
Sharad Malik

Princeton University

Boolean Satisfiability: From Theoretical
Hardness to Practical Success

SAT in a Nutshell

� Given a Boolean formula, find a variable assignment such that the
formula evaluates to 1, or prove that no such assignment exists.

� For n variables, there are 2n possible truth assignments to be checked.

� First established NP-Complete problem.

S. A. Cook, The complexity of theorem proving procedures, Proceedings, Third
Annual ACM Symp. on the Theory of Computing,1971, 151-158

F = (a + b)(a� + b� + c)

a

b b

c c c c

0 1

0 0

00 001

1 1

1 1 1

Where are we today?

� Intractability of the problem no longer daunting
� Can regularly handle practical instances with millions of

variables and constraints

� SAT has matured from theoretical interest to practical
impact
� Electronic Design Automation (EDA)

� Widely used in many aspects of chip design

� Increasing use in software verification
� Commercial use at Microsoft, NEC,�

Where are we today? (contd.)

� Significant SAT community
� SatLive Portal and SAT competitions

� SAT Conference

� Emboldened researchers to take on even harder
problems
� Satisfiability Modulo Theories (SMT)

� Max-SAT

� Quantified Boolean Formulas (QBF)

SAT Solvers: A Condensed History

� Deductive

� Davis-Putnam 1960 [DP]

� Iterative existential quantification by �resolution�

� Backtrack Search

� Davis, Logemann and Loveland 1962 [DLL]

� Exhaustive search for satisfying assignment

� Conflict Driven Clause Learning [CDCL]

� GRASP: Integrate a constraint learning procedure, 1996

� Locality Based Search

� Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

� Added focus on efficient implementation

� �Pre-processing�

� Peephole optimization, e.g. miniSAT, 2005

Problem Representation

� Conjunctive Normal Form
� Representation of choice for modern SAT solvers

(a+b+c)(a�+b�+c)(a�+b+c�)(a+b�+c�)

Variables ClausesLiterals

Circuit to CNF Conversion

� Tseitin Transformation

� Can �e� ever become true?

a
b

d e

c

(a + b + d�)
(a� + d)
(b� + d)

d ≡ (a + b)
(c� + d� + e)
(d + e�)
(c + e�)

e ≡ (c ⋅ d)

Is (e)(a + b + d�)(a�+d)(b�+d)(c�+d+e)(d+e�)(c+e�) satisfiable?

Consistency conditions
for circuit variables

a + b + g + h�

Resolution

� Resolution of a pair of distance-one clauses

(a + b + c� + f) (g + h� + c + f)

Resolvent implied by the original clauses

+f

(a + b) (a + b�) (a� + c) (a� + c�)

Davis Putnam Algorithm

M .Davis, H. Putnam, �A computing procedure for quantification
theory", J. of ACM, Vol. 7, pp. 201-214, 1960

� Iterative existential quantification of variables

(a + b + c) (b + c� + f�) (b� + e)

(a + c + e) (c� + e + f)

(a + e + f)

(a� + c) (a� + c�)

(c) (c�)

()SAT
UNSAT

(a)

Potential memory explosion problem!

∃b, f

f

∃{b,c}, f

∃b, f

f

∃{b,a}, f

∃{b,a,c}, f

SAT Solvers: A Condensed History

� Deductive

� Davis-Putnam 1960 [DP]

� Iterative existential quantification by �resolution�

� Backtrack Search

� Davis, Logemann and Loveland 1962 [DLL]

� Exhaustive search for satisfying assignment

� Conflict Driven Clause Learning [CDCL]

� GRASP: Integrate a constraint learning procedure, 1996

� Locality Based Search

� Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

� Added focus on efficient implementation

� �Pre-processing�

� Peephole optimization, e.g. miniSAT, 2005

Basic DLL Search

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5:394�397, 1962

Basic DLL Search

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

a

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

⇐ Decision
→

→
→

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0 ⇐ Decision

→

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0 ⇐ Decision

→
→

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0

d=1

c=0

(a + c + d)
a=0

Implication Graph

⇐ Unit→
→

d=1

Unit Clause Rule

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d�)

Implication Graph

⇐ Unit

→
→

d=1,d=0

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d�)

Conflict!Implication Graph

→
→

d=1,d=0

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0

⇐ Backtrack

→
→
→
→

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0 1 ⇐ Forced Decision

→
→

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0

d=1

c=1

(a + c� + d)
a=0

d=0
(a + c� + d�)

Conflict!

1 ⇐ Forced Decision

Implication Graph

→
→

d=1,d=0

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0 1

⇐ Backtrack

→
→
→
→
→

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0 1

⇐ Backtrack

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0 1

1 ⇐ Forced Decision

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0

d=1

c=0

(a + c� + d)
a=0

d=0
(a + c� + d�)

Conflict!

1

c

0

1

⇐ Decision

Implication Graph

→
→
→
→
→ d=1,d=0

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0 1

c

0

1

⇐ Backtrack

→
→
→
→
→

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0

d=1

c=1

(a + c� + d)
a=0

d=0
(a + c� + d�)

Conflict!

1

c

0 1

1

⇐ Forced Decision

Implication Graph

→
→
→ d=1,d=0

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0 1

c

0 1

1

⇐ Backtrack
→
→
→
→
→
→
→
→

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0 1

c

0 1

1

1 ⇐ Forced Decision
→
→
→
→

(a� + b� + c)

Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)

b

0

c

0 1

c

0 1

1

1

b

1

a=1

b=1

c=1
(a� + b� + c)

⇐ Decision

Implication Graph

→

→
→

c=1

(a� + b� + c)

Basic DLL Search

a

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)

b

0

c

0 1

c

0 1

1

1

b

1

a=1

b=1

c=1
(a� + b� + c) (b� + c� + d)

d=1

0

Implication Graph

→

c=1,d=1

Basic DLL Search

a

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0 1

c

0 1

1

1

b

1

a=1

b=1

c=1
(a� + b� + c) (b� + c� + d)

d=1

⇐ SAT

0

Implication Graph

→

c=1,d=1

SAT Solvers: A Condensed History

� Deductive

� Davis-Putnam 1960 [DP]

� Iterative existential quantification by �resolution�

� Backtrack Search

� Davis, Logemann and Loveland 1962 [DLL]

� Exhaustive search for satisfying assignment

� Conflict Driven Clause Learning [CDCL]

� GRASP: Integrate a constraint learning procedure, 1996

� Locality Based Search

� Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

� Added focus on efficient implementation

� �Pre-processing�

� Peephole optimization, e.g. miniSAT, 2005

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4

x1 + x3� + x8�

x1 + x8 + x12

x2 + x11

x7� + x3� + x9

x7� + x8 + x9�

x7 + x8 + x10�

x7 + x10 + x12�

J. P. Marques-Silva and Karem A. Sakallah, �GRASP: A Search Algorithm for
Propositional Satisfiability�, IEEE Trans. Computers, C-48, 5:506-521, 1999.

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4

x1 + x3� + x8�

x1 + x8 + x12

x2 + x11

x7� + x3� + x9

x7� + x8 + x9�

x7 + x8 + x10�

x7 + x10 + x12�

x1 x1=0

x1=0

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4

x1 + x3� + x8�

x1 + x8 + x12

x2 + x11

x7� + x3� + x9

x7� + x8 + x9�

x7 + x8 + x10�

x7 + x10 + x12�

x1 x1=0, x4=1

x4=1

x1=0

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1 x1=0, x4=1

x3 x3=1

x4=1

x3=1x1=0

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1 x1=0, x4=1

x3 x3=1, x8=0

x4=1

x3=1

x8=0

x1=0

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1 x1=0, x4=1

x3 x3=1, x8=0, x12=1

x4=1

x12=1

x3=1

x8=0

x1=0

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0

x11=1

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7 x7=1x4=1

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7 x7=1, x9= 0, 1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x7

x3=1∧x7=1∧x8=0 → conflict

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x7

Add conflict clause: x3�+x7�+x8

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1 x3=1∧x7=1∧x8=0 → conflict

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

x3�+x7�+x8

Add conflict clause: x3�+x7�+x8

x3=1∧x7=1∧x8=0 → conflict

Backtrack to the decision level of x3=1

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

x3�+x7�+x8

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�
x3� + x7� + x8

x1

x3

x1=0, x4=1

x3=1, x8=0, x12=1,x7=0

Backtrack to the decision level of x3=1
Assign x7 = 0

x4=1

x12=1

x3=1

x8=0

x1=0

←new clause

x7=0

What’s the big deal?

Conflict clause: x1�+x3+x5�

Significantly prune the search space �
learned clause is useful forever!

Useful in generating future conflict
clauses.

x1

x2

x3x3

x4 x4

x5x5x5 x5

Restart

� Abandon the
current search tree
and reconstruct a
new one

� The clauses learned
prior to the restart
are still there after
the restart and can
help pruning the
search space

� Adds to robustness
in the solver

x2

x1

x4

x3

x4

x3

x5x5x5x5

Conflict clause: x1�+x3+x5�

x2

x1

x3

x5

SAT Solvers: A Condensed History

� Deductive

� Davis-Putnam 1960 [DP]

� Iterative existential quantification by �resolution�

� Backtrack Search

� Davis, Logemann and Loveland 1962 [DLL]

� Exhaustive search for satisfying assignment

� Conflict Driven Clause Learning [CDCL]

� GRASP: Integrate a constraint learning procedure, 1996

� Locality Based Search

� Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

� Added focus on efficient implementation

� �Pre-processing�

� Peephole optimization, e.g. miniSAT, 2005

Success with Chaff

� First major instance: Tough (Industrial Processor Verification)
� Bounded Model Checking, 14 cycle behavior

� Statistics
� 1 million variables

� 10 million literals initially
� 200 million literals including added clauses

� 30 million literals finally

� 4 million clauses (initially)
� 200K clauses added

� 1.5 million decisions

� 3 hour run time

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proc., 38th Design Automation Conference (DAC2001), June 2001.

Chaff Contribution 1: Lazy Data Structures
2 Literal Watching for Unit-Propagation

� Avoid expensive book-keeping for unit-propagation

� N-literal clause can be unit or conflicting only after N-1 of the literals have
been assigned to F

� (v1 + v2 + v3): implied cases: (0 + 0 + v3) or (0 + v2 + 0) or (v1 + 0 + 0)

� Can completely ignore the first N-2 assignments to this clause

� Pick two literals in each clause to �watch� and thus can ignore any
assignments to the other literals in the clause.

� Example: (v1 + v2 + v3 + v4 + v5)

� (v1=X + v2=X + v3=? {i.e. X or 0 or 1} + v4=? + v5=?)

� Maintain the invariant: If a clause can become newly implied via any
sequence of assignments, then this sequence will include an assignment of
one of the watched literals to F

2 Literal Watching

-V1 V3 V5 V6 -V7

V2 V4 V6

-V1 V4 -V7 V11 V12 V15

-V1 V3 V4 -V5 V6

-V3 V2 -V5 -V6

-V2 -V3 V11 V12 V13 V15

V1

V2

+

-

+

-

For every clause, two
literals are watched

� When a variable is assigned
true, only need to visit clauses
where its watched literal is
false (only one polarity)
� Pointers from each literal to all

clauses it is watched in

� In a n clause formula with v
variables and m literals
� Total number of pointers is 2n
� On average, visit n/v clauses

per assignment

� *No updates to watched
literals on backtrack*

Decision Heuristics –Conventional
Wisdom

� �Assign most tightly constrained variable� : e.g. DLIS (Dynamic
Largest Individual Sum)
� Simple and intuitive: At each decision simply choose the assignment that

satisfies the most unsatisfied clauses.

� Expensive book-keeping operations required
� Must touch *every* clause that contains a literal that has been set to true.

Often restricted to initial (not learned) clauses.

� Need to reverse the process for un-assignment.

� Look ahead algorithms even more compute intensive
C. Li, Anbulagan, �Look-ahead versus look-back for satisfiability problems�
Proc. of CP, 1997.

� Take a more �global� view of the problem

Chaff Contribution 2:
Activity Based Decision Heuristics

� VSIDS: Variable State Independent Decaying Sum
� Rank variables by literal count in the initial clause database

� Only increment counts as new (learnt) clauses are added

� Periodically, divide all counts by a constant

� Quasi-static:
� Static because it doesn�t depend on variable state

� Not static because it gradually changes as new clauses are added

� Decay causes bias toward *recent* conflicts.

� Has a beneficial interaction with 2-literal watching

Activity Based Heuristics
and Locality Based Search

� By focusing on a sub-space, the covered spaces tend to coalesce

� More opportunities for resolution since most of the variables are common.

� Variable activity based heuristics lead to locality based search

SAT Solvers: A Condensed History

� Deductive

� Davis-Putnam 1960 [DP]

� Iterative existential quantification by �resolution�

� Backtrack Search

� Davis, Logemann and Loveland 1962 [DLL]

� Exhaustive search for satisfying assignment

� Conflict Driven Clause Learning [CDCL]

� GRASP: Integrate a constraint learning procedure, 1996

� Locality Based Search

� Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

� Added focus on efficient implementation

� �Pre-processing�

� Peephole optimization, e.g. miniSAT, 2005

Pre-Processing of CNF Formulas

N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and
Clause Elimination, In Proceedings of SAT 2005

� Use structural information to simplify
� Subsumption

� Self-subsumption

� Substitution

Pre-Processing: Subsumption

� Clause C1 subsumes clause C2 if C1 implies C2

� Subsumed clauses can be discarded

Pre-Processing: Self-Subsumption

� Subsumption after resolution step

Pre-Processing: Substitution

� Tseitin transformation introduces definition of variable

� Occurrence of x1 can be eliminated by substitution
� Corresponds to resolution with defining clauses

Concluding Remarks

� SAT: Significant shift from theoretical interest to practical impact.

� Quantum leaps between generations of SAT solvers

� Successful application of diverse CS techniques
� Logic (Deduction and Solving), Search, Caching, Randomization, Data

structures, efficient algorithms

� Engineering developments through experimental computer science

� Presence of drivers results in maximum progress.
� Electronic design automation � primary driver and main beneficiary

� Software verification- the next frontier

� Opens attack on even harder problems
� SMT, Max-SAT, QBF�

Sharad Malik and Lintao Zhang. 2009. Boolean satisfiability from theoretical
hardness to practical success. Commun. ACM 52, 8 (August 2009), 76-82.

References

� [GJ79] Michael R. Garey and David S. Johnson, Computers and intractability: A
guide to the theory of NP-completeness, W. H. Freeman and Company, San
Francisco, 1979

� [T68] G. Tseitin, On the complexity of derivation in propositional calculus. In Studies
in Constructive Mathematics and Mathematical Logic, Part 2 (1968)

� [DP 60] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:201�215, 1960

� [DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394�397, 1962

� [SS99] J. P. Marques-Silva and Karem A. Sakallah, �GRASP: A Search Algorithm for
Propositional Satisfiability�, IEEE Trans. Computers, C-48, 5:506-521, 1999.

� [BS97] R. J. Bayardo Jr. and R. C. Schrag �Using CSP look-back techniques to solve
real world SAT instances.� Proc. AAAI, pp. 203-208, 1997

� [BS00] Luís Baptista and João Marques-Silva, �Using Randomization and Learning
to Solve Hard Real-World Instances of Satisfiability,� In Principles and Practice of
Constraint Programming � CP 2000, 2000.

References

� [H07] J. Huang, �The effect of restarts on the efficiency of clause learning,�
Proceedings of the Twentieth International Joint Conference on Automated
Reasoning, 2007

� [MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik. Chaff:
Engineering and efficient sat solver. In Proc., 38th Design Automation Conference
(DAC2001), June 2001.

� [ZS96] H. Zhang, M. Stickel, �An efficient algorithm for unit-propagation� In
Proceedings of the Fourth International Symposium on Artificial Intelligence and
Mathematics,1996

� [ES03] N. Een and N. Sorensson. An extensible SAT solver. In SAT-2003

� [B02] F. Bacchus �Exploring the Computational Tradeoff of more Reasoning and Less
Searching�, Proc. 5th Int. Symp. Theory and Applications of Satisfiability Testing, pp.
7-16, 2002.

� [GN02] E.Goldberg and Y.Novikov. BerkMin: a fast and robust SAT-solver. In Proc.,
DATE-2002, pages 142�149, 2002.

References

� [R04] L. Ryan, Efficient algorithms for clause-learning SAT solvers, M. Sc. Thesis,
Simon Fraser University, 2002.

� [EB05] N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and
Clause Elimination, In Proceedings of SAT 2005

� [ZM03] L. Zhang and S. Malik, Validating SAT solvers using an independent
resolution-based checker: practical implementations and other applications, In
Proceedings of Design Automation and Test in Europe, 2003.

� [LSB07] M. Lewis, T. Schubert, B. Becker, Multithreaded SAT Solving, In Proceedings
of the 2007 Conference on Asia South Pacific Design Automation

� [HJS08] Youssef Hamadi, Said Jabbour, and Lakhdar Sais, ManySat: solver
description, Microsoft Research-TR-2008-83

� [B86] R. E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation, IEEE
Transactions on Computers , vol.C-35, no.8, pp.677-691, Aug. 1986

� [ZM09] Sharad Malik and Lintao Zhang. 2009. Boolean satisfiability from
theoretical hardness to practical success. Commun. ACM 52, 8 (August 2009), 76-
82.

