Background Paper
Presentation

Blanchette,].C.: Proof pearl:
Mechanizing the textbook proof of

Huffman’s algorithm.
J. Autom. Reason. 2009

Huffman Coding
Huffman’s Algorithm
Proof of Optimality
Conclusion

Our Project

Daniel Filipe Nunes Silva & Samuel Chassot

Huffman Coding

e Code,C=f{a—0,b—>10,c —»110,d — 111}
e Full binary tree
e Minimize encoded string length

e (Compression

Huffman’s Algorithm

e Fixed-length vs variable-length
e Optimal solution
e Example for string “abacabad”
e Input
o Alphabet, A= (a,,a,,..,a)

o Weights, W= (W, Wy, .., W), where W, is the weight of a.
¢ Output: Code, C= (c1 s Cys s cn), where c. is the codeword for a,

e Minimal sum of W, - length(ci)

Huffman’s Algorithm Example

Functional Implementation

e Datatypes e Huffman’s algorithm

o Leafaw o huffman (t, t, ts) =

o InnerNodewt t, huffman(insortTree(uniteTrees t, t,) ts)
e Functions o huffman [t] =t

O cachedWeight _ M) @ @

z d
2 3

o uniteTrees tt

o insortTreet f

Basic auxiliary functions

e functions defined on trees
e mostly recursive
e goal — define optimality and lemmas to prove it

® alphabet:

alphabet (Leaf w a) = {a}; alphabet (InnerNode w t, t,) = alphabet t| U alphabet t,.

® consistent:

consistent (Leaf w a) = True

consistent (InnerNode w t, t,) = (consistent t; A consistent t,
A alphabet t; N alphabet t, = ().

e depth:

depth (Leafw b)a = 0
depth (InnerNode w t| t;) a = (if a € alphabet t, then depth t; a + 1

else if a € alphabet t, then depth t; a + 1
else 0).

e height:

height (Leafw a) = 0

height (InnerNode w t| t,) = max (height t|) (height t;) + 1.

® frequency:

freq (Leafw b) a = (if a = b then w else 0)

freq (InnerNode w t| t;) a = freq t; a + freq t, a.

e weight:

weight (Leafw a) = w

weight (InnerNode w t| t,) = weight t; + weight t,.

Ccost:

optimum:

optimum t

cost (Leafw a) =

cost (InnerNode w t; t;)

0
weight t| + cost t| + weight t, + cost t;.

= (Yu. consistent u —> alphabet t = alphabet u —> freq t = freq u

—> cost t < cost u).

10

e swapFourSyms:

swapFourSymstab cd = (if a=d then swapSymstb c

else if b = c then swapSyms ta d
else swapSyms (swapSyms tac) b d).

Exchange symbols so that a & b occupies the positions of ¢ & d

swap Leaves (Leaf w. ¢) wa awp b = (if c = a then Leafwy, b
else if c = b then Leafw, a
else Leaf w, c)
swap Leaves (InnerNode w t| ty) wa awp b = InnerNode w (swapLeaves ty w, a wp b)

(swapLeaves t w, a wp b)

swapSymstab = swapLeavest (freqta) a (freqtb)b

11

mergeSiblings:

mergeSibling (Leaf wy, b) a = Leaf wp b
mergeSibling (InnerNode w (Leaf wy, b) (ifa=>b v a=cthen Leaf (wp, + w.) a
(Leafw.c))a else InnerNode w (Leaf wy, b) (Leaf w, c))

mergeSibling (InnerNode w t| t;) a = InnerNode w (mergeSibling t| a)
(mergeSibling t> a).

12

splitLeaf:

splitLeaf (Leaf w. c) w, awy, b = (if c = a then InnerNode w. (Leaf w, a)
(Leaf wy b)

else Leafw, c)
splitLeaf (InnerNode w t| t;) w, a w, b = InnerNode w (splitLeaft, w, a wy, b)
(splitLeaft, w, a wy, b).

Normally, W +w, = freq(t, a)

13

Lemma 8.5 - Leaf Split Optimality

If consistent t, optimum t, a € alphabet t, b ¢
alphabet t, freqt a = w, + wy, Yc € alphabet t. w, < freqtc N w, < freq tc, and w, <

wp, then optimum (splitLeaft w, a wy, b).

14

Intermediary lemmas - intuition

e Lemma 8.4:If aand b are the minima of the tree:

e Lemma 72: merging two siblings a and b decreases the cost by w_ +

Wy

15

Lemma 8.5 - Leaf Split Optimality - Proof

assume Yu, cost(t) < cost(u)
- height(t) > 0. exists cand d, two sibling symbols at the bottom of u.

swap c and d with a and b, minima of u.

We obtain a new tree v.

cost (splitLeaftaw, b wy)

costt + wy +wy

1%
——————

cost (mergeSibling (swapFourSymsu a b c d) a)<+ w, + wy,

cost (swapFourSymsu a b c d)

coSt U.

by Lemma 7.3

by assumption

by Lemma 7.2

by Lemma 8.4

16

Leaf Split Commutativity

Lemma 8.6 (Leaf Split Commutativity) If consistent. ts, ts # [], and a € alphabet. ts,

then splitLeaf (huffman ts) w, a w, b = huffman (splitLeaf: ts w, a wy, b).

- C a d z

17

Huffman Optimality

Theorem 8.7 (Huffman Optimality) If consistent; ts, height. ts = 0, sorted ByWeight

ts, and ts # [], then optimum (huffman ts).

5l el T4 . 1st step
W, Wh We wyl T w, huffman

Induction

Lemma 8.5 SRE

c a d 2

. c a d z
splitLeaf (huﬂman) wg awp b.

18

Conclusion

- They formalized and demonstrated the textbook’s proof of the Huffman
algorithm

- They found that custom induction rules simplify a lot the proof using Isabelle

- They defined Lemmas that were not seen in the literature

- eg. each step of the algorithm preserves this invariant:
- the nodes of the forest are ordered by weight
from left to right, bottom to top:
- They could not prove the preservation though

19

Our project

- They proposed to then extend the proof’s scope to the applications of the
algorithm.
- That is what we will do:

We will implement a pair of encode/decode functions using the tree produced by
the Huffman’s algorithm and prove that they are bijectives.
ie. that

decode(encode(x)) = x

20

