
First-Order Theorem
Proving and VAMPIRE

Baptiste Jacquemot, Yanick Paulo-Amaro and
Antoine Brunner

Reference
Laura Kovács and Andrei Voronkov. 2013. First-Order Theorem Proving and Vampire. In Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings (Lecture Notes in Computer Science), Springer, 1–35.
DOI:https://doi.org/10.1007/978-3-642-39799-8_1

https://doi.org/10.1007/978-3-642-39799-8_1

Outline
● What is theorem proving ?

● What is saturation-based theorem proving ?

● Saturation algorithm implementation

2

What is theorem proving ?

3

What is theorem proving ?
Proof by refutation

Instead of proving that something is correct, try to derive a contradiction from its
negation:

1. build the initial set of known formulas: Axioms U Assumptions U (not
Conjectures)

2. apply inference rules to this set of formulas until a contradiction is found (i.e.
false appears in the set of propositions)

4

What is theorem proving ?
● Given a set of formulas, check their validity.
● This is done using an inference system.
● An inference rule is an relation on formulas that, given n premises gives a

conclusion.
● An inference system is a set of inference rules.
● An inference system is sound if a formula is unsatisfiable whenever the

empty clause is derivable
● An inference system is complete if the empty clause is derivable whenever

the formula is unsatisfiable

5

What is theorem proving ?
Sample of proof generated by vampire

...

6

What is theorem proving ?
● Theorem proving in first-order logic is a hard problem. It is complete (valid

formula implies finite proof) but undecidable (no algorithm to determine if
formula is valid).

● Basic idea: given enough time and a complete inference system, if the
formula is unsatisfiable, then a refutation will be found

● A theorem prover either:
○ Finds a refutation in a finite amount of time, meaning that what we want to prove is valid
○ Runs forever, meaning that the validity of the formula is unknown

7

Saturation-based theorem proving
Saturation

A set of clauses S is called saturated with respect to an inference system I if, for
every inference in I with premises in S, the conclusion of this inference belongs
to S too.

S apply all inference S’ S is saturated
If S = S’

8

Saturation-based theorem proving

● Saturation generates an exponential number of propositions
● Redundancy can help mitigate that problem

Redundancy

For a clause C in a set of clauses S, C is called redundant iff there exists U ⊂ S
such that {U1, … Un} ⇒ C and Ui < C forall i

● “<” is a relation called a term ordering that gives a notion of a term being
smaller than another

● It is used to ensure that we only replace redundant clauses by smaller
clauses 9

Saturation-based theorem proving
Two types of inferences:

● Simplifying inferences: an inference of the form C1, ... , Cn → C is called
simplifying inference iff one of the Ci becomes redundant after its C is added
to the set. Ci can therefore be removed from the set.

● Generating inferences: all inferences that are not simplifying inferences

To achieve efficiency:

● apply simplifying inferences eagerly
● apply generating inferences lazily

10

To achieve completeness:

● apply inferences in a fair manner

Example of simplifying inferences

● Subsumption resolution

● Demodulation

11

12

E Theorem prover

13

Reference
Stephan Schulz. 2002. E - a brainiac theorem prover.
AI Commun. 15, 2–3 (2002), 111–126.

Given clause algorithm
Select a “given clause” and apply all inferences on it

Differentiate between active and passive clauses

● Active clause: selected clauses that can’t be simplified
● Passive clauses: all other clauses

Types of “Given clause algorithms”

● Otter algorithms: Include passive clauses during simplification
● Discount algorithms: Only use active clauses for simplification
● LRS (only in Vampire): Otter but drop unreachable clauses

14

Selection strategy
Select among 2 priority queues:

● Age: Sort by decreasing age
● Weight (clauses size): Sort by increasing weight

An age-weight ratio (a, w) determines the queue to use

● a clauses are selected from the age-queue
● w clauses from the weight-queue

Users can choose the (a, w) ratio in Vampire

15

What we have seen
● The basics of theorem proving and inference systems

● The concept of saturation theorem proving

● The different types of saturation algorithms used by modern theorem provers

● The unique LRS strategy that makes Vampire so powerful

16

