Transition System

Define transition system as (S, I, r, A) :

- S - the set containing all states of the system.

If S is finite, we have a finite-state system

- $I \subseteq S$ is the set of possible initial states of the system
- $r \subseteq S \times A \times S$ - transition relation; $\left(s, a, s^{\prime}\right) \in r$ means:
with the environment signal a, system can move in one step from state s to s^{\prime}
- we mostly assume that a is the input to the system
- in the special case that $r: S \times A \rightarrow S$, we say the system is deterministic
- A - set of signals with which the system communicates with the environment

A Trace of the System $M=(S, I, r, A)$

A finite or infinite sequence $s_{0}, a_{0}, s_{1}, a_{1}, s_{2}, \ldots$ starting from $s_{0} \in I$ with steps given by r :

s_{0}	$s_{0} \in I$
$\downarrow a_{0}$	$a_{0} \in A$
s_{1}	$\left(s_{0}, a_{0}, s_{1}\right) \in r$
$\vdots a_{1}$	$a_{1} \in A$
s_{2}	$\left(s_{1}, a_{1}, s_{2}\right) \in r$

In general, we require $\left(s_{i}, a_{i}, s_{i+1}\right) \in r$ for all i in the length of the sequence.

Two Systems with Common Alphabet

$$
\begin{aligned}
& M_{1}=\left(S_{1}, I_{1}, r_{1}, A\right) \\
& \begin{array}{cc}
\begin{array}{|c|}
\hline s_{0}
\end{array} & s_{0} \in l_{1} \\
\hdashline \downarrow a_{0} & a_{0} \in A \\
\hline s_{1} & \left(s_{0}, a_{0}, s_{1}\right) \in r_{1} \\
& a_{1} \in A \\
\hline s_{1} & \left(s_{1}, a_{1}, s_{2}\right) \in r_{1} \\
\hline \ldots &
\end{array}
\end{aligned}
$$

$$
M_{2}=\left(S_{2}, I_{2}, r_{2}, A\right)
$$

$$
\begin{array}{cc}
\hline t_{0} & t_{0} \in I_{2} \\
\hline \downarrow a_{0} & a_{0} \in A \\
\hline t_{1} & \left(t_{0}, a_{0}, t_{1}\right) \in r_{2} \\
\hline \downarrow a_{1} & a_{1} \in A \\
t_{2} & \left(t_{1}, a_{1}, t_{2}\right) \in r_{2} \\
\hline
\end{array}
$$

When do two systems behave the same?

Two Systems with Common Alphabet

$$
\begin{array}{rlrl}
M_{1}= & \left(S_{1}, l_{1}, r_{1}, A\right) & M_{2}= & \left(S_{2}, l_{2}, r_{2}, A\right) \\
& & \\
s_{0} & s_{0} \in I_{1} & t_{0} & t_{0} \in I_{2} \\
\downarrow a_{0} & a_{0} \in A & \downarrow a_{0} & a_{0} \in A \\
& s_{1} & \left(s_{0}, a_{0}, s_{1}\right) \in r_{1} & t_{1} \\
\hline \downarrow a_{1} & a_{1} \in A & \left(t_{0}, a_{0}, t_{1}\right) \in r_{2} \\
& s_{2} & \left(s_{1}, a_{1}, s_{2}\right) \in r_{1} & t_{1} \\
a_{1} \in A \\
a_{1} \in A \\
& & \left.t_{1}, a_{1}, t_{2}\right) \in r_{2}
\end{array}
$$

When do two systems behave the same? = same sequences of a_{i} (regardless of s_{i} vs t_{i})
Rationale: we cannot see what is inside, but we can observe A
Example: if states in S_{2} are just renamed versions of those in S_{1}, that is, $r_{2}=\left\{\left(\alpha\left(s_{1}\right), a, \alpha\left(s_{2}\right)\right) \mid\left(s_{1}, a, s_{2}\right) \in r_{1}\right\}$ for some renaming function α.

M_{1} is a refinement of M_{2}

Given

$$
M_{1}=\left(S_{1}, I_{1}, r_{1}, A\right) \quad \text { and } \quad M_{2}=\left(S_{2}, I_{2}, r_{2}, A\right)
$$

M_{1} is a refinement of M_{2}, written $M_{1} \sqsubseteq M_{2}$, iff the external traces of M_{1} are included in the external traces of M_{2}.

s_{0}	$s_{0} \in I_{1}$
$\downarrow a_{0}$	$a_{0} \in A$
s_{1}	$\left(s_{0}, a_{0}, s_{1}\right) \in r_{1}$
$\downarrow a_{1}$	$a_{1} \in A$
s_{2}	$\left(s_{1}, a_{1}, s_{2}\right) \in r_{1}$

t_{0}	$t_{0} \in I_{2}$
$\downarrow a_{0}$	$a_{0} \in A$
t_{1}	$\left(t_{0}, a_{0}, t_{1}\right) \in r_{2}$
$\downarrow a_{1}$	$a_{1} \in A$
t_{2}	$\left(t_{1}, a_{1}, t_{2}\right) \in r_{2}$

An external trace is a_{0}, a_{1}, \ldots the sequence of labels a_{i} in the trace (omitting states).

$$
E \operatorname{Traces}(M)=\left\{a_{0} a_{1} a_{2} \ldots \mid \exists s_{0} a_{0} s_{1} a_{1} s_{2} a_{2} \ldots \in \operatorname{Traces}(M)\right\}
$$

$M_{1} \sqsubseteq M_{2}$ is defined as $E \operatorname{Traces}\left(M_{1}\right) \subseteq E \operatorname{Traces}\left(M_{2}\right)$

M_{1} is equivalent to M_{2}

We can say M_{1} and M_{2} are externally equivalent iff

$$
M_{1} \sqsubseteq M_{2} \wedge M_{2} \sqsubseteq M_{1}
$$

It follows that this condition is the same as $E \operatorname{Traces}\left(M_{1}\right)=E \operatorname{Traces}\left(M_{2}\right)$.

How to prove $E \operatorname{Traces}\left(M_{1}\right) \subseteq E \operatorname{Traces}\left(M_{2}\right)$?

Assume we have finite traces only.
Prove that the inclusion holds by induction!
Inductive case: let $a_{0} \ldots a_{n-1} a_{n} \in E \operatorname{Traces}\left(M_{1}\right)$. Thus, for some states,
$s_{0}, a_{0}, s_{1}, \ldots, s_{n-1}, a_{n-1}, s_{n}, a_{n}, s_{n+1} \in \operatorname{Traces}\left(M_{1}\right)$.
$a_{0} \ldots a_{n-1} \in E \operatorname{Traces}\left(M_{1}\right)$ so, by I.H., there exists a trace
$t_{0}, a_{0}, t_{1}, \ldots, t_{n-1}, a_{n-1}, t_{n} \in \operatorname{Traces}\left(M_{2}\right)$.
We wish to extend the trace and show $a_{0} \ldots a_{n-1} a_{n} \in \operatorname{ETraces}\left(M_{2}\right)$ that is, that there exists a trace $t_{0}, a_{0}, t_{1}, \ldots, t_{n-1}, a_{n-1}, t_{n}, a_{n}, t_{n+1} \in \operatorname{Traces}\left(M_{2}\right)$.
So, we just need to know that there exists t_{n+1} such that $\left(t_{n}, a_{n}, t_{n+1}\right) \in r_{2}$.

Forward Simulation Relation

Existence of a forward simulation relation is a sufficient condition for such proof.
Definition. Given $M_{1}=\left(S_{1}, l_{1}, r_{1}, A\right)$ and $M_{2}=\left(S_{2}, I_{2}, r_{2}, A\right)$, we say $\alpha \subseteq S_{1} \times S_{2}$ is a forward simulation relation from M_{1} to M_{2} iff both of these conditions hold:

1. initial states map to initial state: $\forall s \in I_{1} \cdot \exists t \in I_{2} .(s, t) \in \alpha$
2. $\forall s, s^{\prime} \in S_{1} . \forall t \in S_{2} . \forall a \in A$.

$$
\left(s, a, s^{\prime}\right) \in r_{1} \wedge(s, t) \in \alpha \quad \rightarrow \quad \exists t^{\prime} \in S_{2} .\left(\left(t, a, t^{\prime}\right) \in r_{2} \wedge\left(s^{\prime}, t^{\prime}\right) \in \alpha\right)
$$

s_{0}
$\downarrow a_{0}$
s_{1}
$\downarrow a_{1}$
s_{2}

Theorem: if there exists a simulation relation between M_{1} and M_{2}, then $M_{1} \sqsubseteq M_{2}$. Proof sketch: \forall trace of M_{1}, \exists trace of M_{2} with same labels such that $\forall i .\left(s_{i}, t_{i}\right) \in \alpha$.

Case when Forward Simulation Relation is a Function

General case:

1. $\forall s \in I_{1} . \exists t \in I_{2} .(s, t) \in \alpha$
2. $\forall s, s^{\prime} \in S_{1} . \forall t \in S_{2} . \forall a \in A$.

$$
\left(s, a, s^{\prime}\right) \in r_{1} \wedge(s, t) \in \alpha \quad \rightarrow \quad \exists t^{\prime} \in S_{2} .\left(\left(t, a, t^{\prime}\right) \in r_{2} \wedge\left(s^{\prime}, t^{\prime}\right) \in \alpha\right)
$$

Special case when $(s, t) \in \alpha$ is just $t=\alpha(s)$:

1. $\forall s \in I_{1} . \alpha(s) \in I_{2}$
2. $\forall s, s^{\prime} \in S_{1} . \forall a \in A . \quad\left(s, a, s^{\prime}\right) \in r_{1} \quad \rightarrow \quad\left(\alpha(t), a, \alpha\left(t^{\prime}\right)\right) \in r_{2}$

Slightly less special case: α is function on reachable states, else undefined:

1. $\forall s \in I_{1} . \alpha(s) \in I_{2}$
2. $\forall s, s^{\prime} \in \operatorname{Reach}\left(M_{1}\right) . \forall a \in A . \quad\left(s, a, s^{\prime}\right) \in r_{1} \quad \rightarrow \quad\left(\alpha(t), a, \alpha\left(t^{\prime}\right)\right) \in r_{2}$
