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Formal Verification Methodology

We can view formal verification of program as a three-step approach:
1. Express properties in logic or code

(assertions, preconditions, post-conditions, invariants, run-time error conditions)
2. Compile program meaning to logical formulas

(verification-condition generator, symbolic execution)
3. Develop and use an automated theorem prover for generated conditions

(SAT and SMT solving, resolution-based theorem proving, proof assistants)
Which logic to use? Today: integer linear arithmetic (Presburger arithmetic)

References:
É Haase, Christoph. A survival guide to presburger arithmetic. ACM SIGLOG News.
https://dl.acm.org/doi/10.1145/3242953.3242964.
É https://en.wikipedia.org/wiki/Presburger_arithmetic
É The Calculus of Computation (Bradley, Manna, Springer-Verlag 2007), Section 7.2

https://dl.acm.org/doi/10.1145/3242953.3242964
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Presburger arithmetic

Integer arithmetic with logical operations (and, or, not), quantifiers, only addition as
an arithmetic operation, and < and = as a relation.
É minimalistically one can define a variant of it over non-negative natural numbers

as having ∧,¬,∀,+,= as the only symbols
One of the earliest theories shown decidable. Mojżesz Presburger gave an algorithm for
quantifier elimination in 1929.
É a student of an influential logician and model theorist Alfred Tarski
É Tarski assigned this question to Mojżesz for his MSc thesis and he solved it

The result at this time was of interest to foundations of mathematics (giving
algorithmic meaning to quantifiers).
Subsequently, it found applications in automated reasoning, including building first
program verifiers (Cooper 1972, Derek C. Oppen - STOC 1973).



Presburger Arithmetic for Verification

res = 0
i = x
while // invariant I(res,i): res + 2∗i == 2∗x && 0 <= i
(i > 0) {

i = i − 1
res = res + 2

}

Verification condition (VC) for preservation of loop invariant:�
I(res , i)∧ i ′= i −1∧ res ′= res +2∧0< i

�→ I(res ′, i ′)
To prove that this VC is valid, we check whether its negation

I(res , i)∧ i ′= i −1∧ res ′= res +2∧0< i ∧¬I(res ′, i ′)
is satisfiable, i.e. whether this PA formula is true:

∃x , res , i , res ′, i ′.
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧

i ′= i −1 ∧ res ′= res +2 ∧ ¬(res ′+2i ′= 2x ∧ 0≤ i ′)
�



Introducing: One-Point Rule

If ȳ is a tuple of variables not containing x , then

∃x .(x = t(ȳ)∧F (x , ȳ)) ⇐⇒ F (t(ȳ), ȳ)

Proof:
→ : Consider the values of ȳ such that there exists x , say x1, for which

x1 = t(ȳ)∧F (x1, ȳ). Because F (x1, ȳ) evaluates to true and the values of x1 and
t(ȳ) are the same, F (t , ȳ) also evaluates to true.

← : Let ȳ be such that F (t , ȳ) holds. Let x be the value of t(ȳ). Then of course
x = t(ȳ) evaluates to true and so does F (x , ȳ). So there exists x for which
x = t(ȳ)∧F (x , ȳ) holds.

One point rule:
replaces left side (LHS) of equivalence by the right side (RHS).

Flattening, used when t is complex, replaces RHS by LHS.



Dual One-Point Rule for ∀

∀x .(x = t(ȳ)→ F (x , ȳ)) ⇐⇒ F (t(ȳ), ȳ)

To prove it, negate both sides:

∃x .(x = t(ȳ)∧¬F (x , ȳ)) ⇐⇒ ¬F (t(ȳ), ȳ)

so it reduces to the rule for ∃.



Using One-Point Rule on Negated Verification Condition

∃x , res , i , res ′, i’.
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧

i’ = i - 1 ∧ res ′= res +2 ∧
¬(res ′+2i ′= 2x ∧ 0≤ i ′)

�

∃x , res , i ,res’.
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧

res’ = res + 2 ∧
¬(res ′+2(i −1)= 2x ∧ 0≤ i −1)

�
∃x , res , i .
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧
¬(res +2+2(i −1)= 2x ∧ 0≤ i −1)

�
∃x ,res, i .
�
res = 2x - 2i ∧ 0≤ i ∧ 0< i ∧
¬(res +2+2(i −1)= 2x ∧ 0≤ i −1)

�
∃x , i .
�
0≤ i ∧ 0< i ∧
¬(2x −2i +2+2(i −1)= 2x ∧ 0≤ i −1)

�
Simplifies to ∃x , i . 0< i ∧¬(0≤ i −1) and then to false.
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But there is more

One-point rule is one of the many steps used in
quantifier elimination procedures.



Quantifier Elimination (QE) ∀∃∅
Given a formula F (ȳ) containing quantifiers find a formula G(ȳ)
É equivalent to F (ȳ)
É that has no quantifiers
É and has a subset (or equal set) of free variables of F

Note
É Equivalence: For all ȳ , F (ȳ) and G(ȳ) have same truth value
  we can use G(ȳ) instead of F (ȳ)
É No quantifiers: easier to check satisfiability of G(ȳ)

ȳ is a possibly empty tuple of variables



We are lucky when a theory has (“admits”) QE

Suppose F has no free variables (all variables are quantified).
What is the result of applying QE to F?

Are there any variables in the resulting formula?
É No free variables: they are a subset of the original, empty set
É No quantified variables: because it has no quantifiers ,

Formula without any variables! Example:

(2+4= 7)∨ (1+1= 2)

We check the truth value of such formula by simply evaluating it!
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Using QE for Deciding Satisfiability/Validity

É To check satisfiability of H(ȳ): eliminate the quantifiers from ∃ȳ .H(ȳ) and
evaluate.
É Validity: eliminate quantifiers from ∀ȳ .H(ȳ) and evaluate

We can even check formulas like this:

∀x ,y , r . ∃z . (5≤ r ∧ x + r ≤ y)→ (x < z ∧ z < y ∧3|z)
Here 3|z denotes that z is divisible by 3.



Does Presburger Arithmetic admit QE?

Depends on the particular set of symbols!
(Recall objective: given F (ȳ) containing quantifiers find a formula G(ȳ)
É equivalent to F (ȳ)
É that has no quantifiers
É and has a subset (or equal set) of free variables of F )

If we lack some operations that can be expressed using quantifiers, there may be no
equivalent formula without quantifiers.
É ∃y .x = y + y + y , so we better have divisibility

Quantifier elimination says: if you can define some relationship between variables using
an arbitrary, possibly quantified, formula F ,

r def
= {(x ,y) | F (x ,y)}

then you can also define same r using another quantifier-free formula G .
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Presburger Arithmetic (PA)
We look at the theory of integers with addition.
É introduce constant for each integer constant
É to be able to restrict values to natural numbers when needed, and to compare

them, we introduce <
É introduce not only addition but also subtraction
É to conveniently express certain expressions, introduce function mK for each

K ∈Z , to be interpreted as multiplication by a constant, mK (x)=K ·x . We write
mK as K · x .
Note: there is no multiplication between variables in PA
É to enable quantifier elimination from ∃x .y =K · x introduce for each K predicate

K |y (divisibility, y%K = 0)
The resulting language has these function and relation symbols:
{+,−,=,<}∪ {K |K ∈Z}∪ {(K ·_) |K ∈Z}∪ {(K |_) |K ∈Z} We also have, as usual:
∧,∨,¬,→ and also: ∃,∀



Example

Eliminate y from this formula:

∃y . 3y −2w +1>−w ∧2y −6< z ∧4 | 5y +1

What should we do first?

Simplify/normalize what we can using properties of integer operations:

∃y . 0<−w +3y +1 ∧ 0<−2y + z +6 ∧ 4 | 5y +1

First we will consider only eliminating existential from a conjunction of literals.
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Conjunctions of Literals

Atomic formula: a relation applied to argument.
Here, relations are: =, <, K |_. So, atomic formulas are:

t1 = t2, t1 < t2, K | t

Literal: Atomic formula or its negation. Example: ¬(x = y +1)
Conjunction of literals: L1 ∧ . . .∧Ln
É no disjunctions, no implications
É negation only applies to atomic formulas

We first consider the quantifier elimination problem of the form:

∃y . L1 ∧ . . .∧Ln

This will prove to be sufficient to eliminate all quantifiers!
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Eliminating ∃ from conjunction of literals suffices

Can we eliminate ∃ from any quantifier-free formula?

∃x .F (x , ȳ)

where F is quantifier-free?

Formula without quantifiers has ∧,∨,¬ applied to atomic formulas.
Convert F to disjunctive normal form:

F ⇐⇒
m∨

i=1
Ci

each Ci is a conjunction of literals.

�∃x .
m∨

i=1
Ci
� ⇐⇒ m∨

i=1
(∃x .Ci)
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How does disjunctive normal form (DNF) transformation work?

Which steps should we use?

Negation propagation:
¬(p ∧q)   (¬p)∨ (¬q)

¬(p ∨q)   (¬p)∧ (¬q)

¬¬p   p

Result is negation-normal form, NNF
NNF transformation is polynomial (exercise!)
Distributivity

a∧ (b1 ∨b2)   (a∧b1)∨ (a∧b2)

This can lead to exponential explosion.
Can we obtain equivalent DNF formula without explosion?
No! We can prove this (no equivalent DNF formula exists), unrelated to NP vs P
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Eliminating from quantifier free formulas

∃x .F ⇐⇒ �∃x .
m∨

i=1
Ci
� ⇐⇒ m∨

i=1
(∃x .Ci)



Nested Existential Quantifiers

∃x1.∃x2.∃x3.F0(x1,x2,x3, ȳ)

∃x1.∃x2.F1(x1,x2, ȳ)

∃x1.F2(x1, ȳ)

F3(ȳ)
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F3(ȳ)
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Universal Quantifiers
If F0(x , ȳ) is quantifier-free, how to eliminate

∀x .F0(x , ȳ)

Note this equivalence (F0 universally holds if there is no counterexample):

∀x .F0(x , ȳ) ⇐⇒ ¬�∃x .¬F0(x , ȳ)
�

It thus suffices to handle:
¬�∃x .¬F0(x , ȳ)
�

Note that ¬F0(x , ȳ) is quantifier-free, so we know how to eliminate ∃x .¬F0(x , ȳ):

∃x .¬F0(x , ȳ)   F1(ȳ)

Then the result of the elimination is the quantifier-free formula:

¬F1(ȳ)



Universal Quantifiers
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Removing any alternation of quantifiers: illustration

Alternation: switch between existentials and universals

∃x1.∀x2.∀x3.∃x4.F0(x1,x2,x3,x4, ȳ)

∃x1.¬∃x2.∃x3.¬∃x4.F0(x1,x2,x3,x4, ȳ)

∃x1.¬∃x2.∃x3.¬F1(x1,x2,x3, ȳ)

∃x1.¬∃x2.F2(x1,x2, ȳ)

∃x1.¬F3(x1, ȳ)

F4(ȳ)

Each quantifier alternation involves a disjunctive normal form transformation.
In practice, we do not have many alternations.



Back to Presburger Arithmetic

Consider the quantifier elimination problem of the form:

∃y . L1 ∧ . . .∧Ln

where Li are literals from PA.
Note that, for integers:
É ¬(x < y) ⇐⇒ y ≤ x
É x < y ⇐⇒ x +1≤ y
É x ≤ y ⇐⇒ x < y +1

We use these observations below.
Instead of ≤ we choose to use < only.
We do not write x > y but only y < x .



Normalizing Literals for PA
Normal Form of Terms: All terms are built from K ,+,−,K ·_, so using standard
transformations they can be represented as: K0 +

∑n
i=1 Kixi We call such term a linear

term.
Normal Form for Literals in PA:

¬(t1 < t2) becomes t2 < t1 +1
¬(t1 = t2) becomes t1 < t2 ∨ t2 < t1

t1 = t2 becomes t1 < t2 +1∧ t2 < t1 +1 (∗)
¬(K | t) becomes

K−1∨
i=1

K | t + i

t1 < t2 becomes 0< t2− t1

To remove disjunctions we generated, compute DNF again.
(∗) We transformed equalities just for simplicity. Usually we handle them directly.



Why one-point rule will not be enough

Note that we must handle inequalities, not merely equalities

If we have integers, we cannot always divide perfectly.
Variable to eliminate can occur not as y but as, e.g. 3y



Exposing the Variable to Eliminate: Example

∃y . 0<−w +3y+1 ∧ 0<−2y+ z +6 ∧ 4 | 5y+1

Least common multiple of coefficients next to y , M = lcm(3,2,5)= 30
Make all occurrences of y in the body have this coefficient:

∃y . 0<−10w +30y+10∧0<−30y+15z +90∧24 | 30y+6

Now we are quantifying over y and using 30y everywhere.
Let x denote 30y .
It is not an arbitrary x . It is divisible by 30.

∃x . 0<−10w + x +10∧ 0<−x +15z +90 ∧ 24 | x +6 ∧ 30 | x



Exposing the Variable to Eliminate in General
Eliminating y from conjunction F (y) of literals:
É 0< t
É K | t

where t is a linear term. To eliminate ∃y from such conjunction, we wish to ensure
that the coefficient next to y is one or minus one.
Observation:
É 0< t is equivalent to 0< c t
É K | t is equivalent to c K | c t

for c a positive integer.
Let K1, . . . ,Kn be all coefficients next to y in the formula.
Let M be a positive integer such that Ki |M for all i , 1≤ i ≤ n
É for example, let M be the least common multiple

M = lcm(K1, . . . ,Kn)



Ensuring Coefficient One

Multiply each literal where y occurs in subterm Kiy by constant M/|Ki |
É the point is, M is divisible by |Ki | by construction

What is the coefficient next to y in the resulting formula?

M or −M

We obtain a formula of the form ∃y .F (M · y).
Letting x =My , we conclude the formula is equivalent to

∃x . F (x)∧ (M | x)
What is the coefficient next to y in the resulting formula?

1 or −1
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Exposing the Variable to Eliminate: Example

∃y . 0<−w +3y+1 ∧ 0<−2y+ z +6 ∧ 4 | 5y+1

Least common multiple of coefficients next to y , M = lcm(3,2,5)= 30
Make all occurrences of y in the body have this coefficient:

∃y . 0<−10w +30y+10∧0<−30y+15z +90∧24 | 30y+6

Now we are quantifying over y and using 30y everywhere.
Let x denote 30y .
It is not an arbitrary x . It is divisible by 30.

∃x . 0<−10w + x +10∧ 0<−x +15z +90 ∧ 24 | x +6 ∧ 30 | x



Lower and upper bounds:

Consider the coefficient next to x in 0< t. If it is −1, move the term to left side. If it
is 1, move the remaining terms to the left side. We obtain formula F1(x) of the form

L∧
i=1

ai < x ∧
U∧

j=1
x < bj ∧

D∧
i=1

Ki | (x + ti)

If there are no divisibility constraints (D = 0), what is the formula equivalent to?

max
i

ai +1≤min
j

bj −1 which is equivalent to
∧
ij

ai +1< bj
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Replacing variable by test terms
There is a an alternative way to express the above condition by replacing F1(x) with∨

k F1(tk) where tk do not contain x . This is a common technique in quantifier
elimination. Note that if F1(tk) holds then certainly ∃x .F1(x).
What are example terms ti when D = 0 and L> 0? Hint: ensure that at least one of
them evaluates to maxai +1.

L∨
k=1

F1(ak +1)

What if D > 0 i.e. we have additional divisibility constraints?

L∨
k=1

N∨
i=1

F1(ak + i)

What is N?

least common multiple of K1, . . . ,KD
Correctness: note that if F1(u) holds then also F1(u−N) holds.
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Back to Example

∃x . −10+10w < x ∧ x < 90+15z ∧ 24 | x +6 ∧ 30 | x

120∨
i=1

10w + i < 100+15z ∧ 24 | 10w −4+ i ∧ 30 | 10w −10+ i
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No lower bounds

Now consider the case L= 0. We cannot try all lower bounds, as there are none:

U∧
j=1

x < bj ∧
D∧

i=1
Ki | (x + ti)

We first drop all constraints except divisibility, obtaining F2(x):

D∧
i=1

Ki | (x + ti)

and then eliminate quantifier as
N∨

i=1
F2(i)

Exercise: prove equivalence of this result with ∃x .F1(x) in this case.
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An Example with No Lower Bounds

Eliminate quantifier from this formula:

∃x . x < 5+7z ∧ 2 | x ∧ 3 | x+2



Wrap Up

This completes the description of a quantifier elimination algorithm for Presburger
Arithmetic (PA).

This algorithm and its correctness prove that:
É PA admits quantifier elimination
É Satisfiability, validity, entailment, equivalence of PA formulas is decidable

We can use the algorithm to prove verification conditions.
Even if not the most efficient way, it gives us insights on which we can later build
to come up with better algorithms.
É Quantified and quantifier-free formulas have the same expressive power
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Approaches to Making QE for PA More Efficient in Practice

Avoid transforming to conjunctions of literals: work directly on negation-normal form.
The technique is similar to what we described for conjunctive normal form.

+ no need for DNF
- we may end up trying irrelevant bounds

This is the Cooper’s algorithm:
É Reddy, Loveland: Presburger Arithmetic with Bounded Quantifier Alternation.

(Gives a slight improvement of the original Cooper’s algorithm.)
É Section 7.2 of the Calculus of Computation Textbook

An alternative direction for improvement: handle a system of equalities more
efficiently, without introducing inequalities and divisibility constraints too eagerly, using
Euclid’s GCD algorithm for solving linear Diophantine equations.
(Hermite normal form of a matrix.)
Weak quantifier elimination: only eliminate alternations of quantifiers.



Complexity of Deciding Quantified PA Formulas

Regardless how we proceed, we cannot escape inherent computational complexity of
deciding if quantified Presburger arithmetic formula is true, which has been
characterized using alternating complexity classes by Berman.

A set A is in STA(s(n),t(n),a(n)) iff there exists a single-tape alternating Turing
machine Mi (making ∧ as well as ∨ choices) that accepts A and runs within space
s(n), time t(n) and performs at most a(n) alternations between ∧ and ∨ choices.

Deciding of a PA formula of size n with m quantifiers is in

STA(∗,2nO(m)
,m)

Complexity is particularly sensitive to m.
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