
Completeness
A proof system is complete if it derives all formulas we want it to derive.
Completeness for classical propositional logic means that the system derives all
propositional tautologies.
Is our example system complete with respect to formulas built from → and 0?

F → (G→ F ) ((F → (G→H))→ ((F →G)→ (F →H))
F →G ,F

G

No: this system does not say anything about 0. We claim it cannot prove tautology
0→ a for a variable a.
Suppose it can. Then it can also prove a formula resulting by replacing 0 with any
other formula, such as (a→ a)→ a. The reason is that, in a proof of 0→ a we can
replace in each axiom instance 0 with a→ a and the result will still be a proof, and it
will prove (a→ a)→ a.
We have shown before that we can derive a→ a, so we can also derive a using MP. But
a is not a tautology, which is a contradiction with the fact that the system is sound.
We could add a few more axioms and get complete systems that were introduced by
e.g. Frege and Hilbert. Instead, we will look at resolution as a proof system.
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Towards Propositional Resolution



A Proof System with Decision and Simplification
Consider propositional formulas with ∧,∨,¬.
Case analysis proof rule. {((F ,G),F [x := 0]∨G[x := 1]) | F ,G ∈F ,x − variable}:

F G
F [x := 0]∨G[x := 1]

Proof of soundness. To show {F ,G} |=(F [x := 0]∨G[x := 1]), consider an environment
e and assume ⟦F ⟧e = 1 and ⟦G⟧e = 1.
▶ If e(x)= 0, then ⟦F [x := 0]⟧e = ⟦F ⟧e = 1, so the first disjunct is 1
▶ If e(x)= 1, then ⟦G[x := 1]⟧e = ⟦G⟧e = 1, so the second disjunct is 1.

In both cases, the disjunction evaluates to 1 in e.

Simplification rules that preserve equivalence: 0∧F ⇝ 0, 1∧F ⇝ F , 0∨F ⇝ F ,
1∨F ⇝ 1, ¬0⇝ 1, ¬1⇝ 0.
Introduce inferences {((F ),F ′) | F ′ is simplified F }. These rules are also sound. Call
this InferD.



Example Derivation
Derivation from A= {a∧b, ¬b ∨¬a}. Draw the arrows to get a proof DAG

a∧b ¬b ∨¬a
(0∧b)∨ (1∧b)

b

(a∧0)∨ (a∧1)

a
0∨ (¬1∨¬a)

¬a
0∨ (¬1)

0

This derivation shows that: A ` 0
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Proving Unsatisfiability

A set A of formulas is satisfiable if there exists e such that, for every F ∈A, ⟦F ⟧e = 1.
▶ when A= {F1, . . . ,Fn} the notion is the same as the satisfiability of F1 ∧ . . .∧Fn

Otherwise, we call the set A unsatisfiable.

Theorem (Soundness Consequence)
If A `InferD 0 then A is unsatisfiable.
If there exists e is such that e(F )= 1 for all F ∈A then by soundness of InferD,
e(0)= 1, a contradiction. So there is no such e.

Theorem (Refutation Completeness)
If a finite set A is unsatisfiable, then A `InferD 0
Proof hint: take conjunction of formulas in A and existentially quantify it to get A′.
What is the relationship of the truth of A′ and the satisfiability of A? For a
conjunction of formulas F , can you express ∃x .F using InferD?



Illustration of Completeness

Let A= {F1,F2} and let FV (F1)∪FV (F2)= {x1, . . . ,xn} and let x be some xi
We have the following equivalences:

∃x .(F1 ∧F2)
(F1 ∧F2)[x := 0]∨ (F1 ∧F2)[x := 1] try both values

(F1[x := 0]∧F2[x := 0])∨ (F1[x := 1]∧F2[x := 1]) meaning of substitution
(F1[x := 0]∨F1[x := 1])∧ (F1[x := 0]∨F2[x := 1])∧
(F2[x := 0]∨F1[x := 1])∧ (F2[x := 0]∨F2[x := 1])

Existentially quantifying over a variable gives us result of applying decision rule to all
pairs of formulas F1,F2.
Systematically applying rules will derive formula Z equivalent to ∃x1. . . .∃xn.(F1 ∧F2).
When A is unsatisfiable, Z is equivalent to 0, and has no free variables. By
simplification rules, we can derive 0.



Resolution on Clauses



Conjunctive Form, Literals, and Clauses
A propositional literal is either a variable (e.g., x) or its negation (¬x).
A clause is a disjunction of literals.
For convenience, we can represent clause as a finite set of literals
(because of associativity, commutativity, and idempotence of ∨).
Example: a∨¬b ∨ c represented as {a,¬b,c}
If C is a clause then ⟦C⟧e = 1 iff there exists a literal L ∈C such that ⟦L⟧e = 1.
We represent 0 using the empty clause ;.
As for any formulas, a finite set of clauses A can be interpreted as a conjunction.
Thus, a set of clauses can be viewed as a formula in conjunctive normal form:

A= {{a}, {b}, {¬a,¬b}}
represents the formula

a∧b ∧ (¬a∨¬b)



Resolution on Clauses as a Proof System
a∨b ∨ c d ∨¬c

(a∨b ∨0)∨ (d ∨¬1))
a∨b ∨d

{a,b,c} {d ,¬c}

{a,b,d}
Clausal resolution rule (decision rule for clauses):

C1 ∪{x} C2 ∪{¬x}
C1 ∪C2

resolve two clauses with respect to x

Theorem (Soundness)
Clausal resolution is sound: for all clauses C1,C2 and propositional variable x,
{C1 ∪{x},C2 ∪{¬x}} |=C1 ∪C2.

Theorem (Refutational Completeness)
A finite set of clauses A is satisfiable if and only if there exists a derivation of the
empty clause from A using clausal resolution.



Resolution as Transitivity of Implication

For three formulas F1,F2,F3 if F1→ F2 and F2→ F3 are true, so is F1→ F3.
Thus, → denotes a transitive relation on {0,1}.
We can view resolution as a consequence of transitivity.
We use the fact that P→Q is equivalent to ¬P ∨Q:

C1 ∨ x C2 ∨¬x
C1 ∨C2

(¬C1)→ x x →C2
(¬C1)→C2



Exercise

Use resolution to prove that the following formula is valid:

¬(a∧b ∧ (¬a∨¬b))

Prove that its negation is unsatisfiable set of clauses:
{a} {b} {¬a,¬b}

{¬b}
;
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Unit Resolution
A unit clause is a clause that has precisely one literal; it’s of the form {L}
Given a literal L, its complement L̄ is defined by x =¬x , ¬x = x .

Unit resolution is a special case of resolution where at least one of the clauses is a unit
clause:

C {L}
C \ {L}

Soundness: if L is true, then L is false, so it can be deleted from a disjunction C .

Subsumption: when applying resolution, if we obtain a clause C ′ ⊆C that is subset of
a previosly derived one, we can delete C so we do not consider it any more. Any use of
C can be replaced by use of C ′ with progress towards ; at least as good.

If we derive {L} we can remove all other occurrences of L and L: if L ∈C then C is
subsumed by {L} and if L̄ ∈C then C is subsumed by C \ {L}.



From Formulas to Clauses



Constructing a Conjunctive Normal Form

How would we transform this formula into a set of clauses:

¬(((c ∧a)∨ (¬c ∧b))↔ ((c→ b)∧ (¬c→ b)))

Which equivalences are guaranteed to produce a conjunctive normal form?

¬(F1 ∧F2) ↔ (¬F1)∨ (¬F2)
F1 ∧ (F2 ∨F3) ↔ (F1 ∧F2)∨ (F1 ∨F3)
F1 ∨ (F2 ∧F3) ↔ (F1 ∨F2)∧ (F1 ∨F3)

What is the complexity of such transformation in the general case?
Are there efficient algorithms for checking satisfiability of formulas in disjunctive
normal form (disjunctions of conjunctions of literals)?
When checking satisfiability, is conversion into conjunctive normal form any better
than disjunctive normal form?
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Discussion of Normal Form Transformation
Transformation is exponential in general, applying from left to right equivalence

F1 ∨ (F2 ∧F3)↔ (F1 ∨F2)∧ (F1 ∨F3)

duplicates sub-formulas F1, which may result in an exponentially larger formula.

If we were willing to do transformation using those rules, we might just as well
transform formula into disjunctive normal form, because checking satisfiability of
formula in disjunctive normal form is trivial, such formulas is a disjunction of
conjunctions Di and we have these equivalences:

∃e.⟦D1 ∨ . . .∨Dn⟧e = 1
∃e.(⟦D1⟧e = 1∨ . . .∨ ⟦Dn⟧e = 1)

(∃e.⟦D1⟧e = 1)∨ . . .∨ (∃e.⟦Dn⟧e = 1)

and the last condition is trivial to check, because we check satisfiability of conjunction
Di separately.



Equivalence and Equisatisfiability
Formulas F1 and F2 are equivalent iff: F1 |= F2 and F2 |= F1 (∀e.⟦F1⟧e = ⟦F2⟧e)

Formulas F1 and F2 are equisatisfiable iff: F1 is satisfiable whenever F2 is satisfiable.

Equivalent formulas are always equisatisfiable, but the converse is not the case in
general. For example, formulas a and b are equisatisfiable, because they are both
satisfiable.

Consider these two formulas:
▶ F1: (a∧b)∨ c
▶ F2: (x↔ (a∧b)) ∧ (x ∨ c)

They are equisatisfiable but not equivalent. For example, given
e = {(a,1),(b,1),(c ,0),(x ,0)}, ⟦F1⟧e = 1 whereas ⟦F2⟧e = 0. Interestingly, every choice
of a,b,c that makes F1 true can be extended to make F2 true appropriately, if we
choose x as ⟦a∧b⟧e .



Flatenning as Satisfiability Preserving Transformation
Observation: Let F be a formula, G another formula, and x /∈ FV (F ) a propositional
variable. Let F [G := x ] denote the result of replacing an occurence of formula G inside
F with x . Then F is equisatisfiable with

(x =G)∧F [G := x ]

(Here, = denotes↔.)
Proof of equisatisfiability: a satisfying assignment for new formula is also a satisfying
assignment for the old one. Conversely, since x does not occur in F , if ⟦F ⟧e = 1, we
can change e(x) to be defined as ⟦G⟧e , which will make the new formula true.

(A transformation that produces an equivalent formula: equivalence preserving.)
A transformation that produces an equisatisfiable formula: satisfiability preserving.
Flattening is this satisfiability preserving transformation in any formalism that supports
equality (here: equivalence): pick a subformula and given it a name by a fresh variable,
applying the above observation.
Strategy: apply transformation from smallest non-variable subformulas.



Tseytin’s Transformation (see also Calculus of Computation, Section 1.7.3)
Consider formula with ¬,∧,∨,→,=,⊕
▶ Replace F1→ F2 with ¬F1 ∨F2 and push negation into the propositional variables

using De Morgan’s laws and switching between ⊕ and =.
▶ Repeat: flatten an occurrence of a binary connective whose arguments are literals
▶ In the resulting conjunction, express each equivalence as a conjunction of clauses:

conjunct corresponding clauses

x = (a∧b) {x ,a},{x ,b},{a,b,x}
x = (a∨b) {x ,a,b},{a,x},{b,x}
x = (a= b)

x = (a⊕b)
Exercise: Complete the missing entries. Are the rules in the last step equivalence
preserving or only equisatisfiability preserving? Why is the resulting algorithm
polynomial?



Example: Find an Equisatisfiable Set of Formulas in CNF

{ c ∧a ∨ (¬c ∧b)}

{x1 ∨ ¬c ∧b , x1↔ (c ∧a)}
{x1 ∨ x2, x2↔ (¬c ∧b),

x1↔ (c ∧a)}
{x1 ∨ x2, x2→ (¬c ∧b), (¬c ∧b)→ x2,

x1→ (c ∧a), (c ∧a)→ x1}
{x1 ∨ x2, ¬x2 ∨¬c , ¬x2 ∨b, c ∨¬b ∨ x2,

¬x1 ∨ c , ¬x1 ∨a, ¬c ∨¬a∨ x1}
When representing clauses as sets:

{{x1,x2}, {¬x2,¬c}, {¬x2,b}, {c ,¬b,x2},{¬x1,c}, {¬x1,a}, {¬c ,¬a,x1}}



Example: Find an Equisatisfiable Set of Formulas in CNF

{ c ∧a ∨ (¬c ∧b)}
{x1 ∨ ¬c ∧b , x1↔ (c ∧a)}

{x1 ∨ x2, x2↔ (¬c ∧b),
x1↔ (c ∧a)}

{x1 ∨ x2, x2→ (¬c ∧b), (¬c ∧b)→ x2,
x1→ (c ∧a), (c ∧a)→ x1}

{x1 ∨ x2, ¬x2 ∨¬c , ¬x2 ∨b, c ∨¬b ∨ x2,
¬x1 ∨ c , ¬x1 ∨a, ¬c ∨¬a∨ x1}

When representing clauses as sets:
{{x1,x2}, {¬x2,¬c}, {¬x2,b}, {c ,¬b,x2},{¬x1,c}, {¬x1,a}, {¬c ,¬a,x1}}



Example: Find an Equisatisfiable Set of Formulas in CNF

{ c ∧a ∨ (¬c ∧b)}
{x1 ∨ ¬c ∧b , x1↔ (c ∧a)}
{x1 ∨ x2, x2↔ (¬c ∧b),

x1↔ (c ∧a)}

{x1 ∨ x2, x2→ (¬c ∧b), (¬c ∧b)→ x2,
x1→ (c ∧a), (c ∧a)→ x1}

{x1 ∨ x2, ¬x2 ∨¬c , ¬x2 ∨b, c ∨¬b ∨ x2,
¬x1 ∨ c , ¬x1 ∨a, ¬c ∨¬a∨ x1}

When representing clauses as sets:
{{x1,x2}, {¬x2,¬c}, {¬x2,b}, {c ,¬b,x2},{¬x1,c}, {¬x1,a}, {¬c ,¬a,x1}}



Example: Find an Equisatisfiable Set of Formulas in CNF

{ c ∧a ∨ (¬c ∧b)}
{x1 ∨ ¬c ∧b , x1↔ (c ∧a)}
{x1 ∨ x2, x2↔ (¬c ∧b),

x1↔ (c ∧a)}
{x1 ∨ x2, x2→ (¬c ∧b), (¬c ∧b)→ x2,

x1→ (c ∧a), (c ∧a)→ x1}
{x1 ∨ x2, ¬x2 ∨¬c , ¬x2 ∨b, c ∨¬b ∨ x2,

¬x1 ∨ c , ¬x1 ∨a, ¬c ∨¬a∨ x1}
When representing clauses as sets:

{{x1,x2}, {¬x2,¬c}, {¬x2,b}, {c ,¬b,x2},{¬x1,c}, {¬x1,a}, {¬c ,¬a,x1}}



Finding Proofs



SAT Solvers

A SAT solver takes as input a set of clauses.

To check satisfiability, convert to equisatisfiable set of clauses in polynomial time using
Tseytin’s transformation.

To check validity of a formula, take negation, check satisfiability, then negate the
answer.

How should we check satisfiability of a set of clauses?
▶ resolution on clauses, favoring unit resolution and applying subsumption

(complete)
Davis and Putnam, 1960
▶ truth table method: check one value of a variable, then other (space efficient)



Davis-Putnam-Logemann-Loveland (DPLL) Algorithm Sketch

def DPLL(S: Set[Clause]) : Bool =
val S’ = subsumption(UnitProp(S))
if ; ∈ S’ then false // unsat
else if S’ has only unit clauses then true // unit clauses give e
else

val L = a literal from a clause of S’ where {L} /∈ S’
DPLL(S’ ∪ {{L}}) || DPLL(S’ ∪ {{complement(L)}})

def UnitProp(S: Set[Clause]): Set[Clause] = // Unit Propagation (BCP)
if C ∈ S, unit U ∈ S, resolve(U,C) /∈ S
then UnitProp((S − {C}) ∪ {resolve(U,C)}) else S

def subsumption(S: Set[Clause]): Set[Clause] =
if C1,C2 ∈ S such that C1 ⊆ C2
then subsumption(S − {C2}) else S



Data Structures in a SAT Solver
Previous algorithm
▶ generates new clauses in UnitProp
▶ deletes clauses in UnitProp and subsumption

This is very inefficient. SAT solvers use more efficient data structures:
▶ all unit clauses are represented as current assignment, a candidate environment e,

a partial map from some of the variables to truth values (starts as empty map)
▶ unit clause {¬a} becomes e(a)= 0, unit clause {a} becomes e(a)= 1

▶ whenever a new literal L becomes true, we check if e assigns its value in the
contradictory way and, if so, we detect a conflict, corresponding to ;
▶ instead of resolving {L1,L2, . . . ,Ln} with a unit literal {L1}: interpret each clause in

the context of current e: once ⟦L1⟧e = 0, we interpret clause as {L2, . . . ,Ln}
▶ when all except for one literal in a clause are 0, the remaining literal gives a new

variable in e (or a conflict)
▶ instead of subsumption: mark and ignore clauses that are true in current e



Generating Simple Proofs from SAT Solver Runs
With CDCL (conflict-driven clause learning), the solver maintains the progress in
exploring the space using learned clauses.
Each learned clause is derived by resolution from existing ones.
If we find a top-level conflict, we have a derivation of ;
Given the length of proofs and subtlety of SAT solvers, there exist very compact
formats that can be checked independenty using simple and efficient proof checkers,
which operate in polynomial time.

Running time of the solver is at least as long as the size of the proof.

There exists combinatorial statements (e.g. Pigenhole principle) that generate an
infinite family of unsat formulas F1,F2, . . . such that the shortest resolution proof Fi ` ;
is exponential in the size of Fi .
Alasdair Urquhart: Hard examples for resolution. J. ACM 34, 1 (Jan. 1987), 209-219.
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