
Background Paper
Presentation

Blanchette, J.C.: Proof pearl:

Mechanizing the textbook proof of

Huffman’s algorithm.

J. Autom. Reason. 2009

1

● Huffman Coding

● Huffman’s Algorithm

● Proof of Optimality

● Conclusion

● Our Project

Daniel Filipe Nunes Silva & Samuel Chassot

Huffman Coding
● Code, C = { a ➝ 0, b ➝ 10, c ➝ 110, d ➝ 111 }

● Full binary tree

● Minimize encoded string length

● Compression

2

Huffman’s Algorithm
● Fixed-length vs variable-length

● Optimal solution

● Example for string “abacabad”

3

● Input

○ Alphabet, A = (a

1

, a

2

, … , a

n

)

○ Weights, W = (w

1

, w

2

, … , w

n

), where w

i

 is the weight of a

i

● Output : Code, C = (c

1

, c

2

, … , c

n

), where c

i

 is the codeword for a

i

● Minimal sum of w

i

 · length(c

i

)

Huffman’s Algorithm Example

4

Functional Implementation
● Datatypes

○ Leaf a w

○ InnerNode w t

1

 t

2

● Functions

○ cachedWeight _

○ uniteTrees t

1

 t

2

○ insortTree t f

● Huffman’s algorithm

○ huffman (t

1

 t

2

 ts) =

huffman(insortTree(uniteTrees t

1

 t

2

) ts)

○ huffman [t] = t

5

Basic auxiliary functions
● functions defined on trees

● mostly recursive

● goal → define optimality and lemmas to prove it

6

● alphabet:

7

● consistent:

● depth:

8

● height:

● frequency:

9

● weight:

● cost:

10

● optimum:

● swapFourSyms:

Exchange symbols so that a & b occupies the positions of c & d

11

● mergeSiblings:

12

● splitLeaf:

Normally, w

a

 + w

b

 = freq(t, a)

13

Lemma 8.5 - Leaf Split Optimality

14

Intermediary lemmas - intuition
● Lemma 8.4: If a and b are the minima of the tree:

15

● Lemma 7.2: merging two siblings a and b decreases the cost by w

a

 + w

b

Lemma 8.5 - Leaf Split Optimality - Proof
- assume ∀u, cost(t) ≤ cost(u)

- height(t) > 0: exists c and d, two sibling symbols at the bottom of u.

- swap c and d with a and b, minima of u.

- We obtain a new tree v.

16

Leaf Split Commutativity

17

Huffman Optimality

18

1st step

Lemma 8.6

Lemma 8.5

Induction

Conclusion
- They formalized and demonstrated the textbook’s proof of the Huffman

algorithm

- They found that custom induction rules simplify a lot the proof using Isabelle

- They defined Lemmas that were not seen in the literature

- e.g. each step of the algorithm preserves this invariant:

- the nodes of the forest are ordered by weight

from left to right, bottom to top:

- They could not prove the preservation though

19

Our project
- They proposed to then extend the proof’s scope to the applications of the

algorithm.

- That is what we will do:

We will implement a pair of encode/decode functions using the tree produced by

the Huffman’s algorithm and prove that they are bijectives.

i.e. that

decode(encode(x)) = x

20

