
Combining WS1S and HOL

David Basin and Stefan Friedrich
Institut für Informatik, Universität Freiburg

Am Flughafen 17, D-79110 Freiburg, Germany
{basin,friedric}@informatik.uni-freiburg.de

Abstract

We investigate the combination of the weak second-order monadic
logic of one successor (WS1S) with higher-order logic (HOL). We show
how these two logics can be combined, how theorem provers based on
them can be safely integrated, and how the result can be used. In par-
ticular, we present an embedding of the semantics of WS1S in HOL
that provides a basis for coupling the MONA system, a decision pro-
cedure for WS1S, with an implementation of HOL in the Isabelle

system. Afterwards, we describe methods that reduce problems for-
malized in HOL to problems in the language of WS1S. We present
applications to arithmetic reasoning and proving properties of param-
eterized sequential systems.

1 Introduction

We investigate the combination of two logics and the integration of two
powerful and complementary theorem proving systems for these logics:

• a decision procedure for WS1S (the weak monadic second-order logic
of one successor) implemented in the MONA system, and

• an implementation of HOL (higher-order logic) in the Isabelle sys-
tem.

There are compelling reasons for investigating this combination. WS1S be-
longs to a class of monadic logics that are among the more expressive decid-
able logics known and many decision problems can be embedded in WS1S
[Thomas, 1990]. The logic is also well suited for reasoning about many kinds
of systems that can be modeled using automata [Basin and Klarlund, 1998].
However, as with all decidable logics, its expressiveness is limited. In con-
trast, HOL is a very expressive foundation for reasoning about programs and
systems; however proof construction in HOL typically requires considerable
user guidance. A combination potentially offers the complementary advan-
tages of both: the expressive logic of HOL can be used to specify problems

1

and MONA used to automatically solve subproblems expressible in WS1S
that arise during HOL proofs.

In this paper, we examine the problems that arise in carrying out such a
combination and propose solutions. First, the combination must be sound:
only valid HOL formulae should be provable. Semantic methods are re-
quired here since the decision procedure for WS1S is a semantic one; the
validity of WS1S formulae is determined by translating them to automata
that recognize models. We show how a semantic embedding of WS1S can be
used to guarantee the correctness of the combination. Within a conservative
extension of HOL with theories of sets, numbers, and arithmetic, we formal-
ize the semantics of WS1S formulae. WS1S formulae then correspond to a
subclass of HOL formulae and MONA can be used to determine the validity
of problems in this class.

Second, the combination must be usable: We require a way of generating
WS1S subproblems during proofs in HOL, which can be solved by MONA. In
our case, this is equivalent to generating problems in the range of our seman-
tic embedding. There cannot be a general method of doing this, since that
would give us a decision procedure for HOL, which is impossible. However,
we show that for two particular problem domains such methods are possible.
First, we show how to solve different classes of linear arithmetic problems in
HOL. Linear arithmetic is the theory consisting of formulae made up from
numeric constants, variables, addition, arithmetic relations (<, ≤, =), and
the standard first-order logical connectives. We present decision procedures,
and their integration in HOL, based on the linear arithmetic theories of the
natural numbers and integers.

The second method is rather different and more difficult to characterize
crisply. The problem domain we examine is reasoning about the correctness
of parametric sequential circuits, e.g. a family of n-bit counters, which is
parameterized by the number of bits n and its behaviour is a function of time.
Such circuits cannot be directly formalized in WS1S or in any decidable
logic.1 Such problems can, however, be formalized in HOL and we show
that it is possible to eliminate one of the two unbounded parameters in
cases where the goal can be reduced to one involving only finitely many
instances of this parameter. The reduced problem is expressible in WS1S
whereby MONA can be used to establish properties that are invariant over
time.

The remainder of the paper is organized as follows. In Section 2 we pro-
vide background both on Isabelle’s implementation of HOL, and on WS1S
and its implementation in MONA. In Section 3 we describe the combination,
its mechanization in HOL, and its correctness. Then, we consider two rather
different applications: In Section 4 we show how to automate arithmetic rea-

1The reason for this is that the two parameters (bit-width and time) are independent.
Such problems correspond, abstractly, to problems on grids, which are undecidable.

2

soning over the natural numbers and integers, and in Section 5 we present
applications to verifying parameterized sequential hardware. Finally, in Sec-
tion 6, we compare with related work and draw conclusions.

2 Background

2.1 Isabelle/HOL

We use Isabelle’s implementation of HOL for our work; integration with
other theorem provers, such as the HOL system or PVS, would be similar.

Isabelle [Paulson, 1994] is a generic theorem prover in which object
logics are implemented in Isabelle’s metalogic, which is a fragment of in-
tuitionistic higher-order logic based on the (polymorphically) typed lambda-
calculus with polymorphic types. The logical connectives of this fragment
are implication (written =⇒), universal quantification (written

∧
), and

equality (written ≡). Object logics are encoded by declaring a theory, which
is a signature and a set of axioms. Theorems are constructed interactively
by applying tactics (programs that construct proofs) in the metalogic. The-
orems may also be imported from external theorem provers, which can serve
as oracles for particular classes of problems.

Terms in HOL are constructed from the λ-calculus and three additional
operators: implication →, equality =, and Hilbert’s description-operator ε.
All terms are typed. For example, for x of type α, εx. P (x), is a term of type
α; this term denotes some a, for which P (a) holds, if such an a exists, and
an arbitrary term of type α otherwise (types are non-empty). As is standard
in HOL, all other logical connectives are defined using these primitives, e.g.,
∃x. P (x) ≡ P (εx.P (x)). There is no particular symbol for bi-implication;
this is expressed using equality.

The initial theory of HOL is minimal and contains only 7 axioms. Is-

abelle supports building hierarchies of theories based on (definitional) ex-
tensions with new types and constants. To ensure consistency, new infer-
ence rules are derived, e.g., the standard introduction and elimination rules
for ∃ are derived from the above definition. A number of extensions come
distributed with HOL. Important for our work are theories of typed sets,
typed finite sets, natural numbers, and integers. Finite sets and natural
numbers are inductively defined. Such inductive types come with induction
principles and standard functions (e.g., addition, multiplication, and proper
subtraction) are defined by primitive recursion. The integers are defined as
equivalence classes over pairs of natural numbers in the standard way. We
will say more about these data-types and their accompanying theories as we
use them below.

3

2.2 WS1S and MONA

Research on WS1S and related monadic theories goes back to Büchi [Büchi,
1960] and Elgot [Elgot, 1961]. We briefly review syntax, semantics, and
decidability.

Definition 1

Let x and X range over disjoint sets V1 and V2 of (first and second-order)
variables. The language of WS1S is described by the following grammar.

t ::= x | 0 | s(t)

φ ::= t = t | t ∈ X | φ ∧ φ | ¬φ | ∃x : φ | ∃X : φ

Hence terms are built from first-order variables, the constant 0, and the
successor symbol. Atomic formulae are built from the equality and mem-
bership predicates and formulae consist of atomic formulae and are closed
under conjunction, negation, and quantification over first and second-order
variables. Other connectives and quantifiers can be defined using standard
classical equivalences, e.g., ∀x : φ ≡ ¬∃x : ¬φ; the symbol {||} represents the
empty set. Also, it is possible to represent propositional variables and quan-
tification over them (e.g. the propositional variable P can be represented
by the atomic formula 0 ∈ XP , where XP is a new second-order variable).

In the semantics of WS1S, formulae are interpreted in N, where 0 and
s are zero and the successor function, = is equality over numbers, and ∈ is
membership. The logic is ‘weak’ because second-order variables are inter-
preted over finite subsets of the domain. The following embedding makes
this interpretation clear. Here nat, finnat, and bool are the HOL types of
naturals, finite sets of naturals, and truth-values respectively (i.e., relations
are formalized as boolean-valued functions) and Suc denotes the successor
function on natural numbers. In the sequel we shall omit typing constraints
if types are known from the context.

Definition 2

The embedding function d e from WS1S formulae to HOL formulae is recur-
sively defined as follows:

dxe = x :: nat if x ∈ V1

dXe = X :: finnat if X ∈ V2

d0e = 0 :: nat
ds(t)e = (Suc :: nat⇒ nat)(dte)

dt1 = t2e = (= :: [nat, nat]⇒ bool)(dt1e)(dt2e)
dt ∈ Xe = (∈ :: [nat, finnat]⇒ bool)(dte)(dXe)
dφ1 ∧ φ2e = (∧ :: [bool, bool]⇒ bool)(dφ1e)(dφ2e)
d¬φe = (¬ :: bool⇒ bool)(dφe)

d∃x :: φe = (∃ :: (nat⇒ bool)⇒ bool)(λx ::nat.dφe)
d∃X : φe = (∃ :: (finnat⇒ bool)⇒ bool)(λX : finnat.dφe)

4

The problem of determining if WS1S sentences are true under the above
interpretation is decidable (see, e.g. [Thatcher and Wright, 1967; Thomas,
1990]). The decision procedure is semantically based; it translates a WS1S
formula φ to an automaton Aφ that, essentially, recognizes valuations for
the free variables under which φ is true. It is easy to determine from the
resulting automaton Aφ whether a sentence is true in the above structure.

The MONA system implements this decision procedure. Input to MONA
is a script consisting of a sequence of definitions followed by a formula φ to
be proven. MONA computes Aφ and, depending on the result, declares φ
to be valid or delivers a counter-example. MONA is implemented to be as
efficient as possible [Henriksen et al, 1995] and works well in practice on a
large range of problems despite the non-elementary worst-case complexity
of WS1S; empirical evidence of this and an analysis of why this is the case
is given in [Basin and Klarlund, 1998].

3 Combining MONA and Isabelle/HOL

We formalize the semantics of WS1S in Isabelle’s HOL. We create a the-
ory that formalizes the semantic domains of WS1S (natural numbers and
finite sets of natural numbers) as HOL-types. The embedding function (Def-
inition 2) maps WS1S formulae to formulae of this theory and the image
of this mapping characterizes what we may call the WS1S-subset of HOL.
We explain below how we implement the inverse of the embedding so that
formulae in this subset of HOL can be submitted to MONA and the results
can be incorporated in HOL proofs.

3.1 Logical Basis and Correctness

Hooking an ‘oracle’ to a theorem prover is risky business. The oracle could
be buggy or there could be a mismatch between the semantics of the oracle
and semantics of the logic used by the theorem prover. The only way to
avoid a buggy oracle is to reconstruct a proof in the theorem prover based
on output from the oracle, or perhaps formally verify the oracle itself. For
a semantics based decision procedure, proof reconstruction is not a realistic
option: one would have to formalize the entire automata-theoretic machinery
within HOL and this would amount to verifying the oracle.

By taking a semantic based translation approach (sometimes called se-
mantic embedding in the literature) we cannot avoid the problem of a buggy
oracle, but we can formally (although not inside of HOL) show that there
is no semantics mismatch and that we do not compromise the consistency
of HOL by accepting theorems proved by MONA.

We define in HOL a theory Finset in which we model the semantic do-
mains of WS1S. The set N is represented by the type nat, which is defined

5

inductively. The Peano axioms can be derived from this definition, includ-
ing a second-order induction axiom. It follows that every standard model
[Andrews, 1986; Gordon and Melham, 1993] of the theory must interpret the
type nat (up to isomorphism) as the set N. A similar statement holds for our
inductive definition of the type finnat, which is defined as the set of finite
subsets of nat. The inductive definition characterizes the finite powerset of
N, F(N), uniquely and every model of the theory must interpret the type
finnat (up to isomorphism) as the set F(N).

Given the above, we can show by induction on the structure of terms and
formulae of WS1S that the terms and formulae of WS1S are interpreted in
the same way as their image under the embedding function of Definition 2;
consequently for every valid WS1S-formula φ, the image dφe is valid in
every standard model of HOL. By soundness of Isabelle/HOL’s deductive
system (see [Regensburger, 1994]), we conclude that ¬dφe is not derivable in
the theory Finset and therefore we may accept dφe consistently as a theorem
of that theory. To summarize:

Theorem 1

If an WS1S-formula φ is valid in WS1S we can add dφe consistently to the
theorems of the theory Finset.

3.2 Mechanization

Our goal is to link up two different systems. Mechanically, this entails
identifying formulae of an Isabelle/HOL proof-goal that are in the WS1S-
subset of HOL, translating them to WS1S, invoking MONA, and updating
the proof when MONA succeeds. These formulae are identified syntactically;
they contain only terms of types nat and finnat and operations corresponding
to those in WS1S. (see Definition 2). Polymorphic operators such as equality
or quantification can be distinguished by their type instance. This allows us
to strictly control which formulae are translated.

Typically, users work by adding definitions to theories, thereby extend-
ing the language of HOL with new constants, e.g., the constant IF defined by
IF e x y ≡ (e→ x)∧ (¬e→ y). When such definitions are also expressible in
WS1S, we can include them in our translations. We do this by allowing the
user to define corresponding definitions in MONA, and extend the embed-
ding function, provided that the right-hand side of the definition contains
only terms that are already in the image of the embedding function. The
constants defined in this way are recorded together with their definitions in
a particular data structure called a definition set. When translating a for-
mula to WS1S, every constant is replaced by a call of the respective macro
and the macro definition is added to the declaration part of the generated
MONA input-file.

To connect Isabelle and MONA, we use the general ‘oracle interface’

6

provided by Isabelle. Oracles are declared in Isabelle’s theory definitions
by specifying a top-level ML-function that takes arbitrary data, e.g. a proof
goal, and returns a term of Isabelle’s meta-level type of truth-values. This
function may be an implementation of a decision procedure, a model-checker,
or it may call, as in our case, an external reasoning tool.

We have written a tactic that uses the oracle to solve goals arising in HOL
proofs. The tactic takes a goal and a definition set, and invokes the oracle.
If MONA can prove the resulting formula, then that formula is promoted by
the oracle interface to a theorem, which we use to solve the goal; otherwise
the tactic fails.

The translation of a subgoal in which one tries to prove a conclusion C
from assumptions A1, . . . , An is organized in several steps. First, we attempt
to translate separately each assumption and the conclusion. If this fails for
some assumption Ai, then we replace this assumption by true; effectively,
we try then to prove the subgoal without Ai. If the translation fails for the
conclusion we replace it by false and try to prove a contradiction from the
assumptions. This yields the assumptions A′1, . . . , A

′
n and the conclusion

C ′ in the language of MONA. We join them together as a nested implication
from which we take the universal closure and thus obtain a MONA-formula
of the form

∀X1 . . . ∀Xk ∀x1 . . . ∀xl, : A′1 → . . . → A′n → C ′

4 Application: Linear Arithmetic

In the previous section we showed how to soundly integrate MONA with
HOL by formalizing the semantics of WS1S as a theory-extension of HOL.
The resulting coding though is rather ‘low level’. It is easier for users to
encode problems using higher level concepts like numbers and arithmetic
functions as opposed to finite sets and WS1S definable relations on them.

In this section we show how to link these levels in the case of arithmetic.
We build a kind of interpreter that allows us to translate arithmetic as
expressed in standard Isabelle theories to the (embedded) WS1S theory.
This interpretation is done completely within HOL using formally derived
rewrite rules; hence correctness is guaranteed.

We will consider several arithmetic theories in this section. For example,
Presburger arithmetic [Presburger, 1929] is the first-order theory of (N,+).
This theory can easily be extended with inequalities as well as multiplication
and division by constants. It also can be extended to a theory of integers by
considering pairs of numbers. In [Büchi, 1960] and [Elgot, 1961] Büchi and
Elgot note that decidability of WS1S implies that of Presburger arithmetic.
After first presenting arithmetic over number representations from finnat,
we will consider the first-order theories of (N,+) and (Z,+).

7

4.1 Arithmetic over finnat

We use a binary encoding to represent a natural number n as an element
N of type finnat. For all i, i ∈ N holds if and only if the ith digit in the
binary representation of n is a one, e.g., the number 5 is represented by the
set {| 0, 2 |} since 5 = 20 + 22. Thus the empty set {||} represents zero and the
successor relation is defined as

SUCCM N ≡ ∃p. ∀i. (i < p→ i /∈M ∧ i ∈ N)
∧ (i = p→ i ∈M ∧ i /∈ N)
∧ (p < i→ (i ∈M) = (i ∈ N)) ,

i.e., M represents the successor of the number represented by N . To show
that this is a proper encoding for the natural numbers, we prove that an
analogue of the Peano axioms hold for it; that is we prove the following five
formulae.

1) {||} :: finnat
2) ∀M. ∃N.SUCC N M
3) ∀N. ¬SUCC {||}M
4) ∀K LM N. SUCC L K ∧ SUCC N M ∧ L = N → K = M
5) ∀P. (P {||}) ∧ (∀K L. (P K) ∧ (SUCCLK)→ (P L))→ (∀N. (P N))

The first holds trivially, since {||} is an element of type finnat. We prove the
next three automatically using MONA as an oracle. This was a pleasant
surprise: our oracle was often useful in proving theorems required to extend
its scope. The fifth theorem formalizes an induction principle: all elements
of type finnat can be reached from {||} via the successor relation. This formula
cannot be proven by MONA since it involves quantification over predicates.
However, it can be derived in Isabelle/HOL using the induction principle
associated with the inductively defined finite-set type and in this derivation
we can use MONA to discharge different proof obligations.

To use MONA as an arithmetic decision procedure requires defining arith-
metic operations for addition, equality, and inequality for numbers encoded
as finite sets. The following is an example of encoding addition, i.e. the
number represented by S is the sum of the numbers represented by A and
B.

ADDS AB ≡ ∃C. 0 /∈ C ∧
∀p. mod two (p ∈ A) (p ∈ B) (p ∈ C) (p ∈ S)
∧ at least two (p ∈ A) (p ∈ B) (p ∈ C) ((Suc p) ∈ C)

This implements the standard addition algorithm (over binary representa-
tions of numbers) where the pth bit of the result S is the sum of the pth bits
of A, B, and the carry (here C) mod 2 and the pth carry is set if at least

8

two of the previous inputs and the carry are set. The auxiliary predicates
mod two and at least two are defined as follows.

mod two a b c s ≡ a = b = c = s

at least two a b c d ≡ d = (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c)

4.2 Arithmetic over nat

The above definitions allow us to extend our oracle’s definition set and solve
arithmetic problems expressed using relations over finnat, i.e., arithmetic
problems where numbers are formalized as finite sets representing their bi-
nary encodings. This has limited use in practice. Users of HOL usually
perform arithmetic reasoning directly within the theory nat. Formally, we
can define a translation between these two theories: we recursively define
mappings val and bin between the types nat and finnat and prove the follow-
ing properties, which characterize them as isomorphisms (we have named
the properties for subsequent use).

(val Empty) val {||} = 0

(val SUCC) SUCC M N =⇒ val M = Suc(val N)
(bin 0) bin 0 = {||}
(bin Suc) bin (Suc n) = (εM. SUCC M (bin n))
(val inverse) val(bin n) = n

(bin inverse) bin(val N) = N

(ADD) ADD (bin s) (bin a) (bin b) = (s = a+ b)

Next, we automate the use of this encoding, effectively hiding it from
the user; we derive rewrite rules as HOL theorems that can be used by Is-

abelle’s simplifier in order to automatically translate arithmetic operations
on numbers to formulae built from predicates over sets. Our translation rules
are of three kinds. First, rules that replace relations between numbers by
relations between sets, e.g.

(eq c) (n = m) = (bin n = bin m)

Second, rules that propagate applications of bin downwards through the term
structure and replace numeric functions by the corresponding predicates over
sets. There is a rule for each operation; e.g. for addition we have:

(add c) P (bin(a+ b)) = (∃S. ADD S (bin a) (bin b) ∧ P (S))

Third, rules for quantifiers that translate quantification over numbers to
quantification over sets, e.g.

(all c) (∀n ::nat. P (n)) = (∀N ::finnat. P (val N))

9

As previously mentioned, these rules are formally derived in HOL.
A simple example should clarify how the rules together define the trans-

lation. Let us consider how rewriting transforms the statement that addition
is commutative to a formulae that can be proved by MONA. Rewriting per-
forms the following steps:

∀a b. a+ b = b+ a

(eq c)−−−−−−−−−→ ∀a b. bin(a+ b) = bin(b+ a)

(add c)−−−−−−−−−→ ∀a b. ∃S. ADD S (bin a) (bin b) ∧ (S = bin(b+ a))

(add c)−−−−−−−−−→ ∀a b. ∃S. ADD S (bin a) (bin b)
∧ (∃T. ADD T (bin b) (bin a) ∧ (S = T))

(all c)−−−−−−−−−→2 ∀AB. ∃S. ADD S (bin (valA)) (bin (val B))
∧ (∃T. ADD T (bin (val B)) (bin (valA)) ∧ (S = T))

(bin inverse)−−−−−−−−−→4 ∀AB. ∃S. ADD S A B
∧ (∃T. ADD T B A) ∧ (S = T))

Note that a and b are of type nat whereas A and B are of type finnat. This
rewriting is performed by a tactic that is applied before invoking the oracle.
Hence the translation is performed automatically and it serves to extend the
scope of the oracle to function not just over set based relations like ADD, bin
or val, but also to numbers and standard functions and operators on them,
which is what users usually require.

4.3 Arithmetic over int

We now turn our attention to the integers and extending our interface to
them. Our solution is based on providing a bijection zenc between int and
nat. This function maps negative integers to odd natural numbers and
positive integers to even natural numbers in the following way:

zenc(z) =

{
2 · z if 0 ≤ z
− (2 · z + 1) if z < 0

In our binary representation, this corresponds to shifting the mantissa one
digit to the left and using the vacated 0-th bit as sign bit. The inverse of
zenc is called zdec. The bijection zbin and it inverse zval between finnat and
int are functional compositions of bin with zenc and, respectively, of zdec
with val.

zbin(z) ≡ bin(zenc(z))
zval(Z) ≡ zdec(val(Z))

10

Addition for this encoding of the integers can be represented by a predicate
ZADD, which is defined similarly to ADD.

Completing the extension is analogous to the extension to nat: We derive
rules that characterize zbin as an isomorphism and after that we extend
the set of rewriting rules. The extension automatically translates formulae
involving integer arithmetic to our encoding of finite sets.

4.4 Experience

Arithmetic reasoning plays an important role in many theorem proving ap-
plications such as program verification. Our tactics can be used to auto-
matically discharge first-order arithmetic problems (in the language of 0, +,
and inequalities) that arise when using the theories nat and int. It is easy
also to extend these procedures too as required. For example, we can add
WS1S definable relations like proper subtraction (over the natural numbers),
subtraction (over the integers), division or remainder by 2, and the like.

Our tactics operate automatically. Trivial examples like commutativity
or associativity of addition are proved in less than two seconds on a Sparc
Station-20. As a less trivial example, consider the following verification
problem that arises in showing the correctness of our encoding of the integers
described in the previous section.

ZADD s a b = (zval s = zval a+ zval b)

Expanding the definitions of zval and zdec yields the following goal.

(val s mod 2 = 0→
(val a mod 2 = 0→

(val b mod 2 = 0→ ZADD s a b = (val s div 2 = val a div 2 + val b div 2))
∧ (val b mod 2 6= 0→ ZADD s a b = (Suc(val s div 2 + val b div 2) = val a div 2)))

∧ (val a mod 2 6= 0→
(val b mod 2 = 0→ ZADD s a b = (Suc(val s div 2 + val a div 2) = val b div 2))
∧ (val b mod 2 6= 0→ ZADD s a b = False)))

∧ (val s mod 2 6= 0→
(val a mod 2 = 0→

(val b mod 2 = 0→ ZADD s a b = False)
∧ (val b mod 2 6= 0→ ZADD s a b = (val b div 2 = val a div 2 + val s div 2)))

∧ (val a mod 2 6= 0→
(val b mod 2 = 0→ ZADD s a b = (val a div 2 = val b div 2 + val s div 2))
∧ (val b mod 2 6= 0→ ZADD s a b = (Suc(val a div 2 + val b div 2) = val s div 2))))

Such a goal would be rather tedious for a human to prove interactively. It
is solved by our tactic in 43.6 seconds. Interestingly though (and a possible
area for improvement), almost all the time is spent on rewriting; MONA
requires only 0.13 seconds to verify the translated formula.

11

5 Application: Circuit Verification

To illustrate the generality and flexibility of our combination, we present
a second example from a rather different domain: formal reasoning about
parametric circuit descriptions. As previously noted, systems with multiple
independent parameters fall out of the scope of WS1S but can be formalized
in HOL. Our verification strategy is to reduce the number of parameters to
a single parameter, at which point the result may be WS1S formalizable.

Here we consider an example of a circuit with two parameters: time,
and bit-width. The key idea is that we can eliminate the time parameter
(eliminating bit-width is more difficult, but also possible) by reducing the
correctness problem to showing that an invariant holds over consecutive
time-instances. We demonstrate this with the verification of a parameterized
family of n-bit counters. Due to space limitations we only sketch the main
ideas; full formalization and proof details are given in [Friedrich, 1998].

In hardware verification, like software verification, one establishes that
an implementation fulfills its specification. A common approach is to for-
malize both the implementation and the specification as relations between
the circuit’s inputs and outputs [Camilleri et al., 1986]. Circuits are built
from primitive relations corresponding to transistors, gates, and the like,
are combined by conjunction, and ‘wired together’ using shared variables,
hidden by existential quantifiers. For sequential circuits, signals are mod-
elled as functions from time (discrete in our case) to port-values, which are
truth values. It is often desirable to establish the correctness of parametric
families of circuits. That is, rather than establish that an n-bit counter is
correct for particular values of n, we show that the entire family is correct
for all n ∈ nat. Note that parametric circuits require parametric signals
(busses); in our work we model these as functions from time to elements of
type finnat with the convention that the i-th bit of a bus B is set at time t
if and only if i ∈ B(t).

Figure 1 contains a diagram of a schematic n-bit counter. It takes an
n-bit bus IN as input and yields an n-bit output OUT and a carry-out bit
co. In addition, it takes other input signals, namely pe (parallel enable) and
ce (count enable), which control the function performed by the counter. The
components INC, MUX and DLATCH are parameterized implementations of
an n-bit incrementer, multiplexor and dlatch, respectively. Assuming that
these have been modelled in HOL, we model the implementation of the n-bit
counter by the following formulae.

COUNTER n IN pe ce OUT co ≡
∃ D W u v . INC n OUT ce W u ∧ MUX n pe IN W D

∧ DLATCH n D OUT ∧ NOT pe v ∧ AND v u co

This circuit is explicitly parameterized by the bit-width n. The time pa-

12

MUX

INC

DLATCH

n

n

INpe

ce
co

v

W

D

u

OUT

Figure 1: Implementation of the n-bit counter

rameter is implicitly part of the specification as all inputs are signals, which
are functions of time.

The values of pe and ce determine the counter’s action. For any time
instance t, if pe holds at time t (written by applying the function pe to the
argument t) then, independently of ce, the value output by the counter at
time t+ 1 is that of the IN -bus at time t. Otherwise, if ce is set, the value
output at time t+ 1 is one greater than that output at time t, unless there
is an overflow, in which case the output value is 0. Finally, if neither pe nor
ce is set at time t, the output does not change from time t to time t + 1.
The following HOL formula makes this precise.

COUNTER SPEC n t IN pe ce OUT co ≡
if pe t
then valn n (OUT (Suc t)) = valn n (IN t) ∧ ¬ co t
else if ce t

then if MAX n (OUT t)
then valn n (OUT (Suc t)) = 0 ∧ co t
else valn n (OUT (Suc t)) = Suc(valn n(OUT t)) ∧ ¬ co t

else valn n (OUT (Suc t)) = valn n (OUT t) ∧ ¬ co t

We can now state what it means for the counter to be correctly imple-
mented as an equivalence between the implementation and the specification.

COUNTER n IN pe ce OUT co = ∀t. COUNTER SPEC n t IN pe ce OUT co

All free variables are implicitly universally quantified, i.e., we show the
equivalence for all possible port-values. As previously noted, the time pa-

13

rameter on the left-hand side is implicit in our use of signals. This param-
eter is explicit however, in the specifications of the components INC SPEC,
MUX SPEC, etc.

The counter is proved correct in three steps. First we expand its defi-
nition and replace the implementations of the components by their specifi-
cations (these subcomponents are first proved correct with respect to their
specifications). This reveals the implicit time parameter on the left-hand
side and results in the following goal:

(∃ D W u v . (∀t. INC SPEC t n OUT ce W u)
∧ (∀t. MUX SPEC t n pe IN W D)
∧ (∀t. DLATCH SPEC t n D OUT)
∧ (∀t. NOT SPEC t pe v)
∧ (∀t. AND SPEC t v u co))

= (∀t. COUNTER SPEC n t IN pe ce OUT co)

In the second step we eliminate the time parameter. To do this we pull
the universal quantifier outside the equivalence using derived inference rules
for quantification. Pulling the universal quantifier over an existential quan-
tifier can be seen as a kind of reverse Skolemization where the (internal)
signals D and W , which are functions of type nat⇒ finnat, are replaced by
port values D′ and W ′ of type finnat and where the signals u and v, which are
of type nat ⇒ bool, are replaced by port values of type bool, respectively.
Moreover, pulling the time quantifier over the equivalence corresponds to
choosing a fixed (but arbitrary) time point at which implementation and
specification are compared. This step results in the following proof obliga-
tion:

∀t.(∃ D ′ W ′ u ′ v ′. INC SPEC′ t n OUT ce W ′ u ′

∧ MUX SPEC′ t n pe IN W ′ D ′

∧ DLATCH SPEC′ t n D ′ OUT
∧ NOT SPEC′ t pe v ′

∧ AND SPEC′ t v ′ u ′ co)
= (COUNTER SPEC n t IN pe ce OUT co)

After this, we can simplify matters a bit by removing universal quantifiers
and replacing all remaining applications of signals to time points by fresh
variables that represent the values of the signals at these time points. For
example, we replace all occurrences of OUT t with the variable OUT0 and
all occurrences of OUT (Suc t) with the variable OUT1 .

14

This leaves us with a new proof goal that no longer contains the time pa-
rameter t. (We have here expanded the definitions of INC SPEC′, MUX SPEC′

etc.)

(∃ D ′ W ′ u ′ v ′.(if ce0
then if MAX n OUT0

then valn n W ′ = 0 ∧ u ′

else valn n W ′ = Suc(valn n OUT0) ∧ ¬u ′

else valn n W ′ = valn n OUT0 ∧ ¬u ′)
∧ (if pe0 then EQ n D ′ IN0 else EQ n D ′ W ′)
∧ EQ n OUT1 D ′

∧ v ′ = (¬pe0)
∧ co0 = (v ′ ∧ u ′))

= (if pe0
then valn n OUT1 = valn n IN0 ∧ ¬co0
else if ce0

then if MAX n OUT0
then valn n OUT1 = 0 ∧ co0
else valn n OUT1 = Suc(valn n OUT0) ∧ ¬co0

else valn n OUT1 = valn n OUT0 ∧ ¬co0)

This is WS1S formalizable. Invoking our oracle is the third step and this
completes the proof in 20 seconds.

6 Related Work and Conclusions

6.1 Related Work

The combination of logics and provers based on them is an active area of re-
search. Various groups have investigated decision procedures for arithmetic
reasoning and their integration with theorem provers. The theory of linear
integer arithmetic was shown to be decidable by Presburger in 1929. The ap-
plication of WS1S to arithmetic was documented by Büchi in [Büchi, 1960].
Boyer and Moore have integrated a procedure for the universal fragment of
linear natural arithmetic in their prover NQTHM [Boyer and Moore, 1988].
The PVS system, based on higher-order logic, implements a solver for linear
equations [Owre et al., 1992], and the STEP system combines decision pro-
cedures for partial orders and linear integer arithmetic with a semi-decision
procedure for first-order logic [Manna et al., 1994].

In each of the above combinations, the decision procedure is part of the
prover and is ‘hardwired’ to operate over specific data-types and syntactic
formulae classes. Such close coupling avoids translation and linkage to an
external prover, but it introduces inflexibility. As documented by Boyer and
Moore [Boyer and Moore, 1988], in practice few subgoals fit the requirements
of such decision procedures; their successful use requires closely integrating
the procedure with other theorem proving activities. Our formalization,

15

which is based on an open coupling between WS1S and HOL, offers advan-
tages in this regard. WS1S is a decision procedure for a general theory of
finite sets of natural numbers in which arithmetic can be encoded. The en-
coding is made by, and transparent to, the user and can easily be modified
to different HOL datatypes (e.g., natural numbers or integers). Additional
relations in HOL can be user defined and incorporated into the translation,
provided they are WS1S expressible.

Relevant to our second application is research on using model checkers
to reason about systems with infinite or parameterized state spaces, which
cannot directly be model-checked. Kurshan and Lamport [Kurshan and
Lamport, 1993] have presented a similar connection between a proof checker
for TLA and the COSPAN model-checker; they present a parameterized n-
bit multiplier verified in TLA based on induction and the verification of
an 8-bit multiplier by COSPAN. The interaction between the two systems
is very loose: both systems were used independently leaving the users to
communicate between them and to insure correctness of the interaction.

Our parameter elimination technique is closely related to work of Wolper
and Lovinfosse [Wolper and Lovinfosse, 1989] and Kurshan and McMillan
[Kurshan and McMillan, 1989]. They present techniques where model check-
ing is used to verify an invariant that formalizes an induction step. Our work
differs from theirs in that we use a general purpose decision procedure (as
opposed to a model checker) and the parameter elimination steps are com-
pletely formalized within HOL. This kind of formalized reduction is also
found in work at SRI where a decision procedure for the mu-calculus is im-
plemented in PVS and used to reason about infinite state systems, which
can be reduced to finite state systems using abstraction techniques [Rajan
et al., 1995] (see also [Müller and Nipkow, 1995]).

6.2 Conclusions

Our experience with the combination is positive. WS1S has a simple seman-
tics that leads to a simple embedding whose correctness is easily established.
Despite this simplicity, WS1S is expressive, has a wide range of application,
and one can easily embed or combine other decision procedures with WS1S.
The rather different nature of our two examples is evidence of this flexibility.

Our work is just a starting point, and there are many interesting open
problems. Complexity is one of them. WS1S is non-elementary in worst
case; however, MONA can solve many complex problems quickly in practice.
Theoretical reasons for this and elementary bounds for certain sub-problems
are given in [Basin and Klarlund, 1998]. Theoretical and practical compar-
isons with other decision procedures for arithmetic constitute future work.
Another question concerns the scope and applicability of our embedding. In
the case of arithmetic, we can precisely state when our decision procedure
is applicable. For other applications, like verification of parameterized se-

16

quential systems, the situation is not so clear: Although a reduction from
an undecidable class of problems to a decidable one cannot always succeed,
perhaps there are useful characterizations of when it can work.

References

[Andrews, 1986] Peter B. Andrews. An Introduction to Mathematical Logic
and Type Theory: To Truth Through Proof. Academic Press, 1986.

[Basin and Klarlund, 1998] David Basin and Nils Klarlund. Automata
based symbolic reasoning in hardware verification. The Journal of Formal
Methods in Systems Design, 1998. To appear.

[Boyer and Moore, 1988] R. S. Boyer and J. S. Moore. Integrating deci-
sion procedures into heuristic theorem provers: A case study with linear
arithmetic. Machine Intelligence, (11):83–124, 1988.

[Büchi, 1960] J. R. Büchi. Weak second order arithmetic and finite au-
tomata. Zeitschrift für mathematische Logik und Grundlagen der Mathe-
matik, 6:66–92, 1960.

[Camilleri et al., 1986] A. J. Camilleri, M. J. C. Gordon, and T. F. Melham.
Hardware verification using higher-order logic. In D. Borrione, editor,
From HDL Descriptions to Guaranteed Correct Circuit Designs. North
Holland, September 1986.

[Elgot, 1961] C. C. Elgot. Decision problems of finite automata design and
related arithmetics. Transactions of the AMS, 98:21–52, 1961.

[Friedrich, 1998] Stefan Friedrich. Integration of a Decision Procedure for
Second-Order Monadic Logic in a Higher-Order Logic Theorem Proving
Environment. Master’s thesis, Universität des Saarlandes, 1998.

[Gordon and Melham, 1993] Mike J. C. Gordon and Tom F. Melham. In-
troduction to HOL. Cambridge University Press, 1993.

[Henriksen et al, 1995] Jesper G. Henriksen et al. Mona: Monadic second-
order logic in practice. In Ed Brinksma et al, editor, Tools and Algorithms
for the Construction and Analysis of Systems, First International Work-
shop, TACAS’95, volume 1019 of Lecture Notes in Computer Science,
pages 89–110, Heidelberg, May 1995. Springer-Verlag.

[Kurshan and Lamport, 1993] Robert Kurshan and Leslie Lamport. Verifi-
cation of a multiplier: 64 bits and beyond. In Costas Courcoubetis, editor,
Proceedings of the Conference on Computer-Aided Verification, volume
697 of Lecture Notes in Computer Science, pages 166–179, Heidelberg,
1993. Springer-Verlag.

17

[Kurshan and McMillan, 1989] Robert Kurshan and Ken McMillan. A
structural induction theorem for processes. In Proceedings of the 8th
Annual ACM Symposium on Principles of Distributed Computing, pages
239–247. ACM Press, 1989.

[Manna et al., 1994] Zohar Manna, Anuchit Anuchitanukul, Nikolaj
Bjorner, Anca Browne, Edward Chang, Michael Colon, Luca de Alfaro,
Harish Devarajan, Henny Sipma, and Tomas Uribe. STeP: The stanford
temporal prover. Technical Report CS-TR-94-1518, Stanford University,
Computer Science Department, June 1994.

[Müller and Nipkow, 1995] Olaf Müller and Tobias Nipkow. Combining
model checking and deduction for I/O-automata. In Ed Brinksma et al,
editor, Tools and Algorithms for the Construction and Analysis of Sys-
tems, First International Workshop, TACAS’95, volume 1019 of Lecture
Notes in Computer Science, pages 1–16, Heidelberg, May 1995. Springer-
Verlag.

[Owre et al., 1992] S. Owre, J. M. Rushby, and N. Shankar. PVS: A proto-
type verification system. In Deepak Kapur, editor, Proc. of the 11th In-
tern. Conf. on Autom. Deduction (CADE), volume 607 of Lecture Notes in
Artificial Intelligence, pages 748–752, Heidelberg, 1992. Springer-Verlag.

[Paulson, 1994] Lawrence C. Paulson. Isabelle : a generic theorem prover;
with contributions by Tobias Nipkow, volume 828 of Lecture Notes in Com-
puter Science. Springer-Verlag, Heidelberg, 1994.

[Presburger, 1929] M. Presburger. Über die Vollständigkeit eines gewis-
sen Systems der Arithmetik ganzer Zahlen, in welchen, die Addition als
einzige Operation hervortritt. In Comptes Rendus du Premier Congrès
des Mathématicienes des Pays Slaves, pages 92–101, 395, Warsaw, 1929.

[Rajan et al., 1995] S. Rajan, N. Shankar, and M.K. Srivas. An integra-
tion of model-checking with automated proof checking. In Pierre Wolper,
editor, Computer-Aided Verification, CAV ’95, volume 939 of Lecture
Notes in Computer Science, pages 84–97, Heidelberg, June 1995. Springer-
Verlag.

[Regensburger, 1994] Franz Regensburger. HOLCF: Eine konservative Er-
weiterung von HOL um LCF. PhD thesis, Technische Universität
München, November 1994.

[Thatcher and Wright, 1967] J. W. Thatcher and J. B. Wright. General-
ized finite automata theory with an application to a decision problem
of second-order logic. Mathematical Systems Theory, 2(1):57–81, August
1967.

18

[Thomas, 1990] Wolfgang Thomas. Automata on infinite objects. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B,
chapter 4. MIT Press/Elsevier, 1990.

[Wolper and Lovinfosse, 1989] P. Wolper and V. Lovinfosse. Verifying prop-
erties of large sets of processes with network invariants. In Proceedings of
the International Workshop on Automatic Verification Methods for Finite
State Systems, volume 407 of Lecture Notes in Computer Science, pages
68–80, Heidelberg, June 1989. Springer-Verlag.

19

