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Verification-Condition Generation
Given:
▶ program and
▶ specification

how to express program correctness as a verification condition,
a formula implying that program satisfies the specification?

How to implement verification condition generation as an algorithm?

Example program that verifies in Stainless:
import stainless.lang._
import stainless.lang.StaticChecks._
case class FirstExample(var x: BigInt, var y: BigInt) {

def increase : Unit = {
x = x + 2 // change the value of x
y = x + 10 // refer to changed value

}.ensuring(_ => old(this).x > 0 ==> (x > 2 && y > 12)) // relates old and new values
}
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Programs are Formulas. Specifications are Formulas
A program fragment can be represented by a formula relating initial and final state.
Consider a program with variables x ,y

program: x = x +2;y = x +10
relation: {((x ,y),(x ′,y ′)) | x ′= x +2∧ y ′= x +12}
formula: x ′= x +2∧ y ′= x +12

Specification was: old(this).x > 0→ (x > 2∧ y > 12)
We express that program satisfies the postcondition using relation subset:

{((x ,y),(x ′,y ′)) | x ′= x +2∧ y ′= x +12}
⊆ {((x ,y),(x ′,y ′)) | x > 0→ (x ′ > 2∧ y ′ > 12)}

which reduces to the validity of the following implication:

x ′= x +2∧ y ′= x +12
→ (x > 0→ (x ′ > 2∧ y ′ > 12))



Simple Imperative Programs
F - formulas, t - terms (with only pure mathematical operations)
Fixed number of mutable variables V = {x1, . . . ,xn}
Imperative statements:
▶ x= t: change x ∈V to have value given by t; leave vars in V \ {x} unchanged
▶ if(F)c1 else c2: if F holds, execute c1 else execute c2
▶ c1;c2: first execute c1, then execute c2

Statements for introducing and restricting non-determinism:
▶ havoc(x): non-deterministically change x ∈V to have an arbitrary value; leave

vars in V \ {x} unchanged
▶ if(∗) c1 else c2: arbitrarily choose to run c1 or c2
▶ assume(F): block all executions where F does not hold

Given such loop-free program c with conditionals, compute a polynomial-sized formula
R(c) of form: ∃z̄ .F (x̄ , z̄ , x̄ ′) describing relation between initial values of variables
x1, . . . ,xn and final values of variables x ′1, . . . ,x ′n



Construction Formula that Describe Relations

c - imperative command

R(c) - formula describing relation between initial and final states of execution of c

If ρ(c) describes the relation, then R(c) is formula such that

ρ(c)= {(x̄ , x̄ ′) |R(c)}
R(c) is a formula between unprimed variables x̄ and primed variables x̄ ′



Formula for Assignment

x = t

R(x = t):
x ′= t ∧ ∧

v∈V \{x}
v ′= v

Note that the formula must explicitly state which variables remain the same (here: all
except x). Otherwise, those variables would not be constrained by the relation, so they
could take arbitrary value in the state after the command.

Examples:
R(x = x +2) = x ′= x +2 ∧ y ′= y
R(y = x +10) = x ′= x ∧ y ′= x +10



Formula for Assignment

x = t

R(x = t):
x ′= t ∧ ∧

v∈V \{x}
v ′= v

Note that the formula must explicitly state which variables remain the same (here: all
except x). Otherwise, those variables would not be constrained by the relation, so they
could take arbitrary value in the state after the command.

Examples:
R(x = x +2) = x ′= x +2 ∧ y ′= y
R(y = x +10) = x ′= x ∧ y ′= x +10



Formula for if-else

if (b) c1 else c2

R(if (b) c1 else c2):
(b ∧R(c1))∨ (¬b ∧R(c2))



Formula for if-else

if (b) c1 else c2

R(if (b) c1 else c2):
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Command semicolon

c1;c2

Corresponds to relation composition:

r1 ◦ r2 = {(x̄ , x̄ ′) | ∃x̄ ′′.(x̄ , x̄ ′′) ∈ r1 ∧ (x̄ ′′, x̄ ′) ∈ r2}
What are R(c1) and R(c2) and in terms of which variables they are expressed? Each in
terms of x̄ and x̄ ′.
Let r1 = {(x̄ , x̄ ′) |R(c1)}, r2 = {(x̄ , x̄ ′) |R(c2)}
Thus, (x̄ , x̄ ′′) ∈ r1 ←→ (x̄ , x̄ ′′) ∈ {(x̄ , x̄ ′) |R(c1)} ←→ R(c1)[x̄ ′ := x̄ ′′]
Similarly, (x̄ ′′, x̄ ′) ∈ r2 ←→ R(c2)[x̄ ′ := x̄ ′′]
R(c1;c2) ←→ (x̄ , x̄ ′) ∈ r1 ◦ r2 ←→

∃x̄ ′′. R(c1)[x̄ ′ := x̄ ′′]∧R(c2)[x̄ := x̄ ′′]

where x̄ ′′ are freshly picked names of intermediate states.
▶ a useful convention: x̄ ′′ refer to position in program source code, x̄ i
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Computing relation for the example from before

R(x = x +2;y = x +10) = ∃x̄ ′′. R(c1)[x̄ ′ := x̄ ′′]∧R(c2)[x̄ := x̄ ′′]
= ∃x ′′,y ′′. (x ′= x +2 ∧ y ′= y)[x ′ := x ′′,y ′ := y ′′] ∧

(x ′= x ∧ y ′= x +10)[x := x ′′,y := y ′′]
= ∃x ′′,y ′′. (x ′′= x +2 ∧ y ′′= y) ∧

(x ′= x ′′ ∧ y ′= x ′′+10) (∗)
←→ (x ′= x +2 ∧ y ′= x +2+10)
←→ (x ′= x +2 ∧ y ′= x +12)

Where at step (∗) we used (twice) the “one-point rule” of logic with equality:

(∃u.(u = t ∧F )) ←→ F [u := t]

if u /∈ FV (t).



havoc

Definition of HAVOC
1. wide and general destruction: devastation
2. great confusion and disorder

Example of use:

y = 12; havoc(x); assume(x + x = y)

ends up dividing x by two!

Translation, R(havoc(x)):

∧
v∈V \{x}

v ′= v

This again illustrates “politically correct” approach to describing the destruction of
values of variables: just do not mention them.
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Non-deterministic choice

if (∗) c1 else c2

R(if (∗) c1 else c2):
R(c1)∨R(c2)

▶ translation is simply a disjunction – this is why construct is interesting
▶ corresponds to branching in control-flow graphs
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assume

assume(F )

R(assume(F )):
F ∧ ∧

v∈V
v ′= v

▶ This command does not change any state.
▶ If F does not hold, it stops with “instantaneous success”.
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Example of Translation

0

(if (b) x = x +1 else y = x +2);
1

x = x +5;
2

(if (∗) y = y +1 else x = y)
3

becomes

∃x1,y1,x2,y2. ((b ∧x1 = x+1∧ y1 = y)∨ (¬b ∧ x1 = x ∧y1 = x+2))
∧ (x2 = x1 +5∧ y2 = y1)∧ ((x ′= x2 ∧y′= y2 +1)∨ (x′= y2 ∧ y ′= y2))

Think of execution trace (x0,y0),(x1,y1),(x2,y2),(x3,y3) where
▶ (x0,y0) is denoted by (x ,y)
▶ (x3,y3) is denoted by (x ′,y ′)



Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:
1. R(assume(F );c)

= F ∧R(c)
2. R(c;assume(F )) = R(c)∧F [x̄ := x̄ ′]

where F [x̄ := x̄ ′] denotes F with all variables replaced with primed versions
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Expressing if through non-deterministic choice and assume

if (b) c1 else c2

|||

if (∗) {
assume(b);
c1

} else {
assume(!b);
c2

}

Indeed, apply translation to both sides and observe that generated formulas are
equivalent.
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Expressing assignment through havoc and assume

x = e

|||

havoc(x);
assume(x == e)

Under what conditions this holds?
x /∈ FV (e)

Illustration of the problem: havoc(x); assume(x == x +1)

Luckily, we can rewrite it into xfresh = x +1;x = xfresh
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Loop-Free Programs as Relations: Summary

command c R(c) ρ(c)
(x = t) x ′= t ∧∧v∈V \{x} v ′= v

c1 ;c2 ∃z̄ . R(c1)[x̄ ′ := z̄]∧R(c2)[x̄ := z̄] ρ(c1) ◦ρ(c2)
if(∗) c1 else c2 R(c1)∨R(c2) ρ(c1)∪ρ(c2)

assume(F) F ∧∧v∈V v ′= v ∆S(F )

ρ(xi = t)= {((x1, . . . ,xi , . . . ,xn),(x1, . . . ,x ′i , . . . ,xn) | x ′i = t}
S(F )= {x̄ | F }, ∆A = {(x̄ , x̄) | x̄ ∈A} (diagonal relation on A)
∆ (without subscript) is identity on entire set of states (no-op)
We always have: ρ(c)= {(x̄ , x̄ ′) |R(c)}
Shorthands:

if(∗) c1 else c2 c1 c2
assume(F ) [F ]

Examples:
if (F ) c1 else c2 ≡ [F ];c1 [¬F ];c2
if (F ) c ≡ [F ];c [¬F ]



Program Paths



Loop-Free Programs

c - a loop-free program whose assignments, havocs, and assumes are c1, . . . ,cn

The relation ρ(c) is of the form E(ρ(c1), . . . ,ρ(cn)); it composes meanings of
c1, . . . ,cn using union (∪) and composition (◦)

(if (x > 0)
x = x − 1

else
x = 0

);
(if (y > 0)

y = y − 1
else

y = x + 1
)

([x > 0]; x = x − 1

([¬(x>0)]; x = 0)
);
([y > 0]; y = y − 1

[¬(y>0)]; y = x+1
)

�
∆S(x>0) ◦ρ(x = x −1)
∪
∆S(¬(x>0)) ◦ρ(x = 0)�◦�
∆S(y>0) ◦ρ(y = y −1)
∪
∆S(¬(y>0)) ◦ρ(y = x +1)�

Note: ◦ binds stronger than ∪, so r ◦ s ∪ t =(r ◦ s)∪ t



Normal Form for Loop-Free Programs

Composition distributes through union:

(r1 ∪ r2) ◦ (s1 ∪ s2)= r1 ◦ s1 ∪ r1 ◦ s2 ∪ r2 ◦ s1 ∪ r2 ◦ s2

Example corresponding to two if-else statements one after another:�
∆1 ◦ r1∪
∆2 ◦ r2�◦�
∆3 ◦ r3∪
∆4 ◦ r4�

≡
∆1 ◦ r1 ◦∆3 ◦ r3 ∪
∆1 ◦ r1 ◦∆4 ◦ r4 ∪
∆2 ◦ r2 ◦∆3 ◦ r3 ∪
∆2 ◦ r2 ◦∆4 ◦ r4

Sequential composition of basic statements is called basic path.
Loop-free code describes finitely many (exponentially many) paths.


