Hoare Logic. Weakest Preconditions, Strongest Postconditions

Viktor Kunčak

About Strength and Weakness

Putting Conditions on Sets Makes them Smaller

Let P_1 and P_2 be formulas ("conditions") whose free variables are among \bar{x} . Those variables may denote program state.

When we say "condition P_1 is stronger than condition P_2 " it simply means $\forall \bar{x}. (P_1 \rightarrow P_2)$

- if we know P_1 , we immediately get (conclude) P_2
- if we know P_2 we need not be able to conclude P_1

- ▶ strongest possible condition: "false" \rightsquigarrow smallest set: Ø
- ▶ weakest condition: "true" → biggest set: set of all tuples

Hoare Triples

Hoare Logic Example

We have seen how to translate programs into relations. We can use these relations in a proof system called Hoare logic. Hoare logic is a way of inserting annotations into code to make proofs about (imperative) program behavior simpler.

 $//{0 \le v \& i = v}$ $\mathbf{r} = 0$ $//{0 \le y \& i = y \& r = 0}$ while $//\{r = (y-i) * x \& 0 \le i\}$ (i > 0) ($//\{r = (y-i) * x \& 0 < i\}$ $\mathbf{r} = \mathbf{r} + \mathbf{x}$: $//\{r = (y-i+1)*x \& 0 < i\}$ i = i - 1 $//\{r = (y-i)*x \& 0 \le i\}$

 $//\{r = x * y\}$

 $//{0 <= y}$ i = v:

Example proof:

Hoare Triple Definitions

Sir Charles Antony Richard Hoare

$P, Q \subseteq S$ $r \subseteq S \times S$ Hoare Triple:

Sir Charles Antony Richard Hoare givin conference at the EPFL on 20 June 20 Born 11 January 1934 from Wikipedia page Tony Hoare
http://slideshot.epfl.ch/play/suri_hoare

$$\{P\} \ r \ \{Q\} \iff \forall s, s' \in S. (s \in P \land (s, s') \in r \to s' \in Q)$$

({P} and {Q} do not denote singleton sets, they are just notation for assertions) **Strongest postcondition:**

$$sp(P,r) = \{s' \mid \exists s. s \in P \land (s,s') \in r\}$$

Weakest precondition:

$$wp(r, Q) = \{s \mid \forall s'. (s, s') \in r \to s' \in Q\}$$

Postconditions and Their Strength

What is the relationship between these postconditions?

{
$$x = 5$$
} $x := x + 2$ { $x > 0$ }
{ $x = 5$ } $x := x + 2$ { $x = 7$ }

Postconditions and Their Strength

What is the relationship between these postconditions?

{
$$x = 5$$
} $x := x + 2$ { $x > 0$ }
{ $x = 5$ } $x := x + 2$ { $x = 7$ }

weakest conditions (predicates) correspond to largest sets
 strongest conditions (predicates) correspond to smallest sets

that satisfy a given property.

(Graphically, a stronger condition $x > 0 \land y > 0$ denotes one quadrant in plane, whereas a weaker condition x > 0 denotes the entire half-plane.)

Strongest Postcondition

Definition: For $P \subseteq S$, $r \subseteq S \times S$,

$$sp(P,r) = \{s' \mid \exists s.s \in P \land (s,s') \in r\}$$

This is simply the relation image of a set.

Weakest Precondition

Definition: for $Q \subseteq S$, $r \subseteq S \times S$,

$$wp(r, Q) = \{s \mid \forall s'.(s, s') \in r \to s' \in Q\}$$

Note that this is in general not the same as $sp(Q, r^{-1})$ when then relation is non-deterministic or partial.

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $\blacktriangleright \{P\}r\{Q\}$
- ▶ $P \subseteq wp(r, Q)$
- ▶ $sp(P,r) \subseteq Q$

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $\blacktriangleright \{P\}r\{Q\}$
- $\blacktriangleright P \subseteq wp(r, Q)$

▶
$$sp(P,r) \subseteq Q$$

Proof. The three conditions expand into the following three formulas

$$\flat \quad \forall s, s'. \ [(s \in P \land (s, s') \in r) \rightarrow s' \in Q]$$

►
$$\forall s. [s \in P \rightarrow (\forall s'.(s,s') \in r \rightarrow s' \in Q)]$$

 $\blacktriangleright \quad \forall s'. \ \left[\left(\exists s. \ s \in P \land \left(s, s' \right) \in r \right) \rightarrow s' \in Q \right]$

which are easy to show equivalent using basic first-order logic properties, such as $(P \land Q \longrightarrow R) \longleftrightarrow (P \longrightarrow (Q \longrightarrow R)), (\forall u.(A \longrightarrow B)) \longleftrightarrow (A \longrightarrow \forall u.B)$ when $u \notin FV(A)$, and $(\forall u.(A \longrightarrow B)) \longleftrightarrow ((\exists u.A) \longrightarrow B)$ when $u \notin FV(B)$.