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What is theorem proving ?
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Axioms (of group theory): Vx(z~! -z =1)
VaVyVz((z - y) -z =z - (y - 2))

Assumptions: Voo 3= 1)

Conjecture: VaVy(le -y =y - x)



What is theorem proving ?

Proof by refutation

Instead of proving that something is correct, try to derive a contradiction from its
negation:

1. build the initial set of known formulas: Axioms U Assumptions U (not
Conjectures)

2. apply inference rules to this set of formulas until a contradiction is found (i.e.
false appears in the set of propositions)



What is theorem proving ?
B0 By

e Given a set of formulas, check their validity. F '

e This is done using an inference system.

e An inference rule is an relation on formulas that, given n premises gives a
conclusion.

e An inference system is a set of inference rules.

e An inference system is sound if a formula is unsatisfiable whenever the
empty clause is derivable

e An inference system is complete if the empty clause is derivable whenever
the formula is unsatisfiable




What is theorem proving ?

Sample of proof generated by vampire

203. S$false [subsumption resolution 202,14]

202. sP1 (mult (sK,sK0)) [backward demodulation 188,15]

188. mult (X8,X9) = mult(X9,X8) [superposition 22,87]

87. mult (X2, mult (X1,X2)) = X1 [forward demodulation 71,27]

71. mult (inverse(X1l),e) = mult (X2,mult (X1,X2)) [superposition 23,20]

27. mult (inverse (X2),e) = X2 [superposition 22,10]

8. mult (sK,sKO) != mult (sKO0,sK) [skolemisation 7]

7. 2 [X0,X1] : mult(X0,X1l) != mult(X1l,X0) [ennf transformation 6]

6. 7! [X0,X1] : mult(X0,X1l) = mult(X1l,X0) [negated conjecture 5]

5. ! [X0,X1] & mult(X0,X1l) = mult (X1,X0) [input]

4. ! [X0] : e = mult(X0,X0) [input]

3. ! [X0,X1,X2] : mult (mult (X0,X1),X2) = mult(X0,mult (X1,X2)) [input]
2. ! [X0] : e = mult(inverse (X0),X0) [input]

1. ! [X0] : mult(e,X0) = X0 [input]



What is theorem proving ?

Theorem proving in first-order logic is a hard problem. It is complete (valid
formula implies finite proof) but undecidable (no algorithm to determine if
formula is valid).

Basic idea: given enough time and a complete inference system, if the
formula is unsatisfiable, then a refutation will be found

A theorem prover either:
o Finds a refutation in a finite amount of time, meaning that what we want to prove is valid
o Runs forever, meaning that the validity of the formula is unknown



Saturation-based theorem proving

Saturation

A set of clauses S is called saturated with respect to an inference system 1 if, for
every inference in I with premises in S, the conclusion of this inference belongs

to S too.

apply all inference S is saturated
fS=S8




Saturation-based theorem proving

e Saturation generates an exponential number of propositions
e Redundancy can help mitigate that problem

Redundancy

For a clause C in a set of clauses S, C is called redundant iff there exists U C S
such that{U,, ... U } = C and U. < C forall i

e “<"is arelation called a term ordering that gives a notion of a term being
smaller than another

e Itis used to ensure that we only replace redundant clauses by smaller
clauses




Saturation-based theorem proving

Two types of inferences:

e Simplifying inferences: an inference of the form C_, ..., C_— C is called
simplifying inference iff one of the C. becomes redundant after its C is added
to the set. C. can therefore be removed from the set.

e Generating inferences: all inferences that are not simplifying inferences

To achieve efficiency: To achieve completeness:

e apply simplifying inferences eagerly e apply inferences in a fair manner
e apply generating inferences lazily
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Example of simplifying inferences

e Subsumption resolution

AVv(C =BvD

Ab C BV D
v C BV D

e Demodulation

10 ~ rfand (I = 1)0 = C[l0] l:g[ ﬁw
r
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Fig.5 A Simple Saturation Algorithm
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var kept, unprocessed: sets of clauses;
var new: clause;

unprocessed : = the initial sets of clauses;
kept : = (;

loop

while unprocessed # ()
new : =select(unprocessed);
if new = [ then return unsatisfiable;

if retained(new) then (** retention test *)
simplify new by clauses in kept ; (* forward simplification *)
if new = [ then return unsatisfiable;
if retained(new) then (* another retention test *)
delete and simplify clauses in kept using new; (* backward simplification *)

move the simplified clauses from kept to unprocessed;

add new to kept

if there exists an inference with premises in kept not selected previously then

select such an inference; (* inference selection *)
add to unprocessed the conclusion of this inference (* generating inference *)
else return satisfiable or unknown
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E Theorem prover

Reference

Stephan Schulz. 2002. E - a brainiac theorem prover.

Al Commun. 15, 2-3 (2002), 111-126.

1: while U # ) begin
2:  c:=select_best(U)
3. U:=U\{c}
4:  simplify(c, P)
5: | if(not redundant(e, P) then
6: if ¢ is the empty clause then
7 success; clause set is unsatisfiable
8: else
9: T:=0
10: foreach p € P do
11: if ¢ simplifies a maximal literal of
12: p such that the set of maximal
13: terms, the set of maximal literals or
14: the number of literals in p potentially
15: changes
16: then
17: P :=P\{p}
18: T:=TU{p}
19: U :=U\{d|d is direct descendant of p}
20: fi
21: simplify (p, (P\{p}) U{c})
22: done
23: T :=TU generate(c, P)
24: foreach p € T do
25: p :=cheap_simplify (p, P)
26: if not trivial(p, P) then
27: U:=UU{p}
26: fi
28: done
29: || fi
30: | fi
31: end

32: Failure: Initial U is satisfiable, P describes model
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Given clause algorithm

Select a “given clause” and apply all inferences on it

Differentiate between active and passive clauses

e Active clause: selected clauses that can’t be simplified
e Passive clauses: all other clauses

Types of “Given clause algorithms”

e Otter algorithms: Include passive clauses during simplification
e Discount algorithms: Only use active clauses for simplification
e LRS (only in Vampire): Otter but drop unreachable clauses
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Selection strategy

Select among 2 priority queues:

e Age: Sort by decreasing age
e \Weight (clauses size): Sort by increasing weight

An age-weight ratio (a, w) determines the queue to use

e a clauses are selected from the age-queue
e w clauses from the weight-queue

Users can choose the (a, w) ratio in Vampire
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What we have seen

e The basics of theorem proving and inference systems
e The concept of saturation theorem proving
e The different types of saturation algorithms used by modern theorem provers

e The unique LRS strategy that makes Vampire so powerful
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