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Huffman Coding
● Code, C = { a ➝ 0, b ➝ 10, c ➝ 110, d ➝ 111 }

● Full binary tree

● Minimize encoded string length

● Compression
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Huffman’s Algorithm
● Fixed-length vs variable-length

● Optimal solution

● Example for string “abacabad”
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● Input
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Huffman’s Algorithm Example

4



Functional Implementation
● Datatypes

○ Leaf a w

○ InnerNode w t
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● Functions

○ cachedWeight _

○ uniteTrees t
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○ insortTree t f

● Huffman’s algorithm
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○ huffman [t] = t
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Basic auxiliary functions
● functions defined on trees

● mostly recursive

● goal → define optimality and lemmas to prove it
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● alphabet:
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● consistent:



● depth:
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● height:



● frequency:
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● weight:



● cost:
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● optimum:



● swapFourSyms:

Exchange symbols so that a & b occupies the positions of c & d
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● mergeSiblings:
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● splitLeaf:

Normally, w
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b

 = freq(t, a)
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Lemma 8.5 - Leaf Split Optimality
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Intermediary lemmas - intuition
● Lemma 8.4: If a and b are the minima of the tree:
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● Lemma 7.2: merging two siblings a and b decreases the cost by w

a
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Lemma 8.5 - Leaf Split Optimality - Proof
- assume ∀u, cost(t) ≤ cost(u)

- height(t) > 0:  exists c and d, two sibling symbols at the bottom of u. 

- swap c and d with a and b, minima of u. 

- We obtain a new tree v. 
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Leaf Split Commutativity
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Huffman Optimality
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1st step

Lemma 8.6

Lemma 8.5

Induction



Conclusion
- They formalized and demonstrated the textbook’s proof of the Huffman 

algorithm

- They found that custom induction rules simplify a lot the proof using Isabelle

- They defined Lemmas that were not seen in the literature

- e.g. each step of the algorithm preserves this invariant:

- the nodes of the forest are ordered by weight 

from left to right, bottom to top:

- They could not prove the preservation though
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Our project
- They proposed to then extend the proof’s scope to the applications of the 

algorithm.

- That is what we will do:

We will implement a pair of encode/decode functions using the tree produced by 

the Huffman’s algorithm and prove that they are bijectives.

i.e. that

decode(encode(x)) = x
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