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About Strength and Weakness



Putting Conditions on Sets Makes them Smaller

Let P1 and P2 be formulas (“conditions”) whose free variables are among x̄ . Those
variables may denote program state.
When we say “condition P1 is stronger than condition P2” it simply means

∀x̄ . (P1→P2)

▶ if we know P1, we immediately get (conclude) P2
▶ if we know P2 we need not be able to conclude P1

Stronger condition = smaller set: if P1 is stronger than P2 then
{x̄ |P1} ⊆ {x̄ |P2}

▶ strongest possible condition: “false” ⇝ smallest set: ;
▶ weakest condition: “true” ⇝ biggest set: set of all tuples



Hoare Triples



Hoare Logic Example
We have seen how to translate programs into relations. We can use these relations in a proof
system called Hoare logic. Hoare logic is a way of inserting annotations into code to make
proofs about (imperative) program behavior simpler.

Example proof:

//{0 <= y}
i = y;
//{0 <= y & i = y}
r = 0;
//{0 <= y & i = y & r = 0}
while //{r = (y−i)∗x & 0 <= i}
(i > 0) (
//{r = (y−i)∗x & 0 < i}
r = r + x;
//{r = (y−i+1)∗x & 0 < i}
i = i − 1
//{r = (y−i)∗x & 0 <= i}

)
//{r = x ∗ y}



Hoare Triple Definitions

P ,Q ⊆ S r ⊆ S×S
Hoare Triple:

from Wikipedia page Tony Hoare
http://slideshot.epfl.ch/play/suri_hoare

{P} r {Q} ⇐⇒ ∀s ,s ′ ∈ S .(s ∈P ∧ (s ,s ′) ∈ r → s ′ ∈Q)

({P} and {Q} do not denote singleton sets, they are just notation for assertions)
Strongest postcondition:

sp(P , r)= {s ′ | ∃s .s ∈P ∧ (s ,s ′) ∈ r}
Weakest precondition:

wp(r ,Q)= {s | ∀s ′.(s ,s ′) ∈ r → s ′ ∈Q}

http://slideshot.epfl.ch/play/suri_hoare


Postconditions and Their Strength

What is the relationship between these postconditions?

{x = 5} x := x +2 {x> 0}
{x = 5} x := x +2 {x= 7}

▶ weakest conditions (predicates) correspond to largest sets
▶ strongest conditions (predicates) correspond to smallest sets

that satisfy a given property.

(Graphically, a stronger condition x > 0∧ y > 0 denotes one quadrant in plane, whereas
a weaker condition x > 0 denotes the entire half-plane.)
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Strongest Postcondition
Definition: For P ⊆ S, r ⊆ S ×S,

sp(P , r)= {s ′ | ∃s .s ∈P ∧ (s ,s ′) ∈ r}
This is simply the relation image of a set.



Weakest Precondition
Definition: for Q ⊆ S, r ⊆ S ×S,

wp(r ,Q)= {s | ∀s ′.(s ,s ′) ∈ r → s ′ ∈Q}
Note that this is in general not the same as sp(Q, r−1) when then relation is
non-deterministic or partial.



Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:
▶ {P}r{Q}
▶ P ⊆wp(r ,Q)

▶ sp(P , r)⊆Q

Proof. The three conditions expand into the following three formulas
▶ ∀s ,s ′. [(s ∈P ∧ (s ,s ′) ∈ r)→ s ′ ∈Q]

▶ ∀s . [s ∈P→ (∀s ′.(s ,s ′) ∈ r → s ′ ∈Q)]

▶ ∀s ′. [(∃s . s ∈P ∧ (s ,s ′) ∈ r)→ s ′ ∈Q]

which are easy to show equivalent using basic first-order logic properties, such as
(P ∧Q −→R)←→ (P −→ (Q −→R)), (∀u.(A−→B))←→ (A−→∀u.B) when
u /∈ FV (A), and (∀u.(A−→B))←→ ((∃u.A)−→B) when u /∈ FV (B).
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