
Automating First-Order Logic Proofs Using Resolution

Viktor Kunčak, EPFL

Automating first-order logic (FOL)

First-order logic supports arbitrary (uninterpreted) predicates and functions
▶ their meaning will be constrained through axioms

FOL can be used in practice to formalize most of mathematics (e.g. through set theory
axioms), and thus all of program verification problems.
To prove whether a property holds, we can proceed as follows:
▶ describe the property using a formula F
▶ describe the functions and relations in F using a sequence of axioms S

Check if the sequence (¬F ;S) is contradictory. If yes, then F follows from S

Completeness: there is a procedure that will, if F does follow from S, in finite time
establish this (we do not know how long it will take, if it does not hold, it loops).
We give one such procedure: resolution for FOL.

Running example of FOL formula

Here is a first-order logic formula:

(∀x .∃y . R(x ,y)) ∧
(∀x .∀y . (R(x ,y)→∀z . R(x , f (y ,z)))) ∧
(∀x . (P(x)∨P(f (x ,a))))
→∀x .∃y . (R(x ,y)∧P(y))

Note that it contains:
▶ propositional operations ∧,∨,¬,→
▶ variables x ,y
▶ quantifiers ∀,∃ (only over the variables)
▶ function symbols and constants: f ,a
▶ predicate symbols: P ,R

First-order logic syntax and terminology
A first-order signature L (akka language) specifies a countable set of function symbols
f (constants c are functions symbols taking no arguments), and predicate symbols p.
Syntax of formulas (F) and terms (t) in first-order logic:

F ::= p(t1, . . . ,tn) | ∀x .F | ∃x .F | > | ⊥ | ¬F | F1 ∧F2 | F1 ∨F2 | F1→ F2 | F1↔ F2
t ::= x | c | f (t1, . . . ,tn)

where x ∈Var denotes variables, which form a countably infinite fixed set.
ar denotes arity of functions and predicate symbols; e.g. ar(f)= 2 means f takes two
arguments, so it is allowed to form a term f (t1,t2), and also ar(p)= 2 for predicate
symbol p means that it is allowed to form formula p(t1,t2).
We interpret each f as f̄ :Dar(f)→D and each p as p̄ :Dar(p)→{0,1} (or: ⊆Dar(p))

We call p(t1, . . . ,tn) an atomic formula (contains no logical connectives or quantifiers).
A literal is such an atomic formula, or its negation ¬p(t1, . . . ,tn)
A clause is a disjunction of literals, e.g. ¬p(x , f (y))∨q(y)∨¬r(x ,z)

Example of a FOL signature
We will look at the signature L = {P ,R ,a, f } where
▶ P is a predicate symbol, ar(P)= 1
▶ R is a predicate symbol, ar(R)= 2
▶ a is a constant
▶ f is a function symbol, ar(f)= 2

An interpretation for this language is then any structure (D,e) where
▶ D 6= ; (it can be finite or infinite)
▶ e(P) :D→{0,1}
▶ e(R) :D2→{0,1}
▶ e(a) ∈D
▶ e(f) :D2→D

Example: D = {0,1,2, . . .} (non-negative integers) and:
▶ e(P)(n)= if (2|n) then 1 else 0
▶ e(R)(x ,y)= if (x ≤ y) then 1 else 0
▶ e(a)= 1
▶ e(f)(x ,y)= x + y

Semantics given an interpretation
Taking that interpretation, D = {0,1,2, . . .},
▶ e(P)(n)= if (2|n) then 1 else 0
▶ e(R)= if (x ≤ y) then 1 else 0
▶ e(a)= 1
▶ e(f)(x ,y)= x + y

we can talk about the truth value of any closed formula, e.g.:

(text, or tree)

(∀x .∃y . R(x ,y)) ∧
(∀x .∀y . (R(x ,y)→∀z . R(x , f (y ,z)))) ∧
(∀x . (P(x)∨P(f (x ,a))))
→∀x .∃y . (R(x ,y)∧P(y))

Its truth is precisely the truth of this (symbols are replaced with their value in e):

(true or false)

(∀x .∃y . x ≤ y) ∧
(∀x .∀y . x ≤ y →∀z . x ≤ (y + z)) ∧
(∀x . (2|x)∨ (2|x +1))
→∀x .∃y . (x ≤ y ∧ (2|y))

Semantics in general: interpreter written in set theory
A first-order interpretation is I =(D,e) where D 6= ; and e maps constants, function
and predicate symbols as follows:
▶ each predicate symbol p with ar(p)= n into e(p) :Dn→{0,1}
▶ each function symbol f with ar(f)= n into a total function of n arguments,

e(f) :Dn→D (and each constant c into element of D, i.e., e(c) ∈D)
▶ maps each variable x to element of D, i.e., e(x) ∈D

We then define ¹F ºI ∈ {0,1} to denote whether F is true (1) or false (0) false in
interpretation I. The rules are the expected rules recursive on the formula tree:

¹F1 ∧F2ºI = ¹F1ºI∧¹F2ºI ¹F1 ∨F2ºI = ¹F1ºI∨¹F2ºI ¹¬F ºI =¬¹F ºI ¹⊥ºI = 0

¹f (t1, . . . ,tn)ºI = e(f)(¹t1ºI , . . . ,¹tnºI) ¹p(t1, . . . ,tn)ºI = e(p)(¹t1ºI , . . . ,¹tnºI)¹∀x .F º(D,e)= if (∀d ∈D. (¹F º(D,e[x :=d])= 1)) then 1 else 0¹∃x .F º(D,e)= if (∃d ∈D. (¹F º(D,e[x :=d])= 1)) then 1 else 0

where e[x := d](y)= (if x = y then d else e(y))

What makes this logic first order

¹∀x .F º(D,e)= if({d ∈D | ¹F º(D,e[x :=d])= 1}=D) then 1 else 0¹∃x .F º(D,e)= if({d ∈D | ¹F º(D,e[x :=d])= 1} 6= ;) then 1 else 0

We can quantify over variables ∀x .F , ∃x .F , which are interpreted over D, and we can
nest quantifiers, e.g. ∀x .∃y . (p(x ,y)∧q(y ,x)).
We cannot write a FOL formula that quantifies over function and relation symbols
(that would be second or, generally, higher order).

The meaning of function and relation symbols is fixed in e of interpretation I =(D,e).

To make statements that do not depend on a particular interpretation, we use concepts
of satisfiability and validity:
▶ F is valid if, for all interpretations (D,e)

(for arbitrarily small or large sets D and all possible choices of e), ¹F º(D,e)= 1
▶ F is satisfiable if there exists an interpretation (D,e) such that ¹F º(D,e)= 1

Satisfiability and validity: illustration
Take first-order logic (FOL) formula

∀x .∃y . (p(x ,y)∧q(y ,x))

Its satisfiability is, by definition, equivalent to a statement:

∃D 6= ;. ∃p,q⊆D2. ∀x ∈D.∃y ∈D. ((p(x ,y)∧q(y ,x))= 1)

Its validity is, by definition, equivalent a statement:

∀D 6= ;. ∀p,q⊆D2. ∀x ∈D.∃y ∈D. ((p(x ,y)∧q(y ,x))= 1)

The domain, functions, and relations are either all existentially quantified (if we ask
about satisfiability) or all universally quantified (if we ask about validity).

Observation: F is valid if and only if ¬F is not satisfiable.
We will be checking satisfiability (aiming for a negative answer).

Back to our example
Consider our example formula F :

(∀x .∃y . R(x ,y)) ∧
(∀x .∀y . R(x ,y)→∀z . R(x , f (y ,z))) ∧
(∀x . P(x)∨P(f (x ,a)))
→∀x .∃y . R(x ,y)∧P(y)

We have seen it has an interpretation where it is true, so F is satisfiable.
We are interested in checking its validity.
To do that, we will check the satisfiability of ¬F .

¬� (∀x .∃y . R(x ,y)) ∧
(∀x .∀y . R(x ,y)→∀z . R(x , f (y ,z))) ∧
(∀x . P(x)∨P(f (x ,a)))
→∀x .∃y . R(x ,y)∧P(y)

�
In general, we will transform ¬F into a normal form.

Negation normal form for FOL
Observation: If F↔G is a valid FOL formula, then inside any other FOL formula H
we can replace a sub-formula F with G without changing the truth value of the
formula: H[F]⇝H[G].

We can transform formulas to negation normal using transformations such as these:
F1↔ F2 ⇝ (F1→ F2)∧ (F2→ F1)
F1→ F2 ⇝ ¬F1 ∨F2¬¬F ⇝ F
¬(F1 ∧F2) ⇝ ¬F1 ∨¬F2¬(F1 ∨F2) ⇝ ¬F1 ∧¬F2¬∀x .F ⇝ ∃x .¬F
¬∃x .F ⇝ ∀x .¬F
¬⊥ ⇝ >
¬> ⇝ ⊥

In negation normal form, negation applies only to atomic formulas and the only other
propositional connectives are ∧, ∨.

Compute negation normal form

¬
��
(∀x .∃y . R(x ,y)) ∧�∀x .∀y . (R(x ,y)→∀z . R(x , f (y ,z)))

� ∧
(∀x . P(x)∨P(f (x ,a)))

� →∀x .∃y . R(x ,y)∧P(y)
�

becomes:

(∀x .∃y . R(x ,y)) ∧�∀x .∀y . (¬R(x ,y)∨∀z . R(x , f (y ,z)))
� ∧�∀x . (P(x)∨P(f (x ,a)))

� ∧�∃x .∀y . (¬R(x ,y)∨¬P(y))
�

Coming next: get rid of existential quantifiers!

Compute negation normal form

¬
��
(∀x .∃y . R(x ,y)) ∧�∀x .∀y . (R(x ,y)→∀z . R(x , f (y ,z)))

� ∧
(∀x . P(x)∨P(f (x ,a)))

� →∀x .∃y . R(x ,y)∧P(y)
�

becomes:

(∀x .∃y . R(x ,y)) ∧�∀x .∀y . (¬R(x ,y)∨∀z . R(x , f (y ,z)))
� ∧�∀x . (P(x)∨P(f (x ,a)))

� ∧�∃x .∀y . (¬R(x ,y)∨¬P(y))
�

Coming next: get rid of existential quantifiers!

Compute negation normal form

¬
��
(∀x .∃y . R(x ,y)) ∧�∀x .∀y . (R(x ,y)→∀z . R(x , f (y ,z)))

� ∧
(∀x . P(x)∨P(f (x ,a)))

� →∀x .∃y . R(x ,y)∧P(y)
�

becomes:

(∀x .∃y . R(x ,y)) ∧�∀x .∀y . (¬R(x ,y)∨∀z . R(x , f (y ,z)))
� ∧�∀x . (P(x)∨P(f (x ,a)))

� ∧�∃x .∀y . (¬R(x ,y)∨¬P(y))
�

Coming next: get rid of existential quantifiers!

Introducing a Skolem function

Observe that e.g. the following formula is valid: p(x , f (x)) → ∃y .p(x ,y).
Indeed, fix any interpretation (D,e) and assume p(x , f (x)).
To prove ∃y .p(x ,y), just let y be f (x).
Consequently, also

(∀x .p(x , f (x))) → (∀x .∃y .p(x ,y))

is valid. A form of converse is also true. Take any interpretation (D,e) in which
∀x .∃y .p(x ,y) holds. Then there exists yd ∈D such that e(p)(xd ,yd)= 1. Construct
(by axiom of choice) a function f̄ that assigns to every element xd ∈D one yd ∈D for
which e(p)(xd ,yd)= 1. Extend the signature with a new function symbol f
(Skolem function, according to (W) Thoralf Skolem) that does not appear in the
formula. Define a new interpretation I ′=(D,e′) (with the same domain) as
e′= e[f := f̄], that is, e′ behaves like e but maps a new symbol f to the function f̄ .
Then ¹∀x .p(x , f (x))ºI ′ = 1. We can do this not just for p but any quantifier-free
formula and preserve satisfiability in a larger formula.

https://en.wikipedia.org/wiki/Thoralf Skolem

Skolemization in general
In a formula that is in negation normal form, replace a subformula

∃y . F (x1, . . . ,xn,y)

with
F (x1, . . . ,xn,g(x1, . . . ,xn))

where g is a new function symbol (Skolem function) of arity n and {x1, . . . ,xn} are the
variables free in F , computed like this:

FV (c) = ;, FV (x)= {x}
FV (f (t1, . . . ,tn)) = FV (t1)∪ . . .∪FV (tn)= FV (p(t1, . . . ,tn))

FV (F1 ∧F2) = FV (F1)∪FV (F2) FV (¬F)= FV (F)
FV (∀x .F) = FV (F) \ {x}= FV (∃x .F)

If we have quantifiers Q1x1. . . .Qnxn.F we start eliminating from outside (left) and then
Skolem function arguments for ∃xi are only ∀ quantified variables among x1, . . . ,xi−1.

Skolemized form for the example

(∀x .∃y . R(x ,y)) ∧ y ⇝ s1(x)�∀x .∀y . (¬R(x ,y)∨∀z . R(x , f (y ,z)))
� ∧�∀x . (P(x)∨P(f (x ,a)))

� ∧�∃x .∀y . (¬R(x ,y)∨¬P(y))
�

x ⇝ s2

becomes:
(∀x . R(x ,s1(x))) ∧�∀x .∀y . (¬R(x ,y)∨∀z . R(x , f (y ,z)))

� ∧�∀x . (P(x)∨P(f (x ,a)))
� ∧�∀y . (¬R(s2,y)∨¬P(y))
�

Moving quantifiers and conjunctive normal form

Note that all bound quantified variables can be renamed while preserving equivalence
and that quantifier can be pulled in or out of formula where it does not occur:
▶ (∀x .F)↔∀y .F [x := y], where y is fresh
▶ (∀x .F)∨G↔∀x .(F ∨G)

▶ (∀x .F)∧G↔∀x .(F ∧G)

We can thus put formulas outwards. If we choose, we can obtain: prenex normal form,
a formula of the form

Q1x1.Q2x2. . . .Qnxn.G

where Qi ∈ {∀,∃} and G has no quantifiers.
We can then transform G to conjunctive normal form, as for propositional logic:
▶ (F ∧G)∨H ↔ (F ∨H)∧ (G ∨H)

We can also introduce fresh predicate symbols to avoid exponential blowup.

Conjunction of clauses

Theorem: each formula F can be transformed into an equisatisfiable formula of the
form:

(∀x1, . . . ,xn.C1)∧ . . .∧ (∀x1, . . . ,xn.Cm)

where each Ci is quantifier free and, moreover, a disjunction of first-order literals.
Note: a first-order literal is either an atomic formula, that is p(t1, . . . ,tk) where p is a
predicate symbol, or a negation of an atomic formula, ¬p(t1, . . . ,tk).
Indeed, we have seen how to move ¬ to predicates (NNF), eliminate ∃, and pull ∀ and
∧ to the outside, leaving ∨ applied to literals.
Each Ci is a (first-order) clause. We can also view it as a set, because the order of
disjuncts does not matter up to equivalence. Clause that is an empty set means ⊥.
For a given formula F , denote the set of obtained clauses {C1, . . . ,Cm} by clauses(F).
We omit universal quantifiers because all variables are universally quantified. We use a
convention to denote variables by x ,y ,z , . . . and constants by a,b,c ,

Sets of formulas when checking satisfiability

We define that a set of formulas S is true in an interpretation I if every formula is true
in that interpretation:

¹SºI = if (∀F ∈ S .¹F ºI = 1) then 1 else 0

If S is finite then ¹SºI = ¹∧F∈S SºI .
We say two sets are equivalent iff the set of interpretations in which they are true are
equal.
We say that S is satisfiable iff there exists I such that ¹SºI = 1.

Thus, F is satisfiable iff clauses(F) is satisfiable.

Clauses for the example

(∀x . R(x ,s1(x))) ∧�∀x .∀y . (¬R(x ,y)∨∀z . R(x , f (y ,z)))
� ∧�∀x . (P(x)∨P(f (x ,a)))

� ∧�∀y . (¬R(s2,y)∨¬P(y))
�

gives the set of clauses: �
R(x ,s1(x)),
¬R(x ,y)∨R(x , f (y ,z)),
P(x)∨P(f (x ,a)),
¬R(s2,y)∨¬P(y)

	

or, if we represent clauses themselves as sets:�{R(x ,s1(x))},{¬R(x ,y), R(x , f (y ,z))},
{P(x),P(f (x ,a))},
{¬R(s2,y),¬P(y)} 	

Clauses for the example

(∀x . R(x ,s1(x))) ∧�∀x .∀y . (¬R(x ,y)∨∀z . R(x , f (y ,z)))
� ∧�∀x . (P(x)∨P(f (x ,a)))

� ∧�∀y . (¬R(s2,y)∨¬P(y))
�

gives the set of clauses: �
R(x ,s1(x)),
¬R(x ,y)∨R(x , f (y ,z)),
P(x)∨P(f (x ,a)),
¬R(s2,y)∨¬P(y)

	
or, if we represent clauses themselves as sets:�{R(x ,s1(x))},{¬R(x ,y), R(x , f (y ,z))},

{P(x),P(f (x ,a))},
{¬R(s2,y),¬P(y)} 	

Applying sound inference rules
We say that an inference rule

F1 . . .Fn
G (∗)

is sound iff the formula (F1 ∧ . . .Fn)→G is valid.
Observation. Let (∗) be a sound inference rule and F1, . . . ,Fn ∈ S. Then S and S ∪{G}
are equivalent.
Example: using convention that variables are ∀ quantified, the instantiation rule

C
C [x := t]

is sound, where C [x := t] denotes substituting variables of C by some terms.
In general, t may contain other variables. Special cases of instantiation are:
▶ renaming: replace variables with fresh variables
▶ ground instantiation: replace variables with ground terms, that have no variables

(built only from constants and function symbols)

Resolution and for FOL clauses
The following formula (transitivity of universal implication) is easily proven to be valid
for all formulas F ,G ,H, where x denotes the finite list of all free variables in F ,G ,H:�

(∀x . (F →G)) ∧ (∀x . (G→H))
� → (∀x .(F →H))

Write it down as an inference rule, assume that all formulas universally quantified:

F →G G→H
F →H

Expressing → using ∨ and ¬:
¬F ∨G ¬G ∨H

¬F ∨H
Let G be a literal L, let ¬F be equivalent to clause C1 and H to clause C2. We get:

C1 ∨L ¬L∨C2
C1 ∨C2

resolution (simple, without unification)

Resolution with instantiation

We call literals L and ¬L complementary.
If literals are not complementary, we may still be able to apply substitution rule to
make them complementary:

C ′1 ∨L′
C1 ∨L

¬L′′ ∨C ′′2
¬L∨C2

C1 ∨C2

To check whether we can find a substitution to make L′ and L′′ identical (≡), we can
use (syntactic, first-order) unification, which has a linear-time algorithm.

(W) Unification (computer science)
We rename variables in two clauses so that they are disjoint, the instantiate them by
computing most general unifier computation so that literals become complementary
(one is an atomic formula and the other its negation).

https://en.wikipedia.org/wiki/Unification (computer science)

Applying resolution

Apply resolution and instantiation to clauses in our example:
1 R(x ,s1(x))
2 ¬R(x ,y)∨R(x , f (y ,z))
3 P(x)∨P(f (x ,a))
4 ¬R(s2,y)∨¬P(y)

5 (1,2): R(x , f (s1(x),z)) y ⇝ s1(x)
6 (1,4): ¬P(s1(s2)) x ⇝ s2,y ⇝ s1(x)
7 (3,6): P(f (s1(s2),a)) x ⇝ s1(s2)

8 (4,7): ¬R(s2, f (s1(s2),a)) y ⇝ f (s1(s2),a)
9 (5,8): ⊥ x ⇝ s2

We can derive ⊥ from the set of clauses.
Thus, the set of clauses is unsatisfiable. The formula we started from as well.

Applying resolution

Apply resolution and instantiation to clauses in our example:
1 R(x ,s1(x))
2 ¬R(x ,y)∨R(x , f (y ,z))
3 P(x)∨P(f (x ,a))
4 ¬R(s2,y)∨¬P(y)
5 (1,2): R(x , f (s1(x),z)) y ⇝ s1(x)

6 (1,4): ¬P(s1(s2)) x ⇝ s2,y ⇝ s1(x)
7 (3,6): P(f (s1(s2),a)) x ⇝ s1(s2)

8 (4,7): ¬R(s2, f (s1(s2),a)) y ⇝ f (s1(s2),a)
9 (5,8): ⊥ x ⇝ s2

We can derive ⊥ from the set of clauses.
Thus, the set of clauses is unsatisfiable. The formula we started from as well.

Applying resolution

Apply resolution and instantiation to clauses in our example:
1 R(x ,s1(x))
2 ¬R(x ,y)∨R(x , f (y ,z))
3 P(x)∨P(f (x ,a))
4 ¬R(s2,y)∨¬P(y)
5 (1,2): R(x , f (s1(x),z)) y ⇝ s1(x)
6 (1,4): ¬P(s1(s2)) x ⇝ s2,y ⇝ s1(x)

7 (3,6): P(f (s1(s2),a)) x ⇝ s1(s2)

8 (4,7): ¬R(s2, f (s1(s2),a)) y ⇝ f (s1(s2),a)
9 (5,8): ⊥ x ⇝ s2

We can derive ⊥ from the set of clauses.
Thus, the set of clauses is unsatisfiable. The formula we started from as well.

Applying resolution

Apply resolution and instantiation to clauses in our example:
1 R(x ,s1(x))
2 ¬R(x ,y)∨R(x , f (y ,z))
3 P(x)∨P(f (x ,a))
4 ¬R(s2,y)∨¬P(y)
5 (1,2): R(x , f (s1(x),z)) y ⇝ s1(x)
6 (1,4): ¬P(s1(s2)) x ⇝ s2,y ⇝ s1(x)
7 (3,6): P(f (s1(s2),a)) x ⇝ s1(s2)

8 (4,7): ¬R(s2, f (s1(s2),a)) y ⇝ f (s1(s2),a)
9 (5,8): ⊥ x ⇝ s2

We can derive ⊥ from the set of clauses.
Thus, the set of clauses is unsatisfiable. The formula we started from as well.

Applying resolution

Apply resolution and instantiation to clauses in our example:
1 R(x ,s1(x))
2 ¬R(x ,y)∨R(x , f (y ,z))
3 P(x)∨P(f (x ,a))
4 ¬R(s2,y)∨¬P(y)
5 (1,2): R(x , f (s1(x),z)) y ⇝ s1(x)
6 (1,4): ¬P(s1(s2)) x ⇝ s2,y ⇝ s1(x)
7 (3,6): P(f (s1(s2),a)) x ⇝ s1(s2)

8 (4,7): ¬R(s2, f (s1(s2),a)) y ⇝ f (s1(s2),a)

9 (5,8): ⊥ x ⇝ s2

We can derive ⊥ from the set of clauses.
Thus, the set of clauses is unsatisfiable. The formula we started from as well.

Applying resolution

Apply resolution and instantiation to clauses in our example:
1 R(x ,s1(x))
2 ¬R(x ,y)∨R(x , f (y ,z))
3 P(x)∨P(f (x ,a))
4 ¬R(s2,y)∨¬P(y)
5 (1,2): R(x , f (s1(x),z)) y ⇝ s1(x)
6 (1,4): ¬P(s1(s2)) x ⇝ s2,y ⇝ s1(x)
7 (3,6): P(f (s1(s2),a)) x ⇝ s1(s2)

8 (4,7): ¬R(s2, f (s1(s2),a)) y ⇝ f (s1(s2),a)
9 (5,8): ⊥ x ⇝ s2

We can derive ⊥ from the set of clauses.
Thus, the set of clauses is unsatisfiable. The formula we started from as well.

Applying resolution

Apply resolution and instantiation to clauses in our example:
1 R(x ,s1(x))
2 ¬R(x ,y)∨R(x , f (y ,z))
3 P(x)∨P(f (x ,a))
4 ¬R(s2,y)∨¬P(y)
5 (1,2): R(x , f (s1(x),z)) y ⇝ s1(x)
6 (1,4): ¬P(s1(s2)) x ⇝ s2,y ⇝ s1(x)
7 (3,6): P(f (s1(s2),a)) x ⇝ s1(s2)

8 (4,7): ¬R(s2, f (s1(s2),a)) y ⇝ f (s1(s2),a)
9 (5,8): ⊥ x ⇝ s2

We can derive ⊥ from the set of clauses.
Thus, the set of clauses is unsatisfiable. The formula we started from as well.

Conclusion of the procedure on this example

Thus, the formula before negation:

(∀x .∃y . R(x ,y)) ∧
(∀x .∀y . R(x ,y)→∀z . R(x , f (y ,z))) ∧
(∀x . P(x)∨P(f (x ,a)))
→∀x .∃y . R(x ,y)∧P(y)

was valid. We have proven that this formula holds in all possible models (no matter
how small, large, or complex they might be).

Remarkably, resolution with instantiation is refutationally complete: if the formula is
valid, then from the clauses equisatisfiable to its negation we will find a contradiction.

