
Impact of Verification: Software Disasters

▶ Ariane 5 rocket maiden flight explosion: http://www.inf.ed.ac.uk/
teaching/courses/seoc/2008_2009/resources/ariane5.pdf
▶ Mars Polar orbiter loss:
https://en.wikipedia.org/wiki/Mars_Polar_Lander ”most likely
cause of the mishap was a software error that incorrectly identified vibrations”
▶ Accidents in various Boeing models (777, 737 MAX, . . . )
▶ Northeast blackout of 2003: https:
//en.wikipedia.org/wiki/Northeast_blackout_of_2003 (race
condition)
▶ Radio therapy machine Therac-25:
https://en.wikipedia.org/wiki/Therac-25

http://www.inf.ed.ac.uk/teaching/courses/seoc/2008_2009/resources/ariane5.pdf
http://www.inf.ed.ac.uk/teaching/courses/seoc/2008_2009/resources/ariane5.pdf
https://en.wikipedia.org/wiki/Mars_Polar_Lander
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
https://en.wikipedia.org/wiki/Therac-25


Successful Companies and Startups

▶ AbsInt products, many originally from academia:
https://www.absint.com/products.htm
▶ Verified control software of Airbus 340, 380 using ASTRÉE static analyzer
▶ Formally proven correct C compiler CompCert (originally by Xavier Leroy)
▶ worst-case execution time analysis, . . .

▶ Formally verified microkernel seL4 and stack built on top by Data61 (formerly
Nicta), used Isabelle
▶ Coverity static analysis company prevent acuired for USD 380M by Synopsis
▶ Jasper Design Automation acquired by Cadence
▶ Semmle datalog analysis, acquired by GitHub
▶ Monoidics: acquired by Facebook, running analysis on facebook phone client
▶ Microsoft Static Driver Verifier: shipped in 2000-s as part of driver validation

https://www.absint.com/products.htm


Transition System

They are similar to finite-state machines
Define transition system as (S , I , r ,A):
▶ S - the set containing all states of the system.

If S is finite, we have a finite-state system
▶ I ⊆ S is the set of possible initial states of the system
▶ r ⊆ S ×A×S - transition relation; (s ,a,s ′) ∈ r means:

with the environment signal a, system can move in one step from state s to s ′
▶ we mostly assume that a is the input to the system
▶ in the special case that r : S ×A→ S, we say the system is deterministic

▶ A - set of signals with which the system communicates with the environment
To establish that a system is well behaved we often introduce a set of error states
E ⊆ S that we never want the system to reach, as well as its complement, the set
G ⊆ S of good states.



A Trace of the System M =(S , I , r ,A)

A finite or infinite sequence s0,a0,s1,a1,s2, . . . starting from s0 ∈ I with steps given by r :

s0 s0 ∈ I
↓ a0 a0 ∈A
s1 (s0,a0,s1) ∈ r
↓ a1 a1 ∈A
s2 (s1,a1,s2) ∈ r
. . .

In general, we require (si ,ai ,si+1) ∈ r for all i in the length of the sequence.
If the trace is finite, we assume it ends with a state sn and call n its length.
Traces(M) is the set of all traces of M
Reachable states Reach(M): states sn for which there exists a trace that ends in sn,
Reach(M)= {sn | ∃n.∃(s0,a0,s1,a1, . . . ,sn) ∈Traces(M)}



Algorithm: Explicit-State Reachability Checking

▶ Input: M =(S , I , r ,A) where S is finite, E ⊆ S (error states)
▶ Output: either a (s0,a0,s1,a1, . . . ,sn) ∈Traces(M) where sn ∈E , or

the answer “Safe” if no such trace exists
▶ Idea: graph reachability from nodes in I, following edges in (s ,a,s ′) ∈ r as long as

we have not seen s ′ before
▶ To be able to report the trace, build a directed reachability graph of explored

edges (never create cycles or duplicate nodes)
▶ If no edge in r leads to a previusly unexplored node, we stop

(this must eventually happen because S is finite)



Explicit-State Reachability Checking Algorithm: Graph Search

Graph reachability using a work list
▶ Input: M =(S , I , r ,A) where S is finite, E ⊆ S (error states)
▶ Output: either a (s0,a0,s1,a1, . . . ,sn) ∈Traces(M) where sn ∈E , or

“safe” if no such trace exists
For efficiency, differentiate three sets of nodes in a graph:
▶ set of all nodes
▶ exlored nodes: whose all successors we have explored
▶ frontier nodes (worklist): we have explored them but not their successors

Key operation: take a frontier node s, add all of its unexplored non-frontier
successors to the frontier, move s to explored.



Exercise 1: Bounded Counter
Consider a system with S = {0,1,2, . . . ,6} that takes signals A= {+,−} with initial
state 0 and counts up by 2 on + and down by 2 on − but never goes below 0 or above
6 (stays in the state if needed). Write down the transition system definition and prove
that the state E = {3} is not reachable using explicit-state reachability algorithm. Draw
the reachability graph.



Simplified Transition Relation and Reachable States
Let M =(S , I , r ,A) be a transition system.
Define r̄ = {(s ,s ′) | ∃a ∈A.(s ,a,s ′) ∈ r}
Note: even if r is deterministic, r̄ can become non-deterministic

Composition of relations: r1 ◦ r2 = {(x ,z) | ∃y .(x ,y) ∈ r1 ∧ (y ,z) ∈ r2}
Iteration (paths of length n): r0

1 =∆= {(x ,x) | x ∈A}, rn+1
1 = r1 ◦ rn

1
Transitive closure of r1:

r ∗1 =
⋃
n≥0

rn
1 relates endpoints of all finite paths in graph given by r1

Image of a set under relation: r1[X ] = {y | ∃x ∈X .(x ,y) ∈ r1}

Theorem
Reach(M)= (r̄)∗[I] (end points of all finite paths starting in I)



Reachable States Using post
M =(S , I , r ,A)

If X ⊆ S, define post(X)= r̄ [X ]

Define post0(X)=X , postn+1(X)= post(postn(X))

Theorem ⋃
n≥0

postn(I)=Reach(M)

Proof (by swapping existential quantifiers in definitions of image, composition, and
⋃

):

⋃
n≥0

postn(I)=
⋃
n≥0

r̄ [. . . r̄ [I] . . .] =
⋃
n≥0

r̄n[I] =
�⋃

n≥0
r̄n
�
[I] = r̄ ∗[I]



Invariant and Inductive Invariant

Invariant P of the system M is any superset of reachable states: Reach(M)⊆P.
▶ P is a property satisfied by all reachable states

(though not all states in P need to be reachable).
▶ In every trace, by definition si ∈Reach(M)⊆P. So the property si ∈P remains

in-variant (does not change) as the system makes a step from i to i +1

Inductive invariant Ind is a set Ind ⊆ S that satisfies the following:
▶ I ⊆ Ind (holds initially)
▶ if s ∈ Ind and (s ,a,s ′) ∈ r , then s ′ ∈ Ind

Exercise: prove that every inductive invariant is an invariant.

For invariant I, Ind is an inductive strengthening of I if Ind is an inductive invariant
and Ind ⊆ I (Ind is an inductive hypothesis that proves Reach(M)⊆ Ind ⊆ I)



Invariants in Bounded Counter

Consider again the bounded counter system M =(S , I , r ,A) with S = {0,1,2, . . . ,6} and
A= {+,−}.
Let G1 = S \ {3}= {0,1,2,4,5,6}
▶ Is G1 an invariant? Prove or disprove.
▶ Is G1 an inductive invariant? Prove or disprove.

Same question for G2 = {4,5,6}
Same question for G3 = {0,2,4,6}

. . .

set invariant? inductive invariant?
G1 yes no
G2 no no
G3 yes yes



Invariants in Bounded Counter

Consider again the bounded counter system M =(S , I , r ,A) with S = {0,1,2, . . . ,6} and
A= {+,−}.
Let G1 = S \ {3}= {0,1,2,4,5,6}
▶ Is G1 an invariant? Prove or disprove.
▶ Is G1 an inductive invariant? Prove or disprove.

Same question for G2 = {4,5,6}
Same question for G3 = {0,2,4,6}

. . .

set invariant? inductive invariant?
G1 yes no
G2 no no
G3 yes yes


