Converting Imperative Programs to Formulas

Viktor Kunéak

Verification-Condition Generation
Given:
» program and
» specification
how to express program correctness as a verification condition,
a formula implying that program satisfies the specification?

Verification-Condition Generation
Given:
» program and
» specification
how to express program correctness as a verification condition,
a formula implying that program satisfies the specification?

How to implement verification condition generation as an algorithm?

Verification-Condition Generation
Given:
» program and
» specification
how to express program correctness as a verification condition,
a formula implying that program satisfies the specification?

How to implement verification condition generation as an algorithm?

Example program that verifies in Stainless:

import stainless.lang.__
import stainless.lang.StaticChecks.__
case class FirstExample(var x: Biglnt, var y: Biglnt) {
def increase : Unit = {
X = x 4+ 2 // change the value of x
y = x + 10 // refer to changed value
}.ensuring(_ => old(this).x > 0 ==> (x > 2 && y > 12)) // relates old and new values

}

Programs are Formulas. Specifications are Formulas
A program fragment can be represented by a formula relating initial and final state.
Consider a program with variables x, y

program: x=x+2;y=x+10
relation: {((x,y),(x",y")) | x' =x+2Ay’ =x+12}
formula: X' =x4+2ANy ' =x+12

Specification was: old(this).x>0— (x>2Ay >12)
We express that program satisfies the postcondition using relation subset:

{((x,y),(xX,y) IX =x+2Ny =x+12}
C {((xy),(xX,y)|Ix>0—(x">2Ay >12)}

which reduces to the validity of the following implication:

X' =x4+2Ay ' =x+12
- (x>0—-(x'>2Ay'>12))

Simple Imperative Programs

F - formulas, t - terms (with only pure mathematical operations)
Fixed number of mutable variables V = {xy,...,x,}
Imperative statements:

» x=t: change x € V to have value given by t; leave vars in V' \ {x} unchanged

> if(F)c; else cy: if F holds, execute ¢ else execute ¢,

» cq;Cy: first execute ¢j, then execute ¢,
Statements for introducing and restricting non-determinism:

> havoc(x): non-deterministically change x € V' to have an arbitrary value; leave

vars in V'\ {x} unchanged

> if(x) c; else cy: arbitrarily choose to run ¢; or ¢,

» assume(F): block all executions where F does not hold
Given such loop-free program ¢ with conditionals, compute a polynomial-sized formula
R(c) of form: 3z.F(X,z,x") describing relation between initial values of variables

X1,...,X, and final values of variables x{,...,x,’7

Construction Formula that Describe Relations

¢ - imperative command

R(c) - formula describing relation between initial and final states of execution of ¢

If p(c) describes the relation, then R(c) is formula such that

p(c)=1{(xx")IR(c)}

R(c) is a formula between unprimed variables x and primed variables x’

Formula for Assignment

Formula for Assignment

veV\{x}

Note that the formula must explicitly state which variables remain the same (here: all
except x). Otherwise, those variables would not be constrained by the relation, so they
could take arbitrary value in the state after the command.

Examples:
R(x=x4+2) = xX'=x4+2 Ay =y
R(y=x+10) = x'=x A y'=x+10

Formula for if-else

if(b) ¢ else ¢

Formula for if-else

if(b) ¢ else ¢

R(if(b) ¢ else c):
(bAR(c1))V(=bAR(c))

Command semicolon

S ey)

Command semicolon

1, &
Corresponds to relation composition:

rnor={(xx)]3x".(x,x")ern A(X",X") € ry}

Command semicolon

1, &
Corresponds to relation composition:

rnor={(xx)]3x".(x,x")ern A(X",X") € ry}

What are R(¢;) and R(c) and in terms of which variables they are expressed?

Command semicolon

1, &
Corresponds to relation composition:

rnor={(xx)]3x".(x,x")ern A(X",X") € ry}
What are R(c;) and R(cp) and in terms of which variables they are expressed? Each in
terms of X and X’.
Let n ={(x,X) | R(c1)}, n={(x,X") | R(c)}
Thus, (x,x")en «— (x,X")e{(x,X")|R(c1)} «— R(c1)[x :=X"]
Similarly, (x”,x")er «— R(c)[x :=X"]

Command semicolon

1, &
Corresponds to relation composition:

rnor={(xx)]3x".(x,x")ern A(X",X") € ry}

What are R(c;) and R(cp) and in terms of which variables they are expressed? Each in
terms of X and X’.

Let n ={(x,X") | R(c1)}, n={(x,X")| R(c2)}

Thus, (x,x")en «— (x,X")e{(x,X")|R(c1)} «— R(c1)[x :=X"]
Similarly, (x”,x")er «— R(c)[x :=X"]

R(c1;) «— (x,X')enorn «—

37", R(a)[X =" AR(c)[% =X

where X" are freshly picked names of intermediate states.

> a useful convention: X refer to position in program source code, X'

Computing relation for the example from before

R(x=x+2;y=x+10) =3x". R(c)[X :=X"]AR(c)[x:=X"]
=3Ix",y". (X'=x4+2 Ay =y)[X:=x"y :=y"]| A
(X'=x Ay =x+10)[x:=x",y:=y"]
=3y (X' =x+2 A y'=y)A
(xX'=x" Ay =x"+10) (%)
— (X'=x4+2 A yy=x+2+10)
— (X'=x4+2 Ay =x+12)

Where at step (%) we used (twice) the “one-point rule” of logic with equality:
(Fu.(u=tAF)) — Flu:=t]

if ué FV(t).

havoc

Definition of HAVOC
1. wide and general destruction: devastation
2. great confusion and disorder

Example of use:
y = 12; havoc(x); assume(x + x = y)
ends up dividing x by two!

Translation, R(havoc(x)):

havoc

Definition of HAVOC
1. wide and general destruction: devastation
2. great confusion and disorder

Example of use:

y = 12; havoc(x); assume(x + x = y)
ends up dividing x by two!
Translation, R(havoc(x)):

veV\{x}

This again illustrates “politically correct” approach to describing the destruction of
values of variables: just do not mention them.

Non-deterministic choice

if (%) ¢ else ¢

Non-deterministic choice

if (%) ¢ else ¢

R(if(*) ¢ else cp):
R(a)VR(c)

> translation is simply a disjunction — this is why construct is interesting

» corresponds to branching in control-flow graphs

assume

assume(F)

assume

assume(F)

F/\/\v/:v

veV

R(assume(F)):

assume

assume(F)

F/\/\v/:v

veV

R(assume(F)):

» This command does not change any state.

assume

assume(F)

F/\/\v/:v

veV

R(assume(F)):

» This command does not change any state.

> If F does not hold, it stops with “instantaneous success”.

Example of Translation

if (b) x=x+1 else y=x+2);

R~ O

x=x+D5;
2
(if (x) y=y+1else x=y)

3

becomes

Ixi, 1%, Y2 (BAX1=x+1Ay1=y)V(-bAx3 =xAy1=x+2))
A (x2=x1+5Ay2=y1)
A(X' =AY =y2+1)V(X' =y2 Ay =y))
Think of execution trace (xg, o), (x1,¥1), (x2,¥2), (x3,y3) where

> (x0,Y0) is denoted by (x,y)
> (x3,y3) is denoted by (x,y’)

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:
1. R(assume(F);c)

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:
1. R(assume(F);c) = FAR(c)
2. R(c;assume(F))

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:
1. R(assume(F);c) = FAR(c)
2. R(c;assume(F)) = R(c)AF[x:=X']
where F[x :=X’] denotes F with all variables replaced with primed versions

Expressing if through non-deterministic choice and assume

Expressing if through non-deterministic choice and assume

if (b) cl else c2

1l
if (+) {

assume(b);
cl

} else {
assume(!b);
c2

}

Indeed, apply translation to both sides and observe that generated formulas are
equivalent.

Expressing assignment through havoc and assume

Expressing assignment through havoc and assume

havoc(x);
assume(x == e)

Under what conditions this holds?

Expressing assignment through havoc and assume

havoc(x);
assume(x == e)

Under what conditions this holds?
x¢ FV(e)

[llustration of the problem: havoc(x); assume(x ==x+1)

Expressing assignment through havoc and assume

havoc(x);
assume(x == e)

Under what conditions this holds?
x¢ FV(e)

[llustration of the problem: havoc(x); assume(x ==x+1)

Luckily, we can rewrite it into Xpesh = X + 1; X = Xfresh

Loop-Free Programs as Relations: Summary

command c | R(c) | p(c)
(x=1t) X/:t/\/\VGV\{x} vi=v
aic |3z R(a)X:=Z]AR(c)lx:=2] | p(a)ep(c)
if () c1 else R(c1)VR(c) p(a)up(e)
assume(F) FAN,eyV =v As(F)

pxi=t)={((x1,-. ., X0 or Xn), (X1, XL %) | XD =t}
S(F)={x|F}, Ap={(x,x)|xe A} (diagonal relation on A)
A (without subscript) is identity on entire set of states (no-op)
We always have: p(c)={(x,X")| R(c)}
Shorthands:
if(x) c; else ¢ | qlle
assume(F) | [F]

Examples:
if(F)cielse ; = [Flia [[F]e
if(F)c = [F);c [[~F]

Program Paths

Loop-Free Programs

¢ - a loop-free program whose assignments, havocs, and assumes are cy,...,C,

The relation p(c) is of the form E(p(cy),...,p(cy)); it composes meanings of
c1,-.., €y using union (U) and composition (o)

(if (x > 0)
x=x—1
else
x=0

zif (y > 0)
y=y—-1
else
y=x+1
)

(x>0 x=x—-1

-([—|(x>0)]; x = 0)
(E]y>0];y—y—1
[(y>0)]; y = x+1

(AS(X>0) op(x=x-1)
U
As(~(x>0)) °p(x=0)
(o]
(As(s0)ep(y=y—1)
U

As(-(ysop°op(y =x+1)

Note: o binds stronger than U, so rosUt=(ros)uUt

Normal Form for Loop-Free Programs

Composition distributes through union:

(r1Ur2)0(51U52):r1051 U rnosy, U rnosy U rnos

Example corresponding to two if-else statements one after another:

(Al on
U

A20r2

)o

(A30I’3
U

A4 o

)

AjorpoAzorz U
AjorpoAgor, U
Asor,oAzor; U
AporyoAyory

Sequential composition of basic statements is called basic path.
Loop-free code describes finitely many (exponentially many) paths.

