some transaction. The timestamps
and locked flags are used for validation.

To commit a transaction Ti, the algorithm first validates Ti

(line 24). Then, for each t-variable x written to by Ti, the timestamp
of x is incremented by 1, the locked flag of x is set to false (line 29),
and finally the try-lock Lx of x is unlocked (line 30). Aborting
Ti requires rolling back all the updates done by Ti (line 39) and
unlocking all the try-locks acquired by Ti (line 40).

LEMMA 10. Algorithm 2 implements a strongly progressive TM.

Due to space constraints, the proof of Lemma 10 is omitted. It
can be found in the extended version of this paper (Guerraoui and
Kapałka 2008b). Note that strong progressiveness of Algorithm 2
is trivial to verify using our reduction theorem, because every im-
plementation history of this algorithm is its own try-lock extension
(i.e., it ensures properties STLE1–3).

From Lemma 9 and Lemma 10, we immediately obtain the fol-
lowing result (recall that an object x is (computationally) equiva-
lent to an object y, if y can be implemented from any number of
instances of x and registers, and x can be implemented from any
number of instances of y and registers):

THEOREM 11. Every strongly progressive TM is equivalent to a
strong try-lock.

5.2 Consensus Number of Strong Try-Locks
To prove that the consensus number of a strong try-lock is 2,
we show that (1) a strong try-lock can implement consensus in a
system of 2 processes, and (2) there is no algorithm that implements
consensus using (any number of) strong try-locks and registers in a
system of 3 (or more) processes.

Algorithm 3 shows an implementation of consensus for two
processes (p1 and p2) using a single strong try-lock (L) and two
registers (V1 and V2). The process pi that acquires L is the winner:
the value proposed by pi, and written by pi to register Vi, is
decided by both p1 and p2. Because L is a strong try-lock, if both
processes concurrently execute operation propose, at least one of
them acquires L. Because no process ever unlocks L, at most one
process acquires L. Hence, exactly one process is the winner.

Due to space constraints, the following lemma is proved in the
extended version of this paper (Guerraoui and Kapałka 2008b).

LEMMA 12. Algorithm 3 implements wait-free consensus in a sys-
tem of 2 processes.

To prove that there is no algorithm that implements consensus
using strong try-locks and registers in a system of 3 (or more)
processes, we show in Algorithm 4 that a strong try-lock can be

411

Algorithm 4: An implementation of a strong try-lock from a
test-and-set object

uses: S—test-and-set object
initially: S = false

operation trylock1
locked← S.test-and-set;2
return ¬ locked;3

operation unlock4
S.reset;5

implemented from a single test-and-set object.6 Because a test-
and-set object has consensus number 2, the algorithm proves that a
strong try-lock cannot have consensus number higher than 2. Note
that the presented algorithm is a non-blocking version of a simple
and well-known TAS lock (Raynal 1986). The following lemma is
thus trivial to verify:

LEMMA 13. Algorithm 4 implements a strong try-lock.

From Lemma 12 and Lemma 13, we immediately obtain the
following result:

THEOREM 14. A strong try-lock has consensus number 2.

Hence, by Theorem 11 and Theorem 14, the following theorem
holds:

THEOREM 15. Every strongly progressive TM has consensus num-
ber 2.

COROLLARY 16. There is no algorithm that implements a strongly
progressive TM using only registers.

5.3 Weakening Strong Progressiveness
Interestingly, nailing down precisely the progress property of a
lock-based TM also helps consider alternative semantics and their
impacts. We discuss here how one has to weaken the progress
semantics of a lock-based TM so that it could be implemented
with registers only. We define a property called weak progressive-
ness that enables (lightweight) TM implementations with consen-
sus number 1.

Intuitively, a TM is weakly progressive if it can forcefully abort
a transaction Ti only if Ti has a conflict with another transaction.
More precisely:

DEFINITION 17. A TM implementation M is weakly progressive,
if in every history H of M the following property is satisfied: if
a transaction Ti ∈ H is forcefully aborted, then Ti conflicts with
some transaction in H .

We correlate this notion with the concept of a weak try-lock:
a try-lock which operation trylock executed by a process pi may
always return false if another process is concurrently executing
trylock on the same try-lock object. That is, pi is guaranteed to
acquire a weak try-lock L only if L is not locked and no other
process tries to acquire L at the same time. More precisely:

DEFINITION 18. We say that a try-lock L is weak if L has the
following property: if a process pi invokes trylock on L at some
time t, L is not locked at t, and no process other than pi executes
operation trylock on L at time t or later, then pi is returned true.

6 A test-and-set object has two operations: test-and-set, which atomically
reads the state of the object, sets the state to true, and returns the state read,
and reset, which sets the state to false.

Algorithm 5: An implementation of a weak try-lock using
registers (code for process pi)

uses: R[1, . . . , n]—array of registers
initially: R[k] = 0 for k = 1, . . . , n

operation trylock1
s← getsum;2
if s > 0 then return false;3
R[i].write(1);4
s← getsum;5
if s = 1 then return true;6
R[i].write(0);7
return false;8

operation unlock9
R[i].write(0);10
return ok;11

function getsum12
s← 0;13
for k = 1 to n do s← s + R[k].read;14
return s;15

While we do not know of any existing implementation of a
weak try-lock, such an implementation can be easily obtained from
several well-known (blocking) mutual exclusion algorithms, e.g.,
those proposed in (Lamport 1985) that ensure at least the shutdown
safety property introduced in the same paper.

An example implementation of a weak try-lock using only reg-
isters, similar in concept to some of the lock implementations
in (Lamport 1985), is given in Algorithm 5. The intuition behind
the algorithm is the following. If a process pi invokes operation try-
lock on a try-lock L implemented by the algorithm, pi first checks
whether any other process holds L (lines 2–3). If not, pi announces
that it wants to acquire L by setting register R[i] to 1 (line 4). Then,
pi checks whether it is the only process that wants to acquire L
(lines 5–6). If yes, then pi acquires L (returns true). Otherwise, pi

resets R[i] back to 0 (so that future invocations of trylock may suc-
ceed) and returns false. Clearly, if two processes execute trylock in
parallel, then both can reach line 6. However, then at least one of
them must observe that more than one register in array L is set to 1,
and return false.

LEMMA 19. Algorithm 5 implements a weak try-lock.

Proof. Denote Algorithm 5 by A, and by L—a try-lock object
implemented by A. First, it is straightforward to see that A is wait-
free: it does not have any loops or waiting statements and all base
objects used by A are wait-free.

Assume, by contradiction, that A does not ensure mutual ex-
clusion. Hence, there is an implementation history E of A in which
some two processes, say pi and pk, hold L at some time t. Consider
only the latest trylock operations of pi and pk on L before t. Both
of those operations must have returned true. Process pi observes
that R[k] = 0 in line 5, and so pi reads R[k] before pk writes 1 to
R[k] in line 4. Hence, pk reads R[i] (in line 5) after pi writes 1 to
R[i]. Thus, pk reads that R[i] and R[k] equal 1 and returns false in
line 6—a contradiction.

It is easy to see that, for any process pi, if R[i] = 1 then either
pi holds L or pi is executing operation trylock on L. Hence, if a
process pi returns false from trylock, then either L is held by an-
other process or another process is executing trylock concurrently
to pi. This means that L is a weak try-lock. �

412

From Lemma 19, we obtain the following result:

THEOREM 20. A weak try-lock has consensus number 1.

It is straightforward to see that using weak try-locks instead of
strong ones in the TM implementation shown in Algorithm 2 gives
a TM that ensures weak progressiveness. Hence, by Theorem 20,
we immediately prove the following result:

THEOREM 21. Every weakly progressive TM has consensus num-
ber 1.

6. Performance Trade-Off
We prove that the space complexity of every weakly (and, a for-
tiori, strongly) progressive TM that uses invisible reads is at least
exponential with the number of t-variables available to transactions.
The invisible reads strategy is used by a majority of TM implemen-
tations (Dice et al. 2006; Marathe et al. 2006; Harris et al. 2006;
Adl-Tabatabai et al. 2006; Felber et al. 2008) as it allows efficient
optimistic reading of t-variables. Intuitively, if invisible reads are
used, a transaction that reads a t-variable does not write any infor-
mation to base objects. Hence, many processors can concurrently
execute transactions that read the same t-variables, without inval-
idating each other’s caches and causing high traffic on the inter-
processor bus. However, transactions that update t-variables do not
know whether there are any concurrent transactions that read those
variables.

6.1 Semantics of Invisible Reads
We state our lower bound result assuming a simplified definition
of the notion of invisible reads. This is sufficient for our lower
bound proof, and is in agreement with what is ensured by various
TM implementations (Dice et al. 2006; Marathe et al. 2006; Felber
et al. 2008). Intuitively, we say that a TM implementation M uses
invisible reads, if it does not modify the state of any base object
when processing a read operation on any t-variable.

We capture this more precisely using the notion of a configura-
tion. A configuration is the state of all base objects at a given point
in time. Assuming that the initial state of base objects is fixed, and
that base objects are deterministic, the configuration after any im-
plementation history E can be precisely determined.

Let E be any implementation history of a TM. We define an
operation execution of a process pi in E to be any pair of (a) an
invocation of operation tread or twrite and (b) the subsequent re-
sponse of this operation in the sub-history E|pi. If e is an operation
execution of some process pi in E, then every step in E|pi between
the invocation and the response of e is said to be corresponding to e.

DEFINITION 22. A TM implementation M uses invisible reads if,
for every implementation history E of M , no step corresponding to
an execution of operation tread in E changes the configuration.

6.2 The Lower Bound
The size of a t-variable or a base object x can be defined as the
number of distinct, reachable states of x. In particular, if x is a t-
variable or a register object, then the size of x is the number of
values that can be written to x. For example, the size of a 32-bit
register is 232.

THEOREM 23. Every weakly progressive TM implementation that
uses invisible reads and provides to transactions Ns t-variables of
size Ks uses Ω

`
Ks

Ns/Kb

´
base objects of size Kb.

Due to space constraints, we give here only a sketch of the
proof. The full proof can be found in the companion technical
report (Guerraoui and Kapałka 2008b).

Proof. (sketch) Let M be any weakly progressive TM implemen-
tation that uses invisible reads and provides to transactions Ns t-
variables x1, . . . , xNs of size Ks. Basically, the proof consists of
constructing a set of implementation histories E1, . . . , EL of M ,
such that the following conditions are satisfied.

1. The number L of those histories is Ω
`
Ks

Ns
´
.

2. Each history Ek is characterized by a pair of a base object b
and a state w of b, such that (roughly speaking) base object b is
never in state w within histories Ek+1, . . . , EL.

This implies that M must use at least L/Kb base objects of size
Kb (i.e., L base object-value pairs, each characterizing one imple-
mentation history Ek). We explain the construction of this set of
histories in the following paragraphs.

Consider an implementation history E of M in which process
p1 executes a number of transactions, each of which writes to ev-
ery t-variable. In parallel, process p2 tries to execute in E a single
transaction T2 that reads every t-variable (i.e., takes a snapshot of
all Ns t-variable values). Because (a) T2 executes only read oper-
ations and (b) M uses invisible reads, process p2, while executing
T2, cannot change the state of any base object until the commit
time of T2. Hence, p1 has no way to determine that p2 is concur-
rently executing some transaction—in this sense T2 is effectively
invisible to p1.

Let Q be the set of configurations after every transaction of p1.
If p2 executes T2 entirely between some two transactions of p1,
then p2 observes some configuration c from set Q. In this case, p2

cannot abort T2, because there is no transaction concurrent to T2

(and we assume M to be weakly progressive). Transaction T2 must
then return the values (v1, . . . , vNs) written to t-variables by the
latest transaction of p1 executed before T2. Conversely, if p2 deter-
mines that the current configuration is c, then p2 cannot abort T2

and has to return to T2 values (v1, . . . , vNs). In this sense, the tuple
(v1, . . . , vNs) of t-variable values corresponds to configuration c,
and vice versa. (Note that there may be many configurations in set
Q that correspond to a given tuple of values, but at most one tuple
of values can correspond to a given configuration.)

Process p2, in each step, can only read the state of a single
base object. However, between any two steps of p2, process p1

may execute any number of transactions and almost entirely change
the configuration. (This is because the system is asynchronous and
process p1 is not aware of T2 until the commit time of T2.) Hence,
if every step of p2 falls in between two transactions executed
by p1, then p2, while executing T2, may observe (almost) any
combination of configurations from set Q. But opacity requires
that T2 is returned values from one of the tuples written in E by
the transactions of process p1. (Note that opacity requires that T2

is returned a consistent snapshot of t-variable values regardless of
whether T2 eventually commits or aborts). That is, T2 cannot be
returned values from any tuple s that is not written by transactions
of p1 in E. Therefore, no combination of configurations from set
Q can correspond to such an “illegal” tuple s.

Let S = {s1, s2, . . . , sL} be the set of all possible tuples of
t-variable values (L = Ks

Ns). That is, each value si in S is a tuple
(v1, . . . , vNs), where each vk is a value of t-variable xk. Let Si

denote the subset {si, . . . , sL} of S. The crux of the proof is to
show that there exist a sequence of sets QL ⊂ QL−1 ⊂ . . . ⊂ Q1

that have the following properties:

1. Every element of Q1 is a configuration just after some trans-
action of p1 in some implementation history E of M in which
p1 executes a sequence of transactions, each writing to all t-
variables.

2. Every set Qk contains at least one configuration that corre-
sponds to tuple sk of t-variable values.

413

3. For every configuration ci in any set Qk, we can find a non-
empty sequence Gi of transactions, each writing to t-variables
the values from a tuple in set Sk, such that if the system is
in configuration ci and process p1 executes the sequence Gi,
then the system is back to configuration ci. That is, we can get
from any configuration in set Qk, which corresponds to a tuple
from set Sk, back to the same configuration by executing only
transactions that write tuples from set Sk.

The main reason why we can prove that such a sequence of sets
exists is the fact that the number of configurations is finite (if it
is infinite, Theorem 23 trivially holds). This means that if process
p1 executes infinitely many transactions, each writing values from
a tuple in a set Sk, then some configurations (at least one corre-
sponding to each tuple in Sk) must appear infinitely many times.

The properties of sets Q1, . . . , QL imply that, for each set Qk,
we can construct an implementation history Ek of M , in which
process p1 executes transactions that write tuples from set Sk and
process p2, while executing transaction T2 that reads all t-variables,
observes an arbitrary combination c of configurations from set
Qk (at least until the commit time of T2). Basically, whenever p2

is about to access a base object b, we let p1 execute a sequence
of transactions (each writing a tuple from Sk) that results in a
configuration in which the state of b is the same as the state of b
in (virtual) configuration c.

Clearly, a combination c of configurations from set Qk cannot
correspond to any tuple from set S−Sk. Otherwise, T2 would read
a snapshot of t-variable values that was never written by any trans-
action of p1 in Ek, which would violate opacity. Therefore, we can
show that, for each set Sk, there must be a pair (blk , wlk), where
blk is a base object and wlk its state, such that no configuration in
set Qk+1 has blk in state wlk . Hence, M needs L = Ks

Ns such
pairs, i.e., Ks

Ns/Kb base objects. �

6.3 Overcoming the Lower Bound
Our lower bound relies on three properties of a TM: weak pro-
gressiveness, operation wait-freedom, and invisible reads. It could
seem that weakening (reasonably) any of those properties would
allow overcoming the lower bound. We explain (informally) in the
following paragraphs why this is not the case, and what has to be
done in order for the lower bound not to hold.

Consider the following progress property, which is strictly
weaker than weak progressiveness: if a transaction Ti is force-
fully aborted, then there must be a transaction concurrent to Ti.
We say that a TM that ensures this property is non-trivial—indeed,
this seems like a basic requirement for a TM. However, non-trivial
TMs do not overcome the complexity bound if they ensure oper-
ation wait-freedom and use invisible reads. Basically, in the proof
of Theorem 23, transactions executed by processes p1 and p2 are
not aware of any concurrent transactions, and so they will not be
forcefully aborted in a non-trivial TM.

Consider the following liveness property, which we call ter-
mination: if a process pi invokes an operation on a TM object,
then pi eventually returns from the operation. Clearly, termination
is strictly weaker than wait-freedom. Consider a TM that ensures
weak progressiveness and termination, and that uses invisible reads.
Again, the complexity lower bound holds for such a TM: as in the
proof of Theorem 23 process p1 and p2 is not aware of the opera-
tions executed by the other process, no process can block waiting
for the other one to execute steps. Hence, in the particular execution
used in the proof, termination would be sufficient.

Assume now that we allow a TM that uses invisible reads to
update the state of a constant number of base objects in the first
operation of every transaction, even if this operation is a read. We
say then that such a TM uses weak invisible reads. Hence, each

transaction is allowed to announce its start. This means that, in the
proof of Theorem 23, process p1 can be aware of transaction T2

executed by process p2. However, if the transactions executed by
p1 and p2 access not all but almost all t-variables (all except for
a constant number), then p2 would not be allowed (in general) to
forcefully abort its transactions, as there would be no guarantee that
there is a conflict between those transactions and transaction T2.

This means that to overcome the lower bound we need to
weaken more than one property of the TM. For example, TinySTM
can be compiled with an option to enable a mechanism that han-
dles timestamp overflows. (Without such a mechanism TinySTM
can violate opacity in very long executions, as can TL2 or the LLT
backend of RSTM.) Then, TinySTM uses weak invisible reads and
may periodically violate both strong progressiveness and operation
wait-freedom. Roughly speaking, once a transaction overflows a
version number of a t-variable x, all transactions that access x are
aborted, and all transactions that start afterwards are blocked on
a barrier. Once there is no running transaction, the version num-
ber of x can be reset and transactions can proceed. This means
that TinySTM ensures strong progressiveness and operation wait-
freedom between timestamp overflows, but when an overflow hap-
pens the TM becomes only non-trivial and its operation-level live-
ness is reduced to termination.

7. Concluding Remarks
The two major assumptions we made in this paper were that t-
variables support only read and write operations, and that the map-
ping between t-variables and corresponding try-locks is a one-to-
one relation. We discuss here how those assumptions can be re-
laxed (at the price of increasing the complexity of the model and
definitions). We also discuss the problem of model checking TMs
for strong progressiveness.

Arbitrary t-variables. Object-based TMs support t-variables of
arbitrary type. However, most of them classify all the operations
of t-variables as either read-only or update ones. In those cases,
there is no need to extend our simplified model, because read-
only operations are effectively reads, and update operations are
effectively pairs of reads and writes.

We can, however, imagine a TM that exploits the commutativ-
ity relations between some operations of t-variables of any type.
In this case, one can extend the model of a TM to allow for arbi-
trary operations on t-variables, and redefine the notion of a conflict.
Indeed, operations that commute should not conflict. Consider for
example a counter object and its operation inc that increments the
counter and does not return any meaningful value. It is easy to see
that there is no real conflict between transactions that concurrently
invoke operation inc on the same counter: the order of those opera-
tions does not matter and is not known to transactions (it would be,
however, if inc returned the current value of the counter).

Once the notion of a conflict is defined, our definitions of
progress properties remain correct even for t-variables with arbi-
trary operations. If we assume that a TM must support t-variables
with operations read and write (in addition to other t-variables),
then also the consensus number and complexity lower bound re-
sults hold for those TMs. However, the question of how to ver-
ify strong progressiveness of TM implementations with arbitrary
t-variables is an open problem.

Arbitrary t-variable to try-lock mappings. Many lock-based TMs
employ a hash function to map a t-variable to the corresponding
try-lock. It may thus happen that a false conflict occurs between
transactions that access disjoint sets of t-variables, and so, a pri-
ori, strong progressiveness might be violated. However, it is easy to
take the hash function h of a TM implementation M into account in

414

the definition of strong progressiveness. Basically, when a transac-
tion Ti reads or writes a t-variable x in a history H of M , we add to,
respectively, the read set (RSetH(Ti)) or the write set (WSetH(Ti))
of Ti not only x, but also every t-variable y such that h(x) = h(y).
The definition of a conflict hence also takes into account false con-
flicts between transactions, and the strong progressiveness property
can be ensured by M . (Such a property could be called h-based
strong progressiveness.) It is important to note, however, that the
hash function must be known to a user of a TM, or even provided
by the user. Otherwise, strong progressiveness (and, for that matter,
any other property that relies on the notion of a conflict) would no
longer be visible, and very meaningful, to a user.

Model checking. While our reduction theorem simplifies prov-
ing strong progressiveness of a TM implementation, it might still
be difficult to verify this property in an automatic manner. Indeed,
even when verifying histories from the perspective of individual
try-locks, we have to deal with an unbounded number of states. A
solution would be to propose a reduction theorem along the lines
of (Guerraoui et al. 2008), assuming that a TM implementation has
certain symmetry properties. Two problems arise then. First, one
has to express those properties in the fine-grained model we use
((Guerraoui et al. 2008) assumes operations like validate or com-
mit to be atomic). Second, one has to prove that a given TM im-
plementation ensures those properties, which is not always trivial
(e.g., properties P6 and P7 in (Guerraoui et al. 2008)). Both prob-
lems remain open.

Acknowledgments
We would like to thank Leaf Petersen, Benjamin Pierce, and the
anonymous reviewers for their invaluable help in improving the
contents and the presentation of this paper. We would also like to
thank Aleksandar Dragojević, Vincent Gramoli, Seth Gilbert, and
Jan Vitek for their helpful comments and discussions.

References
Martı́n Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics

of transactional memory and automatic mutual exclusion. In Proceed-
ings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), 2008.

Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy,
Bratin Saha, and Tatiana Shpeisman. Compiler and runtime support for
efficient software transactional memory. In Proceedings of the ACM
SIGPLAN 2006 Conference on Programming Language Design and
Implementation (PLDI), 2006.

Colin Blundell, E Christopher Lewis, and Milo M. K. Martin. Subtleties of
transactional memory atomicity semantics. IEEE Computer Architecture
Letters, 5(2), 2006.

Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Pro-
ceedings of the 20th International Symposium on Distributed Computing
(DISC), 2006.

Robert Ennals. Software transactional memory should not be obstruction-
free. Technical Report IRC-TR-06-052, Intel Research Cambridge Tech
Report, Jan 2006.

Kapali P. Eswaran, Jim N. Gray, Raymond A. Lorie, and Irving L. Traiger.
The notions of consistency and predicate locks in a database system.
Commun. ACM, 19(11):624–633, 1976.

Pascal Felber, Torvald Riegel, and Christof Fetzer. Dynamic performance
tuning of word-based software transactional memory. In Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), Feb 2008.

Rachid Guerraoui and Michał Kapałka. On the correctness of transactional
memory. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), 2008a.

Rachid Guerraoui and Michał Kapałka. The semantics of progress in lock-
based transactional memory. Technical Report LPD-REPORT-2008-
015, EPFL, October 2008b.

Rachid Guerraoui and Michał Kapałka. On obstruction-free transactions. In
Proceedings of the 20th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA). ACM, June 2008c.

Rachid Guerraoui, Thomas Henzinger, Barbara Jobstmann, and Vasu Singh.
Model checking transactional memories. In Proceedings of the ACM
SIGPLAN 2008 Conference on Programming Language Design and
Implementation (PLDI), 2008.

Vassos Hadzilacos. A theory of reliability in database systems. Journal of
the ACM, 35(1):121–145, 1988.

Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing
memory transactions. In Proceedings of the ACM SIGPLAN 2006 Con-
ference on Programming Language Design and Implementation (PLDI),
2006.

Maurice Herlihy. Wait-free synchronization. ACM Transactions on Pro-
gramming Languages and Systems, 13(1):124–149, January 1991.

Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the 20th Annual
International Symposium on Computer Architecture, pages 289–300,
May 1993.

Maurice Herlihy and Jeannette M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Transactions on Programming
Languages and Systems, 12(3):463–492, June 1990.

Suresh Jagannathan, Jan Vitek, Adam Welc, and Antony Hosking. A
transactional object calculus. Science of Computer Programming, 57
(2):164–186, 2005.

Prasad Jayanti. Adaptive and efficient abortable mutual exclusion. In
Proceedings of the 22nd Annual ACM Symposium on Principles of
Distributed Computing (PODC), 2003.

Leslie Lamport. The mutual exclusion problem—part II: Statement and
solutions. Journal of the ACM, 33(2), 1985.

Leslie Lamport. On interprocess communication—part II: Algorithms.
Distributed Computing, 1(2), 1986.

Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya,
David Eisenstat, William N. Scherer III, and Michael L. Scott. Lowering
the overhead of software transactional memory. In 1st ACM SIGPLAN
Workshop on Transactional Computing (TRANSACT), Jun 2006.

Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-
Tabatabai, Richard L. Hudson, Bratin Saha, and Adam Welc. Practical
weak-atomicity semantics for java stm. In Proceedings of the 20th An-
nual Symposium on Parallelism in Algorithms and Architectures (SPAA),
2008.

Katherine F. Moore and Dan Grossman. High-level small-step operational
semantics for transactions. In Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
2008.

Christos H. Papadimitriou. The serializability of concurrent database up-
dates. Journal of the ACM, 26(4):631–653, 1979.

Michel Raynal. Algorithms for Mutual Exclusion. The MIT Press, 1986.
Michael L. Scott. Sequential specification of transactional memory se-

mantics. In 1st ACM SIGPLAN Workshop on Transactional Computing
(TRANSACT), 2006.

Michael L. Scott and William N. Scherer III. Scalable queue-based spin
locks with timeout. In Proceedings of the 8th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP),
2001.

Jan Vitek, Suresh Jagannathan, Adam Welc, and Antony Hosking. A
semantic framework for designer transactions. In Proceedings of the
European Symposium on Programming (ESOP), March 2004.

415

