
Modeling Concurrency in Dafny

K. Rustan M. Leino
Microsoft Research and Imperial College London

Abstract

This article gives a tutorial on how the Dafny language and verifier can be used
to model a concurrent system. The running example is a simple ticket system
for mutual exclusion. Both safety and, under the assumption of a fair scheduler,
liveness are verified.

0. Introduction
Knowing how to reason about the correctness of programs is an important skill for
every software engineer. In some situations, functional correctness is so important that
it makes sense to reason formally. This is done by being precise about the pre- and
postcondition specifications of procedures, the invariants of data structures, and the
justifications for why the program upholds these specifications and invariants. Today’s
tools make it possible to carry out and check this reasoning mechanically. In other
situations, functional correctness is deemed less critical. Still, the concepts of pre- and
postconditions and invariants apply and guide good program design, even if these are
not checked rigorously in every possible execution of the program.

In my lectures at SETSS 2017, I taught program-correctness concepts like pre-
and postconditions and invariants through many examples. I used the programming
language Dafny [17, 19], which includes specification constructs and has an automated
program verifier that checks that programs meet their specifications. The literature
already contains some tutorials that use Dafny for this purpose [5, 10, 13, 16, 18].
So, instead of repeating those tutorials, I am using these lecture notes to explain a
more advanced use of Dafny, namely the modeling of a simple concurrent algorithm in
Dafny. The reasoning that I show here is representative of how several popular formal
systems reason about the behavior of concurrent threads of execution. A benefit you
get from doing the modeling in Dafny is the automated verification.

If you are looking to learn to do this kind of modeling on your own, I suggest you
follow along by entering the Dafny declarations into a buffer in the Dafny IDE for
VS Code, Visual Studio, or Emacs. You can install Dafny and an IDE plug-in from
https://github.com/Microsoft/dafny/. Alternatively, you can enter the declarations
in your web browser at http://rise4fun.com/dafny, periodically clicking on the Play
button to let Dafny check your program for syntactic and semantic correctness.

1

https://github.com/Microsoft/dafny/
http://rise4fun.com/dafny

1. Concurrency
A concurrent system consists of a number of processes that each executes some code.
If we think of the execution of a process as a sequence of tiny steps, then we can model
the entire system as an interleaving of these tiny-step sequences. To make sure our
model captures every possible behavior of the concurrent system, it is important that
each tiny step is so tiny that we can think its execution as taking place all by itself,
impossibly interrupted or interfered with by the execution of other tiny steps. We call
such a tiny step an atomic event (or atomic step, or atomic action). In a typical model,
atomic events are limited to one read or write of a shared variable.

To model a concurrent system, we consider what possible atomic events may take
place during the running of the system. This is the common idea in formalisms and
tools like Chandy and Misra’s UNITY [4], Back and Sere’s action systems [3], Abrial’s
Event-B [0] (implemented in the Rodin tool [2]), and Lamport’s TLA+ [14]. As de-
signers of a model, we decide what each atomic event stands for. By choosing an ap-
propriate level of abstraction for the events, we can use the same modeling techniques
when writing a high-level specification as when writing a low-level implementations.
To see how this kind of thinking can lead to nice specifications, see for example Leslie
Lamport’s TLA+ lectures [15] or Jean-Raymond Abrial’s Event-B lectures [1].

Code executed by a process is authored as a program where control flow is implicit.
To model such code, we introduce an explicit control state for each process. In the
extreme, the control state can be a program counter, but many times we don’t need to
be as concrete as that.

Dafny is a programming language designed to support formal reasoning [17]. Even
though the language is sequential, we can use it to model concurrent systems in the
way I just alluded to. For instance, we can write each event as a little body of code,
and we can give such a piece of code a name by declaring it as a procedure, which in
Dafny is known as a method. An approach like this makes use of some programming
constructs in Dafny, but mostly, it uses Dafny as a logical foundation for the modeling.

To illustrate this approach, I will describe a simple ticket system for mutual exclu-
sion and model this in Dafny. I will use two different models. The first model defines
atomic events by methods that change the program state. The second model defines
atomic events by predicates over pairs of consecutive states. The main theorem to be
proved about the ticket system is that, at any one time, at most one process is in its
critical section. This is called a safety property and can be proved in either model.
Another theorem of interest is that a process in the ticket system never gets stuck. This
is called a liveness property and is most easily described in the second model. More
complex applications of Dafny to specifying and implementing concurrent systems are
found in the IronFleet project [9].

2. The Ticket System
The concurrent system we are going to reason about can be described as follows.

A fixed number of philosophers are gathered in a library. Mostly, they just sit
around and think. Sometimes, a philosopher may become hungry and need to eat.

2

Attached to the library is a kitchen. Unfortunately, the kitchen is undergoing some
renovations, so it would be dangerous to have more than one person in the kitchen at
any one time. To manage the contention for the shared kitchen resource, a ticket system
has been installed.

The ticket system has a ticket dispenser that dispenses numbered tickets in increas-
ing sequential order. There is no upper limit on these numbers. It is very quick to
dispense a ticket, so we consider obtaining a ticket to be an atomic event.

The ticket system also includes a display that says “serving” and shows a number.
The philosophers decide that only a philosopher whose ticket number agrees with the
display is allowed into the kitchen. The button that advances the “serving” display
to the next number is located in the kitchen. Upon leaving the kitchen, a philosopher
presses the button to advance the number displayed.

3. Pseudo Code
Each philosopher operates as described by the following pseudo code:

forever repeat

{

Thinking:

// ...

t, ticket := ticket, ticket + 1; // Request

Hungry:

wait until serving = t; // Enter

Eating:

// ...

serving := serving + 1; // Leave

}

A philosopher can be in one of three states: thinking, hungry, or eating. It starts in
the thinking state. What exactly a philosopher is thinking about is not relevant to the
algorithm, so the pseudo code abstracts over it.

To enter the hungry state, a philosopher grabs the next ticket, an operation I will
refer to as Request. The ticket number obtained is recorded into a variable t that is
local to the philosopher.

In the hungry state, a philosopher waits until the “serving” display shows t. The
philosopher then enters the kitchen, which is represented as the eating state. This Enter
operation can take place only when the given condition holds. Alternatively, you can
think of Enter as an operation that is attempted repeatedly, each attempt being one
atomic event, until the given condition holds.

When a philosopher is done in the kitchen, it increments the “serving” display and
returns back to the thinking state. I will refer to this operation as Leave. What exactly
the philosopher prepares and eats in the kitchen is not relevant to the algorithm, so the
pseudo code abstracts over it.

3

4. Formalizing the Ticket System
To formalize the ticket system in Dafny, we need to encode the ticket dispenser and
the “serving” display. We also need a way to talk about each philosopher, which from
now on I will call a process, along with the state of the process and any ticket it may
be holding.

4.0. Processes as an Uninterpreted Type with Equality
To model the identity of processes, we introduce a type. In the most abstract way, we
can do that by:

type Process

which introduces Process as the name of an uninterpreted type. Dafny allows us to be
more concrete. For example, we can say that Process is just a synonym for the integers:

type Process = int

Or we can define Process to be an enumeration of a specific set of names, perhaps
inspired by the names of our friends:

datatype Process = Agnes | Agatha | Germaine | Jack

In our case, we don’t need more than an uninterpreted type. Almost. We do need to
know that the type comes equipped with the ability to compare its values with equality.
The notation for saying this is:

type Process(==)

(This "(==)" suffix is among the most cryptic of syntactic constructs in Dafny. It is
unfortunate that, in this example, it’s the first thing we need.)

4.1. Names of Process Control States
We need names for the program labels in our pseudo code. We define these in an
enumeration type that we call CState (for control state):

datatype CState = Thinking | Hungry | Eating

4.2. Ticket System as a Class
Representing the ticket dispenser and “serving” display requires some state. For what
I want to show in this article about the method formulation of events, it is simplest to
declare this state as fields of a class. A class in Dafny is like a class in object-oriented
languages, but there is nothing object-oriented in our example, so it is not particularly
useful to think of our class like that. For our present purposes, all we need to know
about a class is the following:

• A class can have state, which is introduced by var declarations inside the class.
Borrowing from object-oriented terminology, these variables are sometimes called
fields.

4

• A class can have methods, which are named bodies of code that operate on the
state.

• A class has a constructor that initializes the state.

• A class can also declare functions and lemmas. I’ll describe these when we need
them.

In fact, for our purposes, there is not much difference between a class and what might
be a module with some procedures and global variables. There are no global variables
in Dafny, so that is why I use a class for our example.

The class itself is declared as follows:

class TicketSystem

{

}

All remaining declarations that I describe in this section and the next are to be placed
inside the the curly braces of this class declaration. Two of those declarations are for
the ticket dispenser and “serving” display, each of which is represented by an integer:

var ticket: int

var serving: int

It will be convenient to have a name for the fixed set of processes, so we introduce a
variable to store that set:

var P: set<Process>

In fact, since P will never change once it has been initialized, we can declare it to be an
immutable field:

const P: set<Process>

Next, we introduce the state for each process. This state consists of a control-state
value (that is, thinking, hungry, or eating) and an integer that denotes the value of the
ticket held by the process. The ticket value is relevant only if the process is hungry or
eating; when the process is thinking, we don’t care what the value of this integer is.

But how do we introduce this state for each process? There’s more than one way
to do this in Dafny. We will use a way that perhaps would be most natural to someone
familiar with TLA+, or for that matter, someone familiar with Alloy [12]. It is to use
maps from processes to values. We introduce a map cs from each process in P to a
control state and a map t from each process in P to an integer:

var cs: map<Process, CState>

var t: map<Process, int>

To look up the CState value for a process p, we consult the map cs using the expression
cs[p].

We need these maps only for processes in P, but (unlike in TLA+) you cannot use
a state variable P as the domain of these maps. (Actually, in TLA+, P would not be
a variable, but a logical constant.) That’s why we declare the domain type of these

5

maps to be Process, which includes not just the processes in our instance of the ticket
system, but every conceivable process. This is no problem, because a map in Dafny is
a (possibly) partial map, anyway. Stated differently, the domain of a map in Dafny is
some subset of the values denoted by the domain type of the map. In other words, if
you think of a map as a set of key-value pairs, then this set may or may not contain a
key-value pair for every value of the map-domain type.

4.3. System Invariant
When we access one of our maps for a particular process, say p, we need to know that
p is in the domain of the map (that is, that p is among the keys of the map). In our ticket
system, it will always be the case that the domain of the maps is P. (Actually, we will
never have occasion to access these maps outside P, so the important property is that
P is a subset of the domain of each map.) We call this an invariant of the system, and
(we will show that) it holds initially and is maintained by every atomic operation.

If we are given arbitrary values for our variables, then this invariant condition may
or may not hold. We introduce a function that tells us whether or not the condition
holds. We’ll give this function the name Valid:

predicate Valid()

reads this

{

cs.Keys == t.Keys == P

}

There are several points to explain about the definition of Valid.

• A function that returns a boolean is synonymously known as a predicate. The
predicate declaration is just a nice way to write function Valid(): bool.

• In Dafny, functions are allowed to depend on the program state, but they must
declare which parts of the program state they depend on. This concept is called
framing (see, for example, [8]). For this purpose, a function (and also a predicate,
since a predicate is just a function that returns a boolean) has a reads clause.
Here, a bit of object-oriented notation creeps in: the keyword this. By declaring
the function with reads this, we are saying that it may depend on the values of
the fields declared in the class. Framing is not central to our problem here, but
you have to include the reads clause or Dafny would complain that the function
body illegally reads cs and t.

• The value of the function—here, of type boolean—is given by its body, which is
an expression enclosed in the curly braces that follow the function signature and
specification.

• Equality in Dafny uses the syntax so familiar to all C and Java programmers: ==.

• In Dafny, a number of operators, including equality, are chaining. This means
that you can string them together, just like you would in a mathematical textbook.
In particular, cs.Keys == t.Keys == P is equivalent to the conjunction (“and”) of

6

cs.Keys == t.Keys and t.Keys == P. By the way, conjunction is written && and
disjunction (“or”) is written ||.

• The domain of a map is a set that is retrieved by the member .Keys.

(As I remarked above, we only need that P is a subset of the keys of each map. If we had
chosen to formalize that, we would instead have written P <= cs.Keys && P <= t.Keys

in the body of Valid. In Dafny, <= applied to sets denotes the subset relation.)
As we go along, we will find more things to add to the body of Valid. Remember,

we think of Valid() as describing the invariant of our system, but as far as Dafny is
concerned, Valid is just a function that sometimes returns false and sometimes returns
true. What makes it appropriate to think of Valid() as an invariant has to do with the
way we use it. We’ll see this soon.

4.4. Initializing the Ticket System
We are now ready to write a little code to initialize the ticket system. This code is
placed in a special method called a constructor. We parameterize the constructor by a
set of processes.

constructor (processes: set<Process>)

ensures Valid()

{

P := processes;

ticket, serving := 0, 0;

cs := map p | p in processes :: Thinking;

t := map p | p in processes :: 0;

}

The specification of the TicketSystem constructor has a postcondition, which is
declared by an ensures clause. It expresses that, upon termination of the constructor,
Valid() will hold. Dafny checks this, of course. In other words, this postcondition says
that initialization establishes the invariant. For this reason, it is important to include a
constructor—otherwise, we may accidentally write down an invariant that is equivalent
to false, in which case all of the theorems we prove about the system will hold trivially.

The body of the constructor uses imperative programming statements that can
change the state. In the second line, I am using a parallel assignment, because I think
it looks nice. It would be equally good to write this as two separate assignments. Like-
wise, it would be equally good to write all five assignments as one parallel assignment.

The assignments to cs and t make use of map comprehensions. The first of these
can be read as "the map from p, where p is a process in processes, to the value
Thinking". Dafny infers the type of p to be Process.

In the map comprehension used to initialize the map t, we are being overly specific
when we say that t maps each process to 0. Since every process is initially thinking,
this value is irrelevant. However, to establish the invariant, we do need to assign to t a
map whose domain is processes, which our assignment achieves.

All concurrency formalisms have some way to describe the possible initial states
of the system. For example, in UNITY, an initially clause gives a predicate that

7

describes the possible initial states. In TLA+ and Event-B, too, the initial condition is
phrased as a predicate.

At this point, we have declared all types and variables involved in the modeling
of our system. We have also declared an invariant and provided a constructor that
initializes the system to satisfy the invariant. What remains to be done is to formalize
the atomic steps of the system. And, of course, to state and verify a correctness theorem
about the system.

4.5. Specifying the Atomic Events
There are three atomic events for us to formalize: Request, Enter, and Leave. Actually,
we need to formalize each of these for each process. To do that, we parameterize each
atomic event by a process. As I have mentioned before, we will model each atomic
event by a method. To parameterize the description of an atomic event, we simply
declare the method to take a parameter.

The parameter, which I will name p, is of type Process. We only want to model
atomic events for processes in our system, so we write a precondition, which is declared
by a requires clause. Moreover, we are only interested in modeling behavior from
states that satisfy the invariant, so we also include Valid() as a precondition of our
methods.

An atomic event for a process is typically enabled only in certain circumstances.
These circumstances depend on the control state of the process. For example, the
atomic event Request(p) is enabled only when p is thinking. Therefore, we add a
constraint on cs[p], like cs[p] == Thinking, to the precondition.

It is important that each atomic event maintain the invariant. To express and check
this property, we add Valid() as a postcondition of each method, just as for the con-
structor.

There is one more detail. Recall that a function must declare (in a reads clause)
which parts of the program state it depends on. In a similar way, a method must declare
(in a modifies clause) which parts of the program state it updates. By declaring our
methods with modifies this, we are saying that they may update the fields in the class.
This framing does not really play a role in our example, but we have to declare it or
Dafny would complain that the method body illegally updates the fields.

In summary, each atomic operation in our example will be modeled by a method
whose signature and specification look like this:

method AtomicStep(p: Process)

requires Valid() && p in P && cs[p] == ...

modifies this

ensures Valid()

4.6. Implementing the Atomic Events
Having laid down the foundation, we can now easily define the three atomic events of
our example. As you check these, you may want to compare them with the pseudo
code above.

8

method Request(p: Process)

requires Valid() && p in P && cs[p] == Thinking

modifies this

ensures Valid()

{

t, ticket := t[p := ticket], ticket + 1;

cs := cs[p := Hungry];

}

The notation t[p := ticket] is a map-update expression. It stands for a map that
is like t, except that it maps p to ticket. (In TLA+, such an expression is written
[t EXCEPT ![p] = ticket].) The body of Request thus records the current ticket as the
ticket number held by p, increments the current ticket, and changes the control state of
p to Hungry.

In the body of Request, I happen to be using one parallel assignment (updating
both t and ticket) followed by one other assignment (updating cs), because I think
this looks nice in the program text. However, there are many other sequences of as-
signments that achieve the same effect. By using a method to model an atomic event,
the intermediate states inside the method body are not relevant, so the cosmetic choices
we make inside the method body have no bearing on the model.

method Enter(p: Process)

requires Valid() && p in P && cs[p] == Hungry

modifies this

ensures Valid()

{

if t[p] == serving {

cs := cs[p := Eating];

}

}

method Leave(p: Process)

requires Valid() && p in P && cs[p] == Eating

modifies this

ensures Valid()

{

serving := serving + 1;

cs := cs[p := Thinking];

}

These three methods model the three atomic events in our system.

4.7. On the Atomicity of Events
To justify calling a method in our model an atomic event, we need to make sure that the
method body is something that really can be completed without interference of other
processes in the system we are modeling. Typically, this means that the body is allowed

9

at most one read or write of one shared variable. Updating a map at a process p counts
as an update that is local to p. In other words, we think of cs[p] as a local variable,
not as a shared variable. In our example, two of our methods read or write a shared
variable more than once, so why do we think our modeling is done properly? Let’s take
a closer look at these two methods.

Method Request reads ticket twice and writes it once, with the effect of incre-
menting ticket and recording its previous value. One way to achieve this in an actual
implementation of our system would be to use a mutual-exclusion lock. But if we had
such a lock, then we could use that lock as the way for a philosopher to enter the kitchen
(that is, for a process to enter its critical section). The whole point of the ticket system
is to implement a mutual-exclusion lock. Luckily, there are less heavy-handed ways
than a lock to implement these accesses of ticket. For example, these accesses can be
implemented by a hardware-supported atomic-increment operation, which is found in
many modern machines. Such an operation increments the value stored in a memory
location and at the same time returns its value from before the increment. With such
an operation in mind, we feel justified in thinking about method Request as an atomic
event.

The other method that reads or writes a shared variable more than once is Leave,
which increments serving. We could justify this increment by a hardware atomic-
increment operation as well, but for Leave, there is a less imposing justification. The
serving variable is incremented only by the philosopher in the kitchen (that is, by the
process in the critical section), so (if our ticket system does indeed provide mutual
exclusion, then) serving is stable in Leave. That justifies calling Leave an atomic event
without appealing to any hardware support.

In fact, there’s yet one more way to deal with the atomicity of Leave. By the time
a Leave(p) event takes place, the ticket held by p is equal to serving. Thus, instead of
reading the shared variable serving as in the code above, we can read the local t[p]. If
you want to check that what I’m saying is true, you can insert the following statement
at the beginning of the body of Leave:

assert t[p] == serving;

In the program we have developed so far, the verifier will flag this assertion as an error,
but once we’re done with our correctness theorem below, the verifier will be able to
verify it. (This assertion introduces yet one more read of the shared variable serving.
But it is okay, because an assertion is to be considered as specification-only, so we
don’t need to worry about which variables it mentions.)

This completes our encoding of the atomic events in our model. What remains to
do is to state and prove a correctness theorem that shows that the ticket system does
indeed provide mutual exclusion.

4.8. Notes About Other Formalisms
In Event-B, the state transition of an event is given as a set of assignment statements.
These assignments are performed in parallel, so the order in which you list them does
not matter. In Dafny, the order of statements matters. However, whenever you use a
parallel assignment, all right-hand sides are evaluated before any state change takes

10

place. So, if you want an Event-B style body in Dafny, use one parallel assignment
statement.

In UNITY, a state transition is also given as a parallel assignment. The syntax of
the assignment is more like that in Dafny.

In TLA+, events are specified as two-state predicates, where a primed variable is
used to refer to the value of the variable in the post-state. For example, the incre-
ment of ticket in Request is written ticket’ = ticket + 1 in TLA+. I will show such
predicates in Section 7.2

5. Correctness Theorem
The correctness of our ticket system comes down to showing that no two processes are
ever in the eating state at the same time. To show that this condition holds in every state
of the system, we prove a theorem that the invariant (which holds in every state) implies
the condition. This can be stated in Dafny using a lemma declaration. A lemma in Dafny
is really just a method, except that it will not be compiled into code. Like any method,
a lemma has a pre- and postcondition. The precondition denotes the antecedent of the
lemma and the postcondition is its conclusion (also known as its proof goal).

We state our correctness theorem as follows:

lemma MutualExclusion(p: Process, q: Process)

requires Valid() && p in P && q in P

requires cs[p] == Eating && cs[q] == Eating

ensures p == q

{

}

The lemma is parameterized by two processes, p and q. It says that if the system is in
a valid state (that is, the variables have values that satisfy the invariant) and if p and q

are processes, each of which is in the eating state, then p and q are the same process.
The proof of a lemma is given as a method body. It follows the same rules as in

Floyd/Hoare logic [6, 7, 11], namely that, starting from any state in which the precon-
dition holds, every path through the body must be shown to reach the end of the body
in a state where the postcondition holds. We supply a body of the lemma by a pair of
curly braces, just like for the other method bodies we have seen. For the ticket-system
example, it turns out that the proof can be done automatically, so I will not say more
about writing proofs here.

When you supply the empty body {} of the lemma, the verifier complains that it
cannot prove p == q. For this condition to follow from the lemma’s antecedent, the
invariant must be sufficiently strong. Our task is now to strengthen the invariant until
the verifier can prove the lemma (or until we find an error in our model).

5.0. Strengthening the Invariant
The invariant is recorded in predicate Valid. So far, our invariant speaks only about P
and the domains of cs and t. Writing an invariant requires a good bit of thinking and

11

practice. Here, I will describe the additional pieces of the invariant that we need; a
more comprehensive tutorial on how to write and debug invariants is out of the scope
of this article.

A property we expect to hold of the ticket machinery is that the ticket dispenser
may run ahead of the “serving” display, but never the other way around. We formalize
this by strengthening the invariant with the condition serving <= ticket:

predicate Valid()

reads this

{

cs.Keys == t.Keys == P &&

serving <= ticket

}

Having added this conjunct to Valid, Dafny immediately flags method Leave as possi-
bly not establishing its postcondition. It frequently happens that, while strengthening
an invariant, we find that showing the stronger invariant to be maintained by our opera-
tions requires further strengthenings of the invariant. So let’s not be too discouraged by
the fact that our strengthening increased the number of errors reported by the verifier.

The new error can help us get ideas about how to strengthen the invariant next.
When Leave(p) increments serving, we expect that ticket is already strictly larger
than serving—when p got its ticket, it would have incremented ticket, and ticket is
never decreased by any process. This leads us to think about the property that every
ticket number held by a process lies in the range from serving to ticket. Thus, we
strengthen the invariant to the following condition:

predicate Valid()

reads this

{

cs.Keys == t.Keys == P &&

serving <= ticket &&

forall p :: p in P && cs[p] != Thinking ==> serving <= t[p] < ticket

}

In the new conjunct, != is the operator for “not equals”, ==> is logical implication, and
<= and < are the usual arithmetic comparison operators that we have chained together.
The binding power of ==> is lower than that of &&, as is suggested by the fact that ==>
is wider than && (3 ASCII characters wide for implication versus 2 for conjunction).
The relative binding powers of the other operators are like in C and Java. The type of
the bound variable p, namely Process, is inferred by Dafny. (If you wonder what type
is inferred, you can hover the mouse over the identifier in the Dafny IDE for Visual
Studio and a tool tip will tell you this information. Of course, you can also specify the
type manually, if you prefer or if the type inference were ever to fail.)

The new conjunct allows the verifier to prove the previous conjunct, but the verifier
now complains that Leave may fail to maintain the new conjunct. The error message
gives us more precise information:

TS.dfy(78,2): Error: A postcondition might not hold on this return path.

12

TS.dfy(77,12): Related location: This is the postcondition that might not

hold.

TS.dfy(36,4): Related location

TS.dfy(36,56): Related location

It says, in the respective lines, that Leave may fail to establish the postcondition, that
Valid() is the postcondition that is not established, that the forall is the conjunct in-
side Valid() that is not established, and that serving <= t[p] is the conjunct inside
the quantification that is not established. Apparently, the verifier imagines a situation
where some other process also has a t value that is equal to serving—if so, increment-
ing serving would violate the quantifier we just wrote. But we expect processes to have
unique ticket numbers. Let’s write that down by strengthening the invariant again:

predicate Valid()

reads this

{

cs.Keys == t.Keys == P &&

serving <= ticket &&

(forall p :: p in P && cs[p] != Thinking ==> serving <= t[p] < ticket) &&

(forall p,q ::

p in P && q in P && p != q && cs[p] != Thinking && cs[q] != Thinking

==> t[p] != t[q])

}

Note the parentheses we now need around the first quantifier. I also added parentheses
around the second quantifier, to make the two quantifiers cosmetically more alike.

The introduction of the new conjunct did not eliminate the complaint about the
previous error. Apparently, uniqueness of ticket numbers among the processes is not
enough. We also need to know that the process that is leaving the critical section is
indeed one that holds a ticket number that agrees with serving. We update Valid()

once more:

predicate Valid()

reads this

{

cs.Keys == t.Keys == P &&

serving <= ticket &&

(forall p :: p in P && cs[p] != Thinking ==> serving <= t[p] < ticket) &&

(forall p,q ::

p in P && q in P && p != q && cs[p] != Thinking && cs[q] != Thinking

==> t[p] != t[q]) &&

(forall p :: p in P && cs[p] == Eating ==> t[p] == serving)

}

This does the trick! Dafny now verifies all proof obligations: the condition we
defined Valid() to stand for holds initially, is maintained by all atomic events, and
implies mutual exclusion.

13

5.1. Initialization Revisited
In the constructor, we initialized both ticket and serving to 0. This seems reasonable,
but it is more specific than necessary. All we need to establish the invariant is that
ticket and serving start off with the same value. We can therefore replace the second
line of the constructor with

ticket := serving;

This would set ticket to whatever arbitrary value serving happens to have on entry to
the constructor. More to the point, it would make ticket and serving equal, which is
enough to establish the invariant.

5.2. TLA+ Inspired Conjunctions
To improve readability, TLA+ allows conjunctions and disjunctions to be written as
if they were bulleted lists. The “bullets” used are the operators for conjunction and
disjunction, respectively, and the syntactic rules for grouping these pay attention to the
level of indentation used in the program text. Inspired by these TLA+ expressions,
Dafny allows conjunction and disjunction to be used as prefix operators instead of as
infix operators. Stated differently, Dafny allows a conjunction to be preceded by && and
allows a disjunction to be preceded by ||. Dafny does not pay attention to indentation,
but even this simple allowance can let some formulas be formatted in a nice way. For
example, we can write predicate Valid as follows:

predicate Valid()

reads this

{

&& cs.Keys == t.Keys == P

&& serving <= ticket

&& (forall p :: p in P && cs[p] != Thinking ==> serving <= t[p] < ticket)

&& (forall p,q ::

p in P && q in P && p != q &&

cs[p] != Thinking && cs[q] != Thinking

==> t[p] != t[q])

&& (forall p :: p in P && cs[p] == Eating ==> t[p] == serving)

}

Note, the prefix allowance does not change the binding power of operators. This
means that parentheses are still needed as before. In particular, note in this example
that the forall quantifiers need parentheses—they do not end at the end of the line as
the bullet syntax may lead you to believe. Another important operator to consider is
implication, which binds more loosely than conjunction. Thus, if Valid contained a
conjunct that was an implication, then it would need parentheses.

14

6. Event Scheduling
In what I have shown so far, the constructor and methods of class TicketSystem are
never called. In other words, in the program text we have written, we have defined
some atomic events, but we have not defined any scheduler that invokes the events
and produces a particular interleaving. Instead, we have left it to our imagination that
the events can be invoked at any time. This is typical. Models usually include only
the initialization condition and the atomic events. The scheduler is tacit, and it is
understood that the events can occur at any time, as long as the precondition that is
guarding their execution holds.

For the tutorial purpose of seeing what this implicit scheduler that we are imagining
looks like, let us write a scheduler explicitly. The scheduler will exhibit a high degree of
nondeterminism, so we won’t actually restrict the possible interleavings. The scheduler
will still serve two purposes. One purpose is to demonstrate that it is always possible
to schedule a process. If we accidentally had left out some event (say, method Leave),
then our scheduler would not know what to do with a process in the Eating state. The
second purpose is for us to warm up to issues of “fair” scheduling, which I will address
in Section 7.0.

6.0. A Scheduler
We write a method Run that takes a nonempty set of processes and repeatedly calls these
to perform an atomic event. The method looks like this:

method Run(processes: set<Process>)

requires processes != {}

decreases *
{

var ts := new TicketSystem(processes);

while true

invariant ts.Valid()

decreases *
{

var p :| p in ts.P;

match ts.cs[p] {

case Thinking => ts.Request(p);

case Hungry => ts.Enter(p);

case Eating => ts.Leave(p);

}

}

}

Here is an explanation of this code.

• Because the loop never terminates, it must be marked with decreases *. This
allows the loop to go on forever and it causes the verifier to omit termination
checks. Similarly, a method that contains a nonterminating loop must itself be
declared with decreases *.

15

• Reasoning about loops is done via loop invariants [6, 7, 11]. These are condi-
tions that hold at the very top of every loop iteration. Loop invariants simplify
the problem of reasoning about all possible iteration traces of the loop to reason-
ing about just one, arbitrary iteration. The use of loop invariants bears resem-
blance to the use of an inductive hypothesis in mathematics. In this example, the
invariant declaration says that the invariant of the ticket system is maintained
by the loop.

• The assignment statement x :| R sets variable x to a value satisfying the boolean
expression R. The statement gives rise to a proof obligation that such an x exists.
As we have written our program so far, the verifier complains that this proof obli-
gation does not hold. That is because there is no connection between processes

(which is known to be nonempty) and ts.P. To correct this problem, we add the
postcondition

ensures P == processes

to the TicketSystem constructor. The :|assign-such-that statement in the Run

method is now proved to be legal. Its effect is to introduce a variable p to stand
for an arbitrary process from the set ts.P.

• The match statement continues execution with one of the given cases, depending
on the value of ts.cs[p]. The statement gives rise to a proof obligation that
there is a case for every possible value of the given expression. This is where the
verifier would complain if we had forgotten to define method Leave and left out
the case for Eating. (Try commenting this line out and you will see.)

Notice that it is the scheduler—that is, our Run method—that picks the process p to
schedule next and controls which of the three events to invoke for process p. We have
written the Run method so that p is picked arbitrarily among the processes, but having
picked p, the choice of which event to invoke is determined by the control state of that
process, cs[p]. This corresponds to what a scheduler really does: How a scheduler
picks which process to schedule next may be more sophisticated than the arbitrary
choice in our Run method, but once it has made that decision, the scheduler must be
sure to start the process in (that is, set the program counter of the process to) the control
state where the process last left off.

6.1. Guards of Events
Event Enter in our example models what in Section 3 I denoted by the pseudo-code
statement wait until. You may think of the way we wrote method Enter as corre-
sponding to a “busy waiting” (aka “spinning”) implementation of wait until. If the
scheduler picks a process in the Hungry state when its t value is not equal to serving,
then that process just “skips” (see the if statement in method Enter). This is a common
design for modeling a process that is suspended on a condition. Let me explain two
alternative designs.

One alternative design is to replace our Enter method above with the following two
methods:

16

method Enter0(p: Process)

requires Valid() && p in P && cs[p] == Hungry && t[p] == serving

modifies this

ensures Valid()

{

cs := cs[p := Eating];

}

method Enter1(p: Process)

requires Valid() && p in P && cs[p] == Hungry && t[p] != serving

modifies this

ensures Valid()

{

}

Method Enter0 corresponds to the then branch of the if statement in Enter and method
Enter1 corresponds to the else branch. Note that the guard of the if statement in
Enter has become part of the preconditions of Enter0 and (in negated form) Enter1.
By breaking Enter into two methods in this design of the model, we are essentially
thinking of transitioning from Hungry to Eating as one event (Enter0) and remaining
hungry as another event (Enter1). This design is also common.

To see how the alternative design makes sense, it is instructive to look at how it
impacts the scheduler. This is especially important since, as I have mentioned, the
scheduler is usually left tacit. To deal with Enter0 and Enter1, we change the Hungry

case of method Run to:

case Hungry =>

if ts.t[p] == ts.serving {

ts.Enter0(p);

} else {

ts.Enter1(p);

}

A second alternative design is to use only Enter0, not Enter1. In the original design,
we thought of Enter as busy waiting—the process is scheduled, inspects t and serving,
and may then find that it has nothing to do but wait further. By including only Enter0,
our model reflects the thinking that a process in the Hungry state gets scheduled only
when it can proceed. In other words, in this design, the scheduler understands and
directly supports the wait until operation.

To accommodate this second alternative design, one possible way to rewrite the
scheduler is to drop the else branch in the case for Hungry. If the scheduler happens
to pick p to be a hungry process that is not yet being served, then the scheduler skips.
In other words, an iteration of the scheduler loop that picks such a p ends up being an
unproductive iteration.

We can make all of the scheduler’s loop iterations productive if we make the selec-
tion of p more precise. We do that by strengthening the condition to this:

var p :| p in ts.P && (ts.cs[p] == Hungry ==> ts.t[p] == ts.serving);

17

With this condition, the verifier complains that it cannot always prove the existence of
such a p. This is a valid complaint, because if the ticket system were coded incorrectly,
we could end up in a situation where the scheduler cannot schedule any process. Such
a situation reflects a deadlock.

We may be tempted to prove that a deadlock cannot occur and that the scheduler
always has some process to schedule. However, I argue that the responsibility of avoid-
ing deadlocks does not lie with the scheduler. Instead, if we want to model a scheduler
that directly supports an wait until operation, then the scheduler is allowed to termi-
nate if the processes get themselves into a deadlock situation. Thus, the scheduler in
this second alternative design looks like:

var ts := new TicketSystem(processes);

while exists p :: p in ts.P &&

(ts.cs[p] == Hungry ==> ts.t[p] == ts.serving)

invariant ts.Valid()

decreases *
{

var p :| p in ts.P && (ts.cs[p] == Hungry ==> ts.t[p] == ts.serving);

match ts.cs[p] {

case Thinking => ts.Request(p);

case Hungry => ts.Enter0(p);

case Eating => ts.Leave(p);

}

}

Note that the loop guard no longer uses the condition true and note that the Hungry

case only calls Enter0.

6.2. Recording or Following a Schedule
Before moving on to a different representation of the model where we can prove that
the ticket system does not exhibit deadlocks, let us consider one small change to the
Run method. It is to add some code that records the scheduling choices that Run makes.
We can easily do this by instrumenting Run with

var schedule := [];

before the loop and

schedule := schedule + [p];

inside the loop. Similarly, if we wish, we can also record the sequence of states, here
as a sequence of 4-tuples, by instrumenting Run with

var trace := [(ts.ticket, ts.serving, ts.cs, ts.t)];

before the loop and

trace := trace + [(ts.ticket, ts.serving, ts.cs, ts.t)];

at the end of the loop.

18

Instead of recording the decisions that Run makes, we can change Run to free it
from making any decisions at all. We accomplish this by letting Run take a predeter-
mined schedule as a parameter. This schedule has the form of a function from times to
processes.

method RunFromSchedule(processes: set<Process>, schedule: nat > Process)

requires processes != {}

requires forall n :: schedule(n) in processes

decreases *
{

var ts := new TicketSystem(processes);

var n := 0;

while true

// ...

{

var p := schedule(n);

match // ...

n := n + 1;

}

}

The type nat > Process denotes total functions from natural numbers to processes.

7. Liveness Properties
So far, I have covered the basics of modeling concurrency by breaking down a system
into atomic events. Dafny’s methods give a convenient representation of each atomic
event, and I have shown how the system invariant can be captured in a predicate Valid()

that is a pre- and postcondition of every method. To prove that the system can only
reach “safe” states (for example, at most one philosopher is in the kitchen at any one
time), we prove that the system invariant implies the safety property of interest.

There is another class of properties that you may want to prove about a concurrent
system: liveness properties. Whereas a safety property says that the system remains in
safe states, a liveness property says that the system eventually leaves anxious states. For
example, in our ticket system, a desired liveness property is that a hungry philosopher
eventually eats. In other words, this liveness property says that the system does not
forever remain in a set of states where a particular philosopher is hungry; the system
eventually leaves that set of “anxious” states.

7.0. Fair Scheduling
To prove any liveness property, we need to know more about the scheduler. For exam-
ple, suppose a philosopher A enters the hungry state and that the scheduler, from that
time onwards, decides to pick another philosopher B exclusively. Philosopher A will
then remain hungry forever and our desired liveness property does not hold. In fact,

19

in our ticket system, such a schedule will also eventually cause B to get stuck in the
hungry state, skipping each time the scheduler gives it control.

When we reason about liveness properties, we work under the assumption that the
scheduler is fair, meaning that it cannot ignore some process forever. In contrast, no
fairness assumption is needed when reasoning about safety properties, since restricting
our attention to fair schedules does not change the set of possibly reachable states.

7.1. State Tuple
When we were proving safety properties, it was convenient to formalize our model
using methods. This let us make use of the program statements in Dafny. To prove
liveness properties, we frequently have a need to refer to states that will eventually
happen in the future. This is more conveniently done using a different formalization.
So, we are going to start afresh.

Processes and control state are as before:

type Process(==)

const P: set<Process>

datatype CState = Thinking | Hungry | Eating

Instead of modeling the state using the fields of a class, we will model the state as a
tuple. We define the tuple as an immutable record:

datatype TSState = TSState(ticket: int,

serving: int,

cs: map<Process, CState>,

t: map<Process, int>)

The system invariant is like before, but speaks about the fields of a TSState record
rather than the fields of an object. Not using objects, there are no issues of framing
(like reads clauses) to worry about.

predicate Valid(s: TSState)

{

s.cs.Keys == s.t.Keys == P &&

s.serving <= s.ticket &&

(forall p :: p in P && s.cs[p] != Thinking ==>

s.serving <= s.t[p] < s.ticket) &&

(forall p,q ::

p in P && q in P && p != q &&

s.cs[p] != Thinking && s.cs[q] != Thinking

==> s.t[p] != s.t[q]) &&

(forall p :: p in P && s.cs[p] == Eating ==> s.t[p] == s.serving)

}

In Section 5.0, we did the hard work of strengthening the invariant to prove the
mutual-exclusion safety property. This lets us simply restate the automatically proved
theorem here.

lemma MutualExclusion(s: TSState, p: Process, q: Process)

20

requires Valid(s) && p in P && q in P

requires s.cs[p] == Eating && s.cs[q] == Eating

ensures p == q

{

}

7.2. State Transitions
Following the format in TLA+, we define our model by a predicate Init that describes
the possible initial states and a predicate Next that describes the possible transitions
from one state to the next.

predicate Init(s: TSState)

{

s.cs.Keys == s.t.Keys == P &&

s.ticket == s.serving &&

forall p :: p in P ==> s.cs[p] == Thinking

}

predicate Next(s: TSState, s’: TSState)

{

Valid(s) &&

exists p :: p in P && NextP(s, p, s’)

}

We define Next to hold only for pairs of states where the first state satisfies the system
invariant, Valid, but we do not mention either Valid(s) in Init or Valid(s’) in Next. It
is better to prove the invariance of Valid separately. Once we have defined NextP, you
can do that by a lemma like:

lemma Invariance(s: TSState, s’: TSState)

ensures Init(s) ==> Valid(s)

ensures Valid(s) && Next(s, s’) ==> Valid(s’)

We define predicate NextP(s, p, s’) to say that a process p may take an atomic
step from state s to state s’. As we have seen before, such an atomic step is Request,
Enter, or Leave.

predicate NextP(s: TSState, p: Process, s’: TSState)

requires Valid(s) && p in P

{

Request(s, p, s’) || Enter(s, p, s’) || Leave(s, p, s’)

}

Predicate NextP is defined to have a precondition, which means it can be used only
when its parameters satisfy the required condition. This is fitting for our purposes,
since the call to NextP in Next is guarded by Valid(s) and p in P, and it means we can
assume these conditions (rather than repeat them) in the body of NextP.

Finally, we write the predicates for the three atomic events:

21

predicate Request(s: TSState, p: Process, s’: TSState)

requires Valid(s) && p in P

{

s.cs[p] == Thinking &&

s’.ticket == s.ticket + 1 &&

s’.serving == s.serving &&

s’.t == s.t[p := s.ticket] &&

s’.cs == s.cs[p := Hungry]

}

predicate Enter(s: TSState, p: Process, s’: TSState)

requires Valid(s) && p in P

{

s.cs[p] == Hungry &&

s’.ticket == s.ticket &&

s’.serving == s.serving &&

s’.t == s.t &&

((s.t[p] == s.serving && s’.cs == s.cs[p := Eating]) ||

(s.t[p] != s.serving && s’.cs == s.cs))

}

predicate Leave(s: TSState, p: Process, s’: TSState)

requires Valid(s) && p in P

{

s.cs[p] == Eating &&

s’.ticket == s.ticket &&

s’.serving == s.serving + 1 &&

s’.t == s.t &&

s’.cs == s.cs[p := Thinking]

}

7.3. Schedules and Traces
As we got a glimpse of in Section 6.2, a schedule is a function from times (represented
by natural numbers) to processes.

type Schedule = nat > Process

predicate IsSchedule(schedule: Schedule)

{

forall i :: schedule(i) in P

}

A trace is a function from times to ticket-system states. Such a trace is possible for a
given schedule if the trace starts in a state satisfying Init and every pair of consecutive
states in the trace is allowed as an atomic event by the process scheduled at that time.

22

type Trace = nat > TSState

predicate IsTrace(trace: Trace, schedule: Schedule)

requires IsSchedule(schedule)

{

Init(trace(0)) &&

forall i: nat ::

Valid(trace(i)) && NextP(trace(i), schedule(i), trace(i+1))

}

Finally, a schedule is fair if every process occurs infinitely often. That is, for any
process p, no matter how many steps you have already taken—say, n steps—there is
still a next time, n’, where p will be scheduled.

predicate FairSchedule(schedule: Schedule)

{

IsSchedule(schedule) &&

forall p,n :: p in P ==> HasNext(schedule, p, n)

}

predicate HasNext(schedule: Schedule, p: Process, n: nat)

{

exists n’ :: n <= n’ && schedule(n’) == p

}

7.4. Currently Served Process
Leading up to proving the desired liveness property of our ticket system, I define two
new ingredients. The first new ingredient is a function that tells us which process is
being served, that is, which process is holding the ticket number shown on the “serving”
display. Not every ticket-system state has a currently served process, but we expect that
if some process is hungry or eating, then there is a currently served process. As it turns
out, we will need the currently served process only when we know some process is
hungry, so we attempt to define:

function CurrentlyServedProcess(s: TSState): Process

requires Valid(s) && exists p :: p in P && s.cs[p] == Hungry

{

var q :| q in P && s.cs[q] != Thinking && s.t[q] == s.serving;

q

}

However, as we write this definition, the verifier complains that it cannot prove there
is such a q (remember that the :| operator gives rise to a proof obligation that there
exists such a q). The reason is that our system invariant is not strong enough. We need
to strengthen it further to say that every ticket number from s.serving to s.ticket is
being used.

We define a predicate

predicate TicketIsInUse(s: TSState, i: int)

23

requires s.cs.Keys == s.t.Keys == P

{

exists p :: p in P && s.cs[p] != Thinking && s.t[p] == i

}

and use it in the definition of Valid:

predicate Valid(s: TSState)

{

... &&

(forall i :: s.serving <= i < s.ticket ==> TicketIsInUse(s, i))

}

Now, there does exist a q like we want in CurrentlyServedProcess, but the verifier
needs help to do the proof. Adding an assert in the body of the function is enough of
a hint for the verifier:

function CurrentlyServedProcess(s: TSState): Process

requires Valid(s) && exists p :: p in P && s.cs[p] == Hungry

{

assert TicketIsInUse(s, s.serving);

var q :| q in P && s.cs[q] != Thinking && s.t[q] == s.serving;

q

}

If you did the exercise of including lemma Invariance, you will find that the
strengthened invariant causes the automatic proof of Invariance no longer to go through.
Like CurrentlyServedProcess, it also needs a hint, but I will not go through the details
here.

7.5. Next Step of a Process
Fairness tells us there exists some future time in a schedule where a process p is sched-
uled. Given HasNext(schedule, p, n), we can use a statement

var u :| n <= u && schedule(u) == p;

to obtain such a time, u. The second new ingredient we need for our liveness proof is a
way to find a future time, n’, where certain properties hold. To obtain n’, we can iterate
up from n, since u provides us with an upper bound for the iteration.

In our application, p is the currently served process, n is the current time, and n’ is
the next time that p is scheduled. We prove that serving is unchanged from time n to
time n’, that p remains in the same control state and holds the same ticket in n as in n’,
and that all hungry processes in n are still still hungry in n’ and hold the same ticket in
n’ as in n.

Brace yourself for two surprises. One surprise is that we can formulate this ingre-
dient as a lemma that has an out-parameter! We usually think of a lemma as estab-
lishing some condition. In mathematics, it is common that a lemma would establish
the existence of an n’ with certain properties. In Dafny, a lemma is simply a method
that isn’t compiled into code, and therefore it is just as natural for a lemma to have

24

out-parameters as it is for the lemma to have in-parameters. With an out-parameter, we
might as well return the n’ whose existence the lemma has established. The second sur-
prise is that the proof uses a loop! In mathematics, lemmas tend to be recursive—that
is, a lemma calls itself to obtain what is known as the induction hypothesis. In Dafny,
where a lemma is just a method, the body of the lemma can use iteration as well as re-
cursion. In this case, I find it natural to express the proof by iteration, since our strategy
is to iterate up from n toward u until we find the n’ we are looking for.

Here is the lemma:

lemma GetNextStep(trace: Trace, schedule: Schedule, p: Process, n: nat)

returns (n’: nat)

requires FairSchedule(schedule) && IsTrace(trace, schedule) && p in P

requires trace(n).cs[p] != Thinking && trace(n).t[p] == trace(n).serving

ensures n <= n’ && schedule(n’) == p

ensures trace(n’).serving == trace(n).serving

ensures trace(n’).cs[p] == trace(n).cs[p]

ensures trace(n’).t[p] == trace(n).t[p]

ensures forall q :: q in P && trace(n).cs[q] == Hungry ==>

trace(n’).cs[q] == Hungry && trace(n’).t[q] == trace(n).t[q]

{

assert HasNext(schedule, p, n);

var u :| n <= u && schedule(u) == p;

n’ := n;

while schedule(n’) != p

invariant n’ <= u

invariant trace(n’).serving == trace(n).serving

invariant trace(n’).cs[p] == trace(n).cs[p]

invariant trace(n’).t[p] == trace(n).t[p]

invariant forall q :: q in P && trace(n).cs[q] == Hungry ==>

trace(n’).cs[q] == Hungry && trace(n’).t[q] == trace(n).t[q]

decreases u n’

{

n’ := n’ + 1;

}

}

The loop invariant is the same as the postcondition of the lemma, except for the post-
condition schedule(n’) == p, which is obtained as the negation of the loop guard. The
decreases clause is used to prove termination of the loop. It gives a natural-number
valued expression whose value decreases with every iteration [7].

7.6. Liveness Theorem
Finally, we are ready to state and prove the liveness theorem. It states that a hungry
process eventually eats. Instead of just showing the existence of a future time when the
process eats, the lemma returns that time, similarly to what we saw for the GetNextStep

lemma. And as in the proof of GetNextStep, I find that the proof of the liveness theorem

25

is naturally formulated as a loop. If you think like a programmer, this liveness-theorem
proof is just an algorithm that finds (and returns) the next time the hungry process eats.

lemma Liveness(trace: Trace, schedule: Schedule, p: Process, n: nat)

returns (n’: nat)

requires FairSchedule(schedule) && IsTrace(trace, schedule) && p in P

requires trace(n).cs[p] == Hungry

ensures n <= n’ && trace(n’).cs[p] == Eating

{

n’ := n;

while true

invariant n <= n’ && trace(n’).cs[p] == Hungry

decreases trace(n’).t[p] trace(n’).serving

{

// find the currently served process and follow it out of the kitchen

var q := CurrentlyServedProcess(trace(n’));

if trace(n’).cs[q] == Hungry {

n’ := GetNextStep(trace, schedule, q, n’);

n’ := n’ + 1; // take the step from Hungry to Eating

if p == q {

return;

}

}

n’ := GetNextStep(trace, schedule, q, n’);

n’ := n’ + 1; // take the step from Eating to Thinking

}

}

8. Conclusion
A central idea in reasoning about concurrency is to break up the behavior of each pro-
cess into atomic events whose execution may be interleaved with the atomic events of
other processes. I have shown how to go from the pseudo code of a simple mutual-
exclusion protocol to two formalizations of atomic events. The atomic events can be
verified to maintain some system invariant, and safety properties, like mutual exclusion,
are proved as logical consequences of the system invariant. In the second formaliza-
tion, I also expressed and proved a liveness property. The key here is to be able to
reason about events that will eventually take place in the execution of the program.
The liveness proofs I showed bear some resemblance to search algorithms.

When using Dafny to model concurrency, the Dafny language and verifier provide
a logical foundation. The fact that Dafny is a programming language that can be com-
piled is not the central point. Indeed, we would not be interested in compiling and
running the code that we wrote as part of our models. Nevertheless, the notation that
Dafny borrows from other programming languages lowers the bar for entry into new
formalization projects. The automation provided by the Dafny verifier and the rapid

26

verification feedback provided in the Dafny IDEs also aid in the Dafny usage expe-
rience. For example, in the safety-property theorem, we only needed to supply the
invariant and then all the proofs were carried out automatically.

Acknowledgments
Andreas Podelski brought up the problem of this ticket system at meeting 54 (Saint
Petersburg, Russia, June 2013) of the IFIP Working Group 2.3, where several for-
malizations were subsequently presented. Xinhaoyuan on github proposed the prefix
allowance of conjunctions and disjunctions in Dafny. I thank Shuo Chen for comments
on an earlier draft of this article.

References
[0] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.

Cambridge University Press, 2010.

[1] Jean-Raymond Abrial. Mini-course around Event-B and Rodin. https://

www.microsoft.com/enus/research/video/minicoursearoundeventband

rodin/, June 2011.

[2] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and
reasoning in Event-B. Software Tools for Technology Transfer, 12(6):447–466,
2010.

[3] Ralph-Johan Back and Kaisa Sere. Action systems with synchronous communi-
cation. In Ernst-Rüdiger Olderog, editor, Programming Concepts, Methods and
Calculi, Proceedings of the IFIP TC2/WG2.1/WG2.2/WG2.3 Working Conference
on Programming Concepts, Methods and Calculi (PROCOMET ’94), volume A-
56 of IFIP Transactions, pages 107–126. North-Holland 1994, June 1994.

[4] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

[5] Dafny online. http://rise4fun.com/dafny, 2017.

[6] Robert W. Floyd. Assigning meanings to programs. In Proceedings of the Sympo-
sium on Applied Mathematics, volume 19, pages 19–32. American Mathematical
Society, 1967.

[7] David Gries. The Science of Programming. Texts and Monographs in Computer
Science. Springer-Verlag, 1981.

[8] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Müller, and Matthew
Parkinson. Behavioral interface specification languages. ACM Computing Sur-
veys, 44(3), June 2012. Article 16.

27

https://www.microsoft.com/en-us/research/video/mini-course-around-event-b-and-rodin/
https://www.microsoft.com/en-us/research/video/mini-course-around-event-b-and-rodin/
https://www.microsoft.com/en-us/research/video/mini-course-around-event-b-and-rodin/
http://rise4fun.com/dafny

[9] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. IronFleet: Proving practi-
cal distributed systems correct. In Ethan L. Miller and Steven Hand, editors, Pro-
ceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015,
pages 1–17. ACM, October 2015.

[10] Luke Herbert, K. Rustan M. Leino, and Jose Quaresma. Using Dafny, an au-
tomatic program verifier. In Bertrand Meyer and Martin Nordio, editors, Tools
for Practical Software Verification, LASER, International Summer School 2011,
volume 7682 of LNCS, pages 156–181. Springer, 2012.

[11] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–583, October 1969.

[12] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT
Press, 2006.

[13] Jason Koenig and K. Rustan M. Leino. Getting started with Dafny: A guide.
In Tobias Nipkow, Orna Grumberg, and Benedikt Hauptmann, editors, Software
Safety and Security: Tools for Analysis and Verification, volume 33 of NATO Sci-
ence for Peace and Security Series D: Information and Communication Security,
pages 152–181. IOS Press, 2012. Summer School Marktoberdorf 2011 lecture
notes.

[14] Leslie Lamport, editor. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley Professional, 2002.

[15] Leslie Lamport. The TLA+ video course. http://lamport.azurewebsites.net/

video/videos.html, March 2017.

[16] K. Rustan M. Leino. Specification and verification of object-oriented software.
In Manfred Broy, Wassiou Sitou, and Tony Hoare, editors, Engineering Methods
and Tools for Software Safety and Security, volume 22 of NATO Science for Peace
and Security Series D: Information and Communication Security, pages 231–266.
IOS Press, 2009. Summer School Marktoberdorf 2008 lecture notes.

[17] K. Rustan M. Leino. Dafny: An automatic program verifier for functional cor-
rectness. In Edmund M. Clarke and Andrei Voronkov, editors, LPAR-16, volume
6355 of LNCS, pages 348–370. Springer, April 2010.

[18] K. Rustan M. Leino. Developing verified programs with Dafny. In David Notkin,
Betty H. C. Cheng, and Klaus Pohl, editors, 35th International Conference on
Software Engineering, ICSE ’13, pages 1488–1490. IEEE Computer Society,
2013.

[19] K. Rustan M. Leino. Accessible software verification with Dafny. IEEE Software,
34(6):94–97, 2017.

28

http://lamport.azurewebsites.net/video/videos.html
http://lamport.azurewebsites.net/video/videos.html

	0. Introduction
	1. Concurrency
	2. The Ticket System
	3. Pseudo Code
	4. Formalizing the Ticket System
	4.0. Processes as an Uninterpreted Type with Equality
	4.1. Names of Process Control States
	4.2. Ticket System as a Class
	4.3. System Invariant
	4.4. Initializing the Ticket System
	4.5. Specifying the Atomic Events
	4.6. Implementing the Atomic Events
	4.7. On the Atomicity of Events
	4.8. Notes About Other Formalisms

	5. Correctness Theorem
	5.0. Strengthening the Invariant
	5.1. Initialization Revisited
	5.2. TLA+ Inspired Conjunctions

	6. Event Scheduling
	6.0. A Scheduler
	6.1. Guards of Events
	6.2. Recording or Following a Schedule

	7. Liveness Properties
	7.0. Fair Scheduling
	7.1. State Tuple
	7.2. State Transitions
	7.3. Schedules and Traces
	7.4. Currently Served Process
	7.5. Next Step of a Process
	7.6. Liveness Theorem

	8. Conclusion

