- Boolean Satisfiability: From Theoretical
Hardness to Practical Success
Sharad Malik

Princeton University

SAT in a Nutshell
-

o Given a Boolean formula, find a variable assignment such that the
formula evaluates to 1, or prove that no such assignment exists.

F=(a+b)a +b'+c)

01 For n variables, there are 2" possible truth assignments to be checked.

0 First established NP-Complete problem.

S. A. Cook, The complexity of theorem proving procedures, Proceedings, Third
Annual ACM Symp. on the Theory of Computing,1971, 151-158

Where are we today?

Intractability of the problem no longer daunting
Can regularly handle practical instances with millions of
variables and constraints
SAT has matured from theoretical interest to practical
impact
Electronic Design Automation (EDA)
Widely used in many aspects of chip design

Increasing use in software verification

Commercial use at Microsoft, NEC,...

R e . S]
€ > C # Owwwsatliveorg
¥ Princeton Univer.. & The Gigascale S.. ¥ Sharad Malik M Gmail: Email fro.. I3 Blackboard Leam @ Home - Sharad ...

To propose a link enter your email address:

=

R e e

Welcome to SAT Live!

2c]

> I you are.a newcomer to the SATIfiabilty problem, you might want o ake.a ook at wikip bilty n first. You might also find those survey
insight o the current ntereston SAT ‘and hardware verifcation, Atmin Biere's course on formal svstems s m:adsmn Eugene Goldberg has aiso anice and

- in b T. Finally, Joao Marques-Silva wrote a nice article on practical applications tistiability.

= Looking for a SAT solver to play vith? the following open source SAT Solvers might be a good start: Minjsat (Cx-+), icosat (C), SAT4) (Java). If you are looking for 3 stochastic local search fram
2100k 3t UBCSAT.

iG] Youcan take i by kevwords or add your must be subscribed to SAT Livel or propose it as anonymous).
1f you don't of new , you can subscribe to the SAT Live! notification st or register to the site RS
Muise, using Dapper).
Finally, a page with some people interested by s available.

Last 10 new entries

725 elements available.

nor 2 b n

The SaT solver B
Zompstians Innovative approaches
T i Location

Group of Computer Architecture headed by Prof. Or. Rolf Drechsler
University of Bremen, Bremen, Germany

SAT related books

Application
The deadine for applictions is Jly 10th 2011 Applications ncluding CV, ertifcates, and recommendation leters should be sent by email o Rol Drechsler (crechsle@unt
refer to reference number A 93/1

salary

Dependent on the qualiiation of the applicant the salary grade for the position 35 3 researcher (Wissenschatiche/r Mitarbeierln) wil be TWL 13 or WL 14, . net income
1800 EUR or 2000 EUR, respectively. The project will start on August 1t 2011.

Abstract

The nternatonallyrenowned Group of Computer rcitecture of Focus of the offered ¢
vative e Doon s Dot of & reseorh rofas R by e e e

for 5 years within 3 Renhart Koselieck Projec
The research group tightly cooperates with industrial partners within transfer projects, funded .g. by the German Ministry for Education and Research (BMBF). Within the ¢

/@ AT 2011 competito

€ 5 C # Owwwsatcompetition.org/2011/

¥ Princeton Univer...

® Sharad Malik M Gmail: Email i

@ Blackboard Leamn ® Home - Sharad ...

SAT Competition 2011
A competitive event of the SAT 2011 Conference
June 19th - June 22nd 2011, Ann Arbor,

Quick links

Registration
‘What's new this year?)

Important dates|

Organizers|
Sponsors
The SAT
thaniks to our generous sponsors |

o/ i L (intel

L if SLastChangedDate: 2011-04-

5 21:14:21 +0200 (Mon, 25 Apr 2011) §.

Register and subi vour solver or benchmark

What's new this year’

There are several new features in the SAT competiton this year:

New Hardware

il chuster at CRIL, Bi-Xeon Qu

d32 GB efRAM

entOS 5.4, 386,

ivers vill be allocated 7GB

ated 2 cores, each instance of a|

stages. During Each instance
cores, Th:s means tat a one tin, node willo rning either 4 uns of sequentalsover (2 per processo), o 2 runs ofﬂp:u!ld sems per proc:ssov) Two different soly
node. e

s of which the be awarded -

solvers per node)

1 X 15GB of RAM
SequentialParallel Neutrality
is year, i q b sial but with
which use all ver as at Pos based on CPU time
diauni)‘aspcssnbk’l‘ns tex ranking he i timeout il be i In
U time. It bett "
New Award Categories
i T of wall- of CPU time. ‘non CDCL?) SAT solver will be awarded a
Choose Your Category
i i . in which al solvers wh inorderto which cate
random) their solver vill compete. by the jury) y
Minimally Unsatisfiable Subset (MUS) Special Track
1o e sccess of MUS teciques icat i in MAXSAT solvers), MUS sy the frst
Data A
ompetion, the Data Analysis
the comperition web site and as a poster during the SAT conference. This as wel as analyze the strengths anc
benchmarks. C be run by the
Here is a quick view ton. See complete details

Main track

Where are we today? (contd.)

[|

o Significant SAT community
Satlive Portal and SAT competitions
SAT Conference

0 Emboldened researchers to take on even harder

problems

Satisfiability Modulo Theories (SMT)
Max-SAT
Quantified Boolean Formulas (QBF)

SAT Solvers: A Condensed History
-

o Deductive
Davis-Putnam 1960 [DP]
lterative existential quantification by “resolution”
o Backtrack Search
Davis, Logemann and Loveland 1962 [DLL]
Exhaustive search for satisfying assignment
01 Conflict Driven Clause Learning [CDCL]
GRASP: Integrate a constraint learning procedure, 1996
0 Locality Based Search

Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

Added focus on efficient implementation
o “Pre-processing”

Peephole optimization, e.g. miniSAT, 2005

Problem Representation
-

o Conjunctive Normal Form

1 Representation of choice for modern SAT solvers

(a+b+c)(a’+b"+c)(a'+b+c')(a+b'+c)

Literals Clauses

Circuit to CNF Conversion

[|
0 Tseitin Transformation
d=(a+b) e=(c-d)
(a+b+d) (c+d +e)
(' +d) (d+e) Consistency conditions
(b’ + d) (c+e)

for circuit variables

B

0 Can ‘e’ ever become true?

Y

Is (e)(a + b + d')(a’+d)(b'+d)(c’+d+e)(d+e’)(ct+e’) satisfiable?

Resolution
-

0 Resolution of a pair of distance-one clauses

9@ @@

R

Resolvent implied by the original clauses

Davis Putham Algorithm
[

M .Davis, H. Putnam, “A computing procedure for quantification
theory", J. of ACM, Vol. 7, pp. 201-214, 1960

0 lterative existential quantification of variables

f (aHBY o(B) ¢ +F) @)+ o) (a+B) (a+@) (@’ +c) (@’ +c) f
\M \; / /

b, (a+@te) @te+h @ @+9@+c) Tb,f
~
Hbyc}, f (ate+f) @\gﬁ I{b,a}, f
SAT 0 Hb,a,c}, f
UNSAT

Potential memory explosion problem!

SAT Solvers: A Condensed History
.

o0 Deductive
Davis-Putnam 1960 [DP]
Iterative existential quantification by “resolution”
o Backtrack Search
Davis, Logemann and Loveland 1962 [DLL]
Exhaustive search for satisfying assignment
01 Conflict Driven Clause Learning [CDCL]
GRASP: Integrate a constraint learning procedure, 1996
0 Locality Based Search

Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

Added focus on efficient implementation
o “Pre-processing”

Peephole optimization, e.g. miniSAT, 2005

Basic DLL Search

(a’+b+c)
(a+c+d)
(atct+d)
(a+c +d)
(at+c +d)
(b’ + ¢’ +d)
(a’+b+c)
(a’+b’+c¢)

M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5:394-397, 1962

Basic DLL Search

(@' +b+c) .

(a+c+d)
(a+c+d)
(a+c +d)
(a+¢ +d")
(b’+ ¢’ +d)
(a’+b+c)
(@’ +b"+¢c)

Basic DLL Search

I

(a+c+d)
(atct+d)
(a+c +d)
(at+c +d)
(b’ + ¢’ +d)

(o]
< Decision

Basic DLL Search

(a+c+d)
(at+c+d)
(a+c +d)
a+c +d

9/ & Decision

Basic DLL Search

9/ & Decision

Basic DLL Search
I

< Unit

Unit Clause Rule

(a+c+d)
Implication Graph

Basic DLL Search
I

< Unit

(a+c+d)
Implication Graph
(atc+d)

Basic DLL Search

(a+c+d)
Implication Graph Conflict!
(atc+d)

Basic DLL Search

— (a+c+d)
— (atc+d)
— (a+c +d)

hnd r+c’+d’|

< Backtrack

Basic DLL Search
I

0 1 < Forced Decision

Basic DLL Search
I

1 < Forced Decision

(a+c +d)

Implication Graph Conflict!

Basic DLL Search

il

(a+c+d)
(atct+d)
(a+c +d)
(at+c +d)
(b’ + ¢’ +d)

< Backtrack

Basic DLL Search
I

(a+c+d)
(a+c+d)
(a+c+d)
(a+c+d)
(b + ¢ +d)

< Backtrack

Basic DLL Search
I

0
(a+c+d)
(a+c+d)
(a+c +d) 0 1 <= Forced Decision
(at+c +d)
(b’+ ¢’ +d)

Basic DLL Search

(a+c+d)
(atc+d)

LilLl

<= Decision

Implication Graph Conflict!

Basic DLL Search

(a+c+d)

(a+c+d)
(a+c +d)
(a+c +d)
(b’ + ¢’ +d) < Backtrack

il

Basic DLL Search
I

1 < Forced Decision

(a+c +d)

Implication Graph Conflict!

Basic DLL Search

Ll

(a’+b+c¢)
(a+c+d)
(atct+d)
(a+c +d)
(at+c +d)
(b’ + ¢’ +d)
(a’+b+c)
(a’+b’+c¢)

< Backtrack

Basic DLL Search
-

(a’+b+c)

< Forced Decision

Ll

(b’+ ¢’ +d)
(o’ +b+c)
(@’ +b"+¢c)

Basic DLL Search
-

1 < Decision

(b’ + ¢ +d)

—
—

(a’+ b’ +¢)
Implication Graph

Basic DLL Search

-(a'+h'+c) (b’ + ¢ +d)

Implication Graph

Basic DLL Search

-(u'+b'+c) (b’ + ¢ +d)

Implication Graph

SAT Solvers: A Condensed History

I I ——
o0 Deductive
o Davis-Putnam 1960 [DP]
O lterative existential quantification by “resolution”
o0 Backtrack Search
o Davis, Logemann and Loveland 1962 [DLL]
O Exhaustive search for satisfying assignment
o1 Conflict Driven Clause Learning [CDCL]
o GRASP: Integrate a constraint learning procedure, 1996
0 Locality Based Search

o Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

o Added focus on efficient implementation
o “Pre-processing”

o Peephole optimization, e.g. miniSAT, 2005

Conflict Driven Learning and

Non-chronological Backtracking
I

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm for
Propositional Satisfiability”, IEEE Trans. Computers, C-48, 5:506-521, 1999.

Conflict Driven Learning and
Non-chronological Backtracking

X1+ [x=]
x1 + x3’ + x8’ //,
x1 + x8 + x12 >

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

O x1=0

Conflict Driven Learning and
Non-chronological Backtracking

X1 4 xa x1=0,xa=1
’
x1 + x3’ + x8’ ’

’
x1 + x8 + x12 >

x2 + x11

x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

O x4=1

x1=0

Conflict Driven Learning and

Non-chronological Backtracking
[|

x1 + x4

x1 + x3’ + x8’ s
x1 + x8 + x12 »
x2 + x11

x7’ + x3' + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

O x4=1

x1=0 () x3=1

Conflict Driven Learning and

Non-chronological Backtracking
[|

x1 + x4

x1 + x3’ + x8’ s
x1 + x8 + x12 »
x2 + x11

x7’ + x3' + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

O x4=1

x8=0

Conflict Driven Learning and

Non-chronological Backtracking
[|

x1 + x4

x1 + x3’ + x8’ s
x1 + x8 + x12 »
x2 + x11

x7’ + x3' + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

O x4=1

Conflict Driven Learning and

Non-chronological Backtracking
[|

x1 + x4

x1 + x3’ + x8’ s
x1 + x8 + x12 »
x2 + x11

x7’ + x3' + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’ .

»

O x4=1

Conflict Driven Learning and

Non-chronological Backtracking
[|

x1 + x4

x1 + x3’ + x8’ s
x1 + x8 + x12 »
x2 + x11

x7’ + x3' + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’ .

»

O x4=1

Conflict Driven Learning and
Non-chronological Backtracking

X1+ xs [x1=0,xa=1 |
x1 + x3’ + x8’ e
x1 + x8 + x12 »
x7’ + x3' + x9 N
x7’ + x8 + x9’ N
x7 + x10 + x12’ ,/
‘/
© xa=1 EECE
\\
4

.ﬁ. x7=1

Conflict Driven Learning and

Non-chronological Backtracking
I I —

1+ xs [x1=0.xa=1 |

x1 + x3’ + x8’ s

x1 + x8 + x12 »

x7’ + x3' + x9 N
x7’ + x8 + x9’ N

x7 + x10 + x12’ ’

Conflict Driven Learning and

Non-chronological Backtracking
I I —

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3' + x9

x7’ + x8 + x9’

x7 + x8 + x10’
x7 + x10 + x12’

Conflict Driven Learning and
Non-chronological Backtracking

X1+ xa [x1=0,xa=1 |
x1 + x3’ + x8’ e
x1 + x8 + x12 »
x7’ + x3' + x9 N
x7’ + x8 + x9’ N
x7 + x10 + x12’ ,/
‘/
\\
4

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x3’ + x8’ e
x1 + x8 + x12 »
x7’ + x3' + x9 N
x7" + x8 + x9’ > x3'+x7'+x8 .
x7 + x10 + x12’ ,/
g [==t |
N
\4

Conflict Driven Learning and

Non-chronological Backtracking
-—

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x7’ + x3’ + x9
X7 + x8 + x9" > x3'+x7’+x8
x7 + x8 + x10’
x7 + x10 + x12’
=1

Conflict Driven Learning and
Non-chronological Backtracking

[|
x1 + x3' + x8’ e
x1 + x8 + x12 »
x7" + x3" + x9
x7" + x8 + x9’ \\

x7 + x8 + x10’
x7 +x10 + x12’
x3' + x7' + x8 «—new clause

O x4=1

x7=0

What's the big deal?
I

Significantly prune the search space —
‘ learned clause is useful forever!
/ \ Useful in generating future conflict
clauses.

[m]

Restart

Abandon the
current search tree /

and reconstruct a \‘. / \
new one
The clauses learned / ~ .

prior to the restart

are still there after / \ / \ .
the restart and can ‘ . / \
help pruning the / \ / \ ’
search space

Adds to robustness ’

in the solver /

SAT Solvers: A Condensed History

I I ——
o0 Deductive
o Davis-Putnam 1960 [DP]
O lterative existential quantification by “resolution”
o0 Backtrack Search
o Davis, Logemann and Loveland 1962 [DLL]
O Exhaustive search for satisfying assignment
o Conflict Driven Clause Learning [CDCL]
o GRASP: Integrate a constraint learning procedure, 1996
o Locality Based Search

o Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

o Added focus on efficient implementation
0 “Pre-processing”

o Peephole optimization, e.g. miniSAT, 2005

Success with Chaff

First major instance: Tough (Industrial Processor Verification)
Bounded Model Checking, 14 cycle behavior
Statistics
1 million variables
10 million literals initially
200 million literals including added clauses
30 million literals finally
4 million clauses (initially)
200K clauses added
1.5 million decisions
3 hour run time

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proc., 38th Design Automation Conference (DAC2001), June 2001.

Chaff Contribution 1: Lazy Data Structures

2 Literal Watching for Unit-Propagation
[|
o Avoid expensive book-keeping for unit-propagation
o N-literal clause can be unit or conflicting only after N-1 of the literals have
been assigned to F
(v1 + v2 + v3): implied cases: (0 + 0 + v3) or (0 + v2 + 0) or (vl + 0 + 0)
o Can completely ignore the first N-2 assignments to this clause
o Pick two literals in each clause to “watch” and thus can ignore any
assignments to the other literals in the clause.
Example: (v1 + v2 + v3 + v4 + v5)
(v1=X+ v2=X + v3=2 {i.e. X or O or 1} + v4=2 + v5=2))
0 Maintain the invariant: If a clause can become newly implied via any

sequence of assignments, then this sequence will include an assignment of
one of the watched literals to F

2 Literal Watching

For every clause, two
literals are watched

o When a variable is assigned

true, only need to visit clauses
where its watched literal is
false (only one polarity)
Pointers from each literal to all
clauses it is watched in
In a n clause formula with v
variables and m literals
Total number of pointers is 2n
On average, visit n/v clauses
per assignment
*No updates to watched
literals on backtrack*

Decision Heuristics — Conventional
Wisdom
-

0 “Assign most tightly constrained variable” : e.g. DLIS (Dynamic
Largest Individual Sum)
Simple and intuitive: At each decision simply choose the assignment that
satisfies the most unsatisfied clauses.
Expensive book-keeping operations required

= Must touch *every* clause that contains a literal that has been set to true.
Often restricted to initial (not learned) clauses.

m Need to reverse the process for un-assignment.
01 Look ahead algorithms even more compute intensive

C. Li, Anbulagan, “Look-ahead versus look-back for satisfiability problems”
Proc. of CP, 1997.

o Take a more “global” view of the problem

Chaff Contribution 2:
Activity Based Decision Heuristics

o VSIDS: Variable State Independent Decaying Sum
Rank variables by literal count in the initial clause database
Only increment counts as new (learnt) clauses are added

Periodically, divide all counts by a constant

o0 Quasi-static:
Static because it doesn’t depend on variable state
Not static because it gradually changes as new clauses are added
m Decay causes bias toward *recent® conflicts.

® Has a beneficial interaction with 2-literal watching

Activity Based Heuristics

and Locality Based Search
-—

o By focusing on a sub-space, the covered spaces tend to coalesce
o More opportunities for resolution since most of the variables are common.

o Variable activity based heuristics lead to locality based search

SAT Solvers: A Condensed History

I I ——
o0 Deductive
o Davis-Putnam 1960 [DP]
O lterative existential quantification by “resolution”
o0 Backtrack Search
o Davis, Logemann and Loveland 1962 [DLL]
O Exhaustive search for satisfying assignment
o Conflict Driven Clause Learning [CDCL]
o GRASP: Integrate a constraint learning procedure, 1996
0 Locality Based Search

o Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

O Added focus on efficient implementation
o “Pre-processing”

o Peephole optimization, e.g. miniSAT, 2005

Pre-Processing of CNF Formulas
-

N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and
Clause Elimination, In Proceedings of SAT 2005

0 Use structural information to simplify
Subsumption
Self-subsumption
Substitution

Pre-Processing: Subsumption
-

0 Clause C, subsumes clause C, if C, implies C,

0 Subsumed clauses can be discarded

Pre-Processing: Self-Subsumption

I I ——
o1 Subsumption after resolution step

(ZT+y+2)

Pre-Processing: Substitution

[]
01 Tseitin transformation introduces definition of variable

Y Dn eles)

(T1+7+2) (T1+Z2+y)- (Y+7+z1) - (y+2z+21)

01 Occurrence of x; can be eliminated by substitution

o1 Corresponds to resolution with defining clauses

(z1 4+ u) . (y<—>z) - (T1+z+y)

\/ um

(u+T7+2) (u+z+y)

Concluding Remarks

SAT: Significant shift from theoretical interest to practical impact.
Quantum leaps between generations of SAT solvers

Successful application of diverse CS techniques

Logic (Deduction and Solving), Search, Caching, Randomization, Data
structures, efficient algorithms

Engineering developments through experimental computer science
Presence of drivers results in maximum progress.

Electronic design automation — primary driver and main beneficiary

Software verification- the next frontier
Opens attack on even harder problems

SMT, Max-SAT, QBF...

Sharad Malik and Lintao Zhang. 2009. Boolean satisfiability from theoretical
hardness to practical success. Commun. ACM 52, 8 (August 2009), 76-82.

References

[GJ79] Michael R. Garey and David S. Johnson, Computers and intractability: A
guide to the theory of NP-completeness, W. H. Freeman and Company, San
Francisco, 1979

[T68] G. Tseitin, On the complexity of derivation in propositional calculus. In Studies
in Constructive Mathematics and Mathematical Logic, Part 2 (1968)

[DP 60] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:201-215, 1960

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394-397, 1962

[SS99] J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm for
Propositional Satisfiability”, IEEE Trans. Computers, C-48, 5:506-521, 1999.

[BS97] R. J. Bayardo Jr. and R. C. Schrag “Using CSP look-back techniques to solve
real world SAT instances.” Proc. AAAI, pp. 203-208, 1997

[BSOO] Luis Baptista and Jodo Marques-Silva, “Using Randomization and Learning
to Solve Hard Real-World Instances of Satisfiability,” In Principles and Practice of
Constraint Programming — CP 2000, 2000.

References

[HO7] J. Huang, “The effect of restarts on the efficiency of clause learning,”
Proceedings of the Twentieth International Joint Conference on Automated
Reasoning, 2007

[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik. Chaff:
Engineering and efficient sat solver. In Proc., 38th Design Automation Conference
(DAC2001), June 2001.

[ZS96] H. Zhang, M. Stickel, “An efficient algorithm for unit-propagation” In
Proceedings of the Fourth International Symposium on Artificial Intelligence and
Mathematics, 1996

[ESO3] N. Een and N. Sorensson. An extensible SAT solver. In SAT-2003

[BO2] F. Bacchus “Exploring the Computational Tradeoff of more Reasoning and Less
Searching”, Proc. 5th Int. Symp. Theory and Applications of Satisfiability Testing, pp.
7-16, 2002.

[GNO2] E.Goldberg and Y.Novikov. BerkMin: a fast and robust SAT-solver. In Proc.,
DATE-2002, pages 142—-149, 2002.

References

[RO4] L. Ryan, Efficient algorithms for clause-learning SAT solvers, M. Sc. Thesis,
Simon Fraser University, 2002.

[EBOS] N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and
Clause Elimination, In Proceedings of SAT 2005

[ZMO3] L. Zhang and S. Malik, Validating SAT solvers using an independent
resolution-based checker: practical implementations and other applications, In
Proceedings of Design Automation and Test in Europe, 2003.

[LSBO7] M. Lewis, T. Schubert, B. Becker, Multithreaded SAT Solving, In Proceedings
of the 2007 Conference on Asia South Pacific Design Automation

[HJSO8] Youssef Hamadi, Said Jabbour, and Lakhdar Sais, ManySat: solver
description, Microsoft Research-TR-2008-83

[B86] R. E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation, IEEE
Transactions on Computers , vol.C-35, no.8, pp.677-691, Aug. 1986

[ZMO9] Sharad Malik and Lintao Zhang. 2009. Boolean satisfiability from
theoretical hardness to practical success. Commun. ACM 52, 8 (August 2009), 76-
82.

