Background Paper Presentation

Blanchette, J.C.: *Proof pearl: Mechanizing the textbook proof of Huffman's algorithm.* J. Autom. Reason. 2009

- Huffman Coding
- Huffman's Algorithm
- Proof of Optimality
- Conclusion
- Our Project

Daniel Filipe Nunes Silva & Samuel Chassot

Huffman Coding

- Code, $C = \{a \rightarrow 0, b \rightarrow 10, c \rightarrow 110, d \rightarrow 111\}$
- Full binary tree
- Minimize encoded string length
- Compression

0 1
b
$\left \begin{array}{c} 0 \\ c \\ d \end{array} \right $

Huffman's Algorithm

- Fixed-length vs variable-length
- Optimal solution
- Example for string "abacabad"
- Input

• Alphabet,
$$A = (a_1, a_2, ..., a_n)$$

- Weights, $W = (w_1, w_2, ..., w_n)$, where w_i is the weight of a_i
- **Output** : Code, $C = (c_1, c_2, ..., c_n)$, where c_i is the codeword for a_i
- Minimal sum of $w_i \cdot \text{length}(c_i)$

Huffman's Algorithm Example

Functional Implementation

- Datatypes
 - \circ Leaf a w
 - InnerNode w $t_1 t_2$
- Functions
 - cachedWeight _
 - \circ uniteTrees t₁ t₂
 - insortTree t f

- Huffman's algorithm
 - huffman $(t_1 t_2 t_3) =$

huffman(insortTree(uniteTrees t₁ t₂) ts)

 \circ huffman [t] = t

Basic auxiliary functions

- functions defined on trees
- mostly recursive
- goal \rightarrow define *optimality* and lemmas to prove it

alphabet (Leaf w a) = $\{a\}$; alphabet (InnerNode w $t_1 t_2$) = alphabet $t_1 \cup$ alphabet t_2 .

• consistent:

consistent (Leaf w a) = True $consistent (InnerNode w t_1 t_2) = (consistent t_1 \land consistent t_2$ $\land alphabet t_1 \cap alphabet t_2 = \emptyset).$ • *depth:*

depth (Leaf w b) a = 0 $depth (InnerNode w t_1 t_2) a = (if a \in alphabet t_1 then depth t_1 a + 1)$ $else if a \in alphabet t_2 then depth t_2 a + 1$ else 0).

• height:

height (Leaf w a) = 0height (InnerNode w t₁ t₂) = max (height t₁) (height t₂) + 1.

freq (Leaf w b) a = (if a = b then w else 0)freq (InnerNode w $t_1 t_2$) $a = \text{freq } t_1 a + \text{freq } t_2 a$.

weight (Leaf w a) = wweight (InnerNode $w t_1 t_2$) = weight t_1 + weight t_2 . cost (Leaf w a) = 0 $cost (InnerNode w t_1 t_2) = weight t_1 + cost t_1 + weight t_2 + cost t_2.$

• optimum:

 $optimum t = (\forall u. \ consistent \ u \longrightarrow alphabet \ t = alphabet \ u \longrightarrow freq \ t = freq \ u$ $\longrightarrow cost \ t \le cost \ u).$

• *swapFourSyms*:

 $swapFourSyms \ t \ a \ b \ c \ d = (if \ a = d \ then \ swapSyms \ t \ b \ c$ else if $b = c \ then \ swapSyms \ t \ a \ d$ else $swapSyms \ (swapSyms \ t \ a \ c) \ b \ d).$

Exchange symbols so that a & b occupies the positions of c & d

 $swapLeaves (Leaf w_c c) w_a a w_b b = (if c = a then Leaf w_b b)$ $else if c = b then Leaf w_a a$ $else Leaf w_c c)$ $swapLeaves (InnerNode w t_1 t_2) w_a a w_b b = InnerNode w (swapLeaves t_1 w_a a w_b b)$ $(swapLeaves t_2 w_a a w_b b)$

swapSyms t a b = swapLeaves t (freq t a) a (freq t b) b

• mergeSiblings:

 $mergeSibling (Leaf w_b b) a = Leaf w_b b$ $mergeSibling (InnerNode w (Leaf w_b b) \\ (Leaf w_c c)) a = \begin{pmatrix} \text{if } a = b \lor a = c \text{ then } Leaf (w_b + w_c) a \\ \text{else } InnerNode w (Leaf w_b b) (Leaf w_c c)) \end{pmatrix}$ $mergeSibling (InnerNode w t_1 t_2) a = InnerNode w (mergeSibling t_1 a) \\ (mergeSibling t_2 a).$

• *splitLeaf:*

 $splitLeaf (Leaf w_c c) w_a a w_b b = (if c = a then InnerNode w_c (Leaf w_a a) (Leaf w_b b))$

else $Leaf w_c c$) $splitLeaf (InnerNode w t_1 t_2) w_a a w_b b = InnerNode w (splitLeaf t_1 w_a a w_b b)$ $(splitLeaf t_2 w_a a w_b b).$

Normally,
$$w_a + w_b = freq(t, a)$$

Lemma 8.5 - Leaf Split Optimality

If consistent t, optimum t, a \in *alphabet t, b* \notin *alphabet t, freq t a* = $w_a + w_b$, $\forall c \in$ *alphabet t.* $w_a \leq$ *freq t c* $\land w_b \leq$ *freq t c, and* $w_a \leq$ w_b , *then optimum (splitLeaf t w_a a w_b b).*

Intermediary lemmas - intuition

• **Lemma 8.4:** If *a* and *b* are the minima of the tree:

• Lemma 7.2: merging two siblings **a** and **b** decreases the cost by $w_a + w_b$

Lemma 8.5 - Leaf Split Optimality - Proof

- assume $\forall u, cost(t) \leq cost(u)$
- *height(t) > 0*: exists *c* and *d*, two sibling symbols at the bottom of *u*.
- swap *c* and *d* with *a* and *b*, minima of *u*.

We obtain a new tree **v**.

	$cost (splitLeaf t a w_a b w_b)$	
=		by Lemma 7.3
	$cost t + w_a + w_b$	
\leq	<i>v</i>	by assumption
	$cost (mergeSibling (swapFourSyms u a b c d) a) < + w_a + w_b$	
=		by Lemma 7.2
	cost (swapFourSyms u a b c d)	
\leq		by Lemma 8.4
	cost u.	

Leaf Split Commutativity

Lemma 8.6 (Leaf Split Commutativity) *If* consistent_F ts, $ts \neq []$, and $a \in alphabet_F$ ts, then splitLeaf (huffman ts) $w_a a w_b b = huffman$ (splitLeaf_F ts $w_a a w_b b$).

Huffman Optimality

Theorem 8.7 (Huffman Optimality) If consistent_F ts, height_F ts = 0, sortedByWeight ts, and ts \neq [], then optimum (huffman ts).

Conclusion

- They formalized and demonstrated the textbook's proof of the Huffman algorithm
- They found that custom induction rules simplify a lot the proof using Isabelle
- They defined Lemmas that were not seen in the literature
 - e.g. each step of the algorithm preserves this invariant:
 - the nodes of the forest are ordered by weight from left to right, bottom to top:
 - They could not prove the preservation though

Our project

- They proposed to then extend the proof's scope to the applications of the algorithm.
- That is what we will do:

We will implement a pair of *encode/decode* functions using the tree produced by the Huffman's algorithm and prove that they are bijectives. i.e. that

decode(encode(x)) = x