Transition System

Define transition system as (S, I, r, A):

- S the set containing all states of the system.
 If S is finite, we have a *finite-state system*
- ▶ $I \subseteq S$ is the set of possible initial states of the system
- r ⊆ S × A × S transition relation; (s, a, s') ∈ r means:
 with the environment signal a, system can move in one step from state s to s'
 - we mostly assume that a is the input to the system
 - ▶ in the special case that $r: S \times A \rightarrow S$, we say the system is *deterministic*

► A - set of signals with which the system communicates with the environment

A Trace of the System M = (S, I, r, A)

A finite or infinite sequence $s_0, a_0, s_1, a_1, s_2, ...$ starting from $s_0 \in I$ with steps given by r:

$$\begin{array}{c} s_0 & s_0 \in I \\ \downarrow a_0 & a_0 \in A \\ \hline s_1 & (s_0, a_0, s_1) \in r \\ \downarrow a_1 & a_1 \in A \\ \hline s_2 & (s_1, a_1, s_2) \in r \\ \cdots \end{array}$$

In general, we require $(s_i, a_i, s_{i+1}) \in r$ for all *i* in the length of the sequence.

Two Systems with Common Alphabet

$$M_{1} = (S_{1}, I_{1}, r_{1}, A) \qquad M_{2} = (S_{2}, I_{2}, r_{2}, A)$$

$$\begin{bmatrix} s_{0} & s_{0} \in I_{1} \\ \downarrow a_{0} & a_{0} \in A \\ \hline s_{1} & (s_{0}, a_{0}, s_{1}) \in r_{1} \\ \downarrow a_{1} & a_{1} \in A \\ \hline s_{2} & (s_{1}, a_{1}, s_{2}) \in r_{1} \\ \cdots \\ \end{bmatrix} \qquad M_{2} = (S_{2}, I_{2}, r_{2}, A)$$

$$\begin{bmatrix} t_{0} & t_{0} \in I_{2} \\ \downarrow a_{0} & a_{0} \in A \\ \hline t_{1} & (t_{0}, a_{0}, t_{1}) \in r_{2} \\ \downarrow a_{1} & a_{1} \in A \\ \hline t_{2} & (t_{1}, a_{1}, t_{2}) \in r_{2} \\ \cdots \\ \end{bmatrix}$$

When do two systems behave the same?

Two Systems with Common Alphabet

$$M_{1} = (S_{1}, I_{1}, r_{1}, A) \qquad M_{2} = (S_{2}, I_{2}, r_{2}, A)$$

$$\begin{bmatrix} s_{0} & s_{0} \in I_{1} & t_{0} \in I_{2} \\ \downarrow a_{0} & a_{0} \in A & \downarrow a_{0} & a_{0} \in A \\ \hline s_{1} & (s_{0}, a_{0}, s_{1}) \in r_{1} & t_{1} & (t_{0}, a_{0}, t_{1}) \in r_{2} \\ \downarrow a_{1} & a_{1} \in A & \downarrow a_{1} & a_{1} \in A \\ \hline s_{2} & (s_{1}, a_{1}, s_{2}) \in r_{1} & t_{2} & t_{1} \\ \cdots & \cdots & \cdots & \cdots$$

When do two systems behave the same? = same sequences of a_i (regardless of s_i vs t_i)

Rationale: we cannot see what is inside, but we can observe A Example: if states in S_2 are just renamed versions of those in S_1 , that is, $r_2 = \{(\alpha(s_1), a, \alpha(s_2)) | (s_1, a, s_2) \in r_1\}$ for some renaming function α .

M_1 is a refinement of M_2

Given

 $M_1 = (S_1, I_1, r_1, A)$ and $M_2 = (S_2, I_2, r_2, A)$ M_1 is a *refinement* of M_2 , written $M_1 \sqsubseteq M_2$, iff the external traces of M_1 are included in the external traces of M_2 .

An external trace is a_0, a_1, \ldots the sequence of labels a_i in the trace (omitting states).

 $ETraces(M) = \{a_0a_1a_2... \mid \exists s_0a_0s_1a_1s_2a_2... \in Traces(M)\}$ $M_1 \sqsubseteq M_2 \text{ is defined as } ETraces(M_1) \subseteq ETraces(M_2)$

We can say M_1 and M_2 are externally equivalent iff

 $M_1 \sqsubseteq M_2 \land M_2 \sqsubseteq M_1$

It follows that this condition is the same as $ETraces(M_1) = ETraces(M_2)$.

How to prove $ETraces(M_1) \subseteq ETraces(M_2)$?

Assume we have finite traces only. Prove that the inclusion holds **by induction**! Inductive case: let $a_0 \dots a_{n-1} a_n \in ETraces(M_1)$. Thus, for some states, $s_0, a_0, s_1, \dots, s_{n-1}, a_{n-1}, s_n, a_n, s_{n+1} \in Traces(M_1)$. $a_0 \dots a_{n-1} \in ETraces(M_1)$ so, by I.H., there exists a trace $t_0, a_0, t_1, \dots, t_{n-1}, a_{n-1}, t_n \in Traces(M_2)$. We wish to extend the trace and show $a_0 \dots a_{n-1} a_n \in ETraces(M_2)$ that is, that there exists a trace $t_0, a_0, t_1, \dots, t_{n-1}, a_{n-1}, t_n, a_n, t_{n+1} \in Traces(M_2)$. So, we just need to know that there exists t_{n+1} such that $(t_n, a_n, t_{n+1}) \in r_2$.

Forward Simulation Relation

Existence of a *forward simulation relation* is a sufficient condition for such proof. **Definition.** Given $M_1 = (S_1, I_1, r_1, A)$ and $M_2 = (S_2, I_2, r_2, A)$, we say $\alpha \subseteq S_1 \times S_2$ is a *forward simulation relation* from M_1 to M_2 iff both of these conditions hold:

1. initial states map to initial state: $\forall s \in I_1. \exists t \in I_2. (s, t) \in \alpha$

2.
$$\forall s, s' \in S_1. \forall t \in S_2. \forall a \in A.$$

 $(s, a, s') \in r_1 \land (s, t) \in \alpha \rightarrow \exists t' \in S_2. ((t, a, t') \in r_2 \land (s', t') \in \alpha)$
 $\begin{bmatrix} s_0 & t_0 \\ \downarrow a_0 & \downarrow a_0 \\ \vdots s_1 & \downarrow a_1 \end{bmatrix}$

s₂

. . .

t2

. . .

Theorem: if there exists a simulation relation between M_1 and M_2 , then $M_1 \sqsubseteq M_2$. **Proof sketch:** \forall trace of M_1 , \exists trace of M_2 with same labels such that $\forall i. (s_i, t_i) \in \alpha$. Case when Forward Simulation Relation is a Function

General case:

1.
$$\forall s \in I_1. \exists t \in I_2. (s, t) \in \alpha$$

2. $\forall s, s' \in S_1. \forall t \in S_2. \forall a \in A.$
 $(s, a, s') \in r_1 \land (s, t) \in \alpha \rightarrow \exists t' \in S_2. ((t, a, t') \in r_2 \land (s', t') \in \alpha)$
Special case when $(s, t) \in \alpha$ is just $t = \alpha(s)$:
1. $\forall s \in I_1. \alpha(s) \in I_2$
2. $\forall s, s' \in S_1. \forall a \in A. (s, a, s') \in r_1 \rightarrow (\alpha(t), a, \alpha(t')) \in r_2$
Slightly less special case: α is function on reachable states, else undefined:

1. $\forall s \in I_1$. $\alpha(s) \in I_2$

2. $\forall s, s' \in Reach(M_1)$. $\forall a \in A$. $(s, a, s') \in r_1 \rightarrow (\alpha(t), a, \alpha(t')) \in r_2$