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SAT in a Nutshell
-

o Given a Boolean formula, find a variable assignment such that the
formula evaluates to 1, or prove that no such assignment exists.

F=(a+b)a +b'+c)

01 For n variables, there are 2" possible truth assignments to be checked.

0 First established NP-Complete problem.

S. A. Cook, The complexity of theorem proving procedures, Proceedings, Third
Annual ACM Symp. on the Theory of Computing,1971, 151-158



Where are we today?

Intractability of the problem no longer daunting
Can regularly handle practical instances with millions of
variables and constraints
SAT has matured from theoretical interest to practical
impact
Electronic Design Automation (EDA)
Widely used in many aspects of chip design

Increasing use in software verification

Commercial use at Microsoft, NEC,...
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Where are we today? (contd.)

[ |

o Significant SAT community
Satlive Portal and SAT competitions
SAT Conference

0 Emboldened researchers to take on even harder

problems

Satisfiability Modulo Theories (SMT)
Max-SAT
Quantified Boolean Formulas (QBF)



SAT Solvers: A Condensed History
-

o Deductive
Davis-Putnam 1960 [DP]
lterative existential quantification by “resolution”
o Backtrack Search
Davis, Logemann and Loveland 1962 [DLL]
Exhaustive search for satisfying assignment
01 Conflict Driven Clause Learning [CDCL]
GRASP: Integrate a constraint learning procedure, 1996
0 Locality Based Search

Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

Added focus on efficient implementation
o “Pre-processing”

Peephole optimization, e.g. miniSAT, 2005



Problem Representation
-

o Conjunctive Normal Form

1 Representation of choice for modern SAT solvers

(a+b+c)(a’+b"+c)(a'+b+c')(a+b'+c)

Literals Clauses




Circuit to CNF Conversion

[ |
0 Tseitin Transformation
d=(a+b) e=(c-d)
(a+b+d) (c+d +e)
(' +d) (d+e) Consistency conditions
(b’ + d) (c+e)

for circuit variables

B

0 Can ‘e’ ever become true?

Y

Is (e)(a + b + d')(a’+d)(b'+d)(c’+d+e)(d+e’)(ct+e’) satisfiable?



Resolution
-

0 Resolution of a pair of distance-one clauses

9@ @@

R

Resolvent implied by the original clauses



Davis Putham Algorithm
[

M .Davis, H. Putnam, “A computing procedure for quantification
theory", J. of ACM, Vol. 7, pp. 201-214, 1960

0 lterative existential quantification of variables

f (aHBY o(B) ¢ +F) @)+ o) (a+B) (a+@) (@’ +c) (@’ +c)  f
\M \; / /

b, (a+@te) @te+h @ @+9@+c)  Tb,f
~
Hbyc}, f (ate+f) @\gﬁ I{b,a}, f
SAT 0 Hb,a,c}, f
UNSAT

Potential memory explosion problem!



SAT Solvers: A Condensed History
.

o0 Deductive
Davis-Putnam 1960 [DP]
Iterative existential quantification by “resolution”
o Backtrack Search
Davis, Logemann and Loveland 1962 [DLL]
Exhaustive search for satisfying assignment
01 Conflict Driven Clause Learning [CDCL]
GRASP: Integrate a constraint learning procedure, 1996
0 Locality Based Search

Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

Added focus on efficient implementation
o “Pre-processing”

Peephole optimization, e.g. miniSAT, 2005



Basic DLL Search

(a’+b+c)
(a+c+d)
(atct+d)
(a+c +d)
(at+c +d)
(b’ + ¢’ +d)
(a’+b+c)
(a’+b’+c¢)

M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5:394-397, 1962



Basic DLL Search

(@' +b+c) .

(a+c+d)
(a+c+d)
(a+c +d)
(a+¢ +d")
(b’+ ¢’ +d)
(a’+b+c)
(@’ +b"+¢c)



Basic DLL Search

I

(a+c+d)
(atct+d)
(a+c +d)
(at+c +d)
(b’ + ¢’ +d)

(o]
< Decision



Basic DLL Search

(a+c+d)
(at+c+d)
(a+c +d)
a+c +d

9/ & Decision




Basic DLL Search

9/ & Decision




Basic DLL Search
I

< Unit

Unit Clause Rule

(a+c+d)
Implication Graph



Basic DLL Search
I

< Unit

(a+c+d)
Implication Graph
(atc+d)



Basic DLL Search

(a+c+d)
Implication Graph Conflict!
(atc+d)



Basic DLL Search

— (a+c+d)
— (atc+d)
— (a+c +d)

hnd r+c’+d’|

< Backtrack



Basic DLL Search
I

0 1 < Forced Decision




Basic DLL Search
I

1 < Forced Decision

(a+c +d)

Implication Graph Conflict!




Basic DLL Search

il

(a+c+d)
(atct+d)
(a+c +d)
(at+c +d)
(b’ + ¢’ +d)

< Backtrack



Basic DLL Search
I

(a+c+d)
(a+c+d)
(a+c+d)
(a+c+d)
(b + ¢ +d)

< Backtrack



Basic DLL Search
I

0
(a+c+d)
(a+c+d)
(a+c +d) 0 1 <= Forced Decision
(at+c +d)
(b’+ ¢’ +d)




Basic DLL Search

(a+c+d)
(atc+d)

LilLl

<= Decision

Implication Graph Conflict!




Basic DLL Search

(a+c+d)

(a+c+d)
(a+c +d)
(a+c +d)
(b’ + ¢’ +d) < Backtrack

il




Basic DLL Search
I

1 < Forced Decision

(a+c +d)

Implication Graph Conflict!




Basic DLL Search

Ll

(a’+b+c¢)
(a+c+d)
(atct+d)
(a+c +d)
(at+c +d)
(b’ + ¢’ +d)
(a’+b+c)
(a’+b’+c¢)

< Backtrack



Basic DLL Search
-

(a’+b+c)

< Forced Decision

Ll

(b’+ ¢’ +d)
(o’ +b+c)
(@’ +b"+¢c)




Basic DLL Search
-

1 < Decision

(b’ + ¢ +d)

—
—

(a’+ b’ +¢)
Implication Graph




Basic DLL Search

-(a'+h'+c) (b’ + ¢ +d)

Implication Graph




Basic DLL Search

-(u'+b'+c) (b’ + ¢ +d)

Implication Graph




SAT Solvers: A Condensed History

I I ——
o0 Deductive
o Davis-Putnam 1960 [DP]
O lterative existential quantification by “resolution”
o0 Backtrack Search
o Davis, Logemann and Loveland 1962 [DLL]
O Exhaustive search for satisfying assignment
o1 Conflict Driven Clause Learning [CDCL]
o GRASP: Integrate a constraint learning procedure, 1996
0 Locality Based Search

o Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

o Added focus on efficient implementation
o “Pre-processing”

o Peephole optimization, e.g. miniSAT, 2005



Conflict Driven Learning and

Non-chronological Backtracking
I

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm for
Propositional Satisfiability”, IEEE Trans. Computers, C-48, 5:506-521, 1999.



Conflict Driven Learning and
Non-chronological Backtracking

X1+ [ x= ]
x1 + x3’ + x8’ //,
x1 + x8 + x12 >

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

O x1=0




Conflict Driven Learning and
Non-chronological Backtracking

X1 4 xa x1=0,xa=1
’
x1 + x3’ + x8’ ’

’
x1 + x8 + x12 >

x2 + x11

x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

O x4=1

x1=0




Conflict Driven Learning and

Non-chronological Backtracking
[ |

x1 + x4

x1 + x3’ + x8’ s
x1 + x8 + x12 »
x2 + x11

x7’ + x3' + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

O x4=1

x1=0 () x3=1




Conflict Driven Learning and

Non-chronological Backtracking
[ |

x1 + x4

x1 + x3’ + x8’ s
x1 + x8 + x12 »
x2 + x11

x7’ + x3' + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

O x4=1

x8=0




Conflict Driven Learning and

Non-chronological Backtracking
[ |

x1 + x4

x1 + x3’ + x8’ s
x1 + x8 + x12 »
x2 + x11

x7’ + x3' + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

O x4=1




Conflict Driven Learning and

Non-chronological Backtracking
[ |

x1 + x4

x1 + x3’ + x8’ s
x1 + x8 + x12 »
x2 + x11

x7’ + x3' + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’ .

»

O x4=1




Conflict Driven Learning and

Non-chronological Backtracking
[ |

x1 + x4

x1 + x3’ + x8’ s
x1 + x8 + x12 »
x2 + x11

x7’ + x3' + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’ .

»

O x4=1




Conflict Driven Learning and
Non-chronological Backtracking

X1+ xs [ x1=0,xa=1 |
x1 + x3’ + x8’ e
x1 + x8 + x12 »
x7’ + x3' + x9 N
x7’ + x8 + x9’ N
x7 + x10 + x12’ ,/
‘/
© xa=1 EECE
\\
4

.ﬁ. x7=1




Conflict Driven Learning and

Non-chronological Backtracking
I I —

1+ xs [x1=0.xa=1 |

x1 + x3’ + x8’ s

x1 + x8 + x12 »

x7’ + x3' + x9 N
x7’ + x8 + x9’ N

x7 + x10 + x12’ ’




Conflict Driven Learning and

Non-chronological Backtracking
I I —

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3' + x9

x7’ + x8 + x9’

x7 + x8 + x10’
x7 + x10 + x12’




Conflict Driven Learning and
Non-chronological Backtracking

X1+ xa [ x1=0,xa=1 |
x1 + x3’ + x8’ e
x1 + x8 + x12 »
x7’ + x3' + x9 N
x7’ + x8 + x9’ N
x7 + x10 + x12’ ,/
‘/
\\
4




Conflict Driven Learning and
Non-chronological Backtracking

x1 + x3’ + x8’ e
x1 + x8 + x12 »
x7’ + x3' + x9 N
x7" + x8 + x9’ > x3'+x7'+x8 .
x7 + x10 + x12’ ,/
g [ ==t |
N
\4




Conflict Driven Learning and

Non-chronological Backtracking
-—

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x7’ + x3’ + x9
X7 + x8 + x9" > x3'+x7’+x8
x7 + x8 + x10’
x7 + x10 + x12’
=1




Conflict Driven Learning and
Non-chronological Backtracking

[ |
x1 + x3' + x8’ e
x1 + x8 + x12 »
x7" + x3" + x9
x7" + x8 + x9’ \\

x7 + x8 + x10’
x7 +x10 + x12’
x3' + x7' + x8 «—new clause

O x4=1

x7=0



What's the big deal?
I

Significantly prune the search space —
‘ learned clause is useful forever!
/ \ Useful in generating future conflict
clauses.



[m]

Restart

Abandon the
current search tree /

and reconstruct a \‘. / \
new one
The clauses learned / ~ .

prior to the restart

are still there after / \ / \ .
the restart and can ‘ . / \
help pruning the / \ / \ ’
search space

Adds to robustness ’

in the solver /



SAT Solvers: A Condensed History

I I ——
o0 Deductive
o Davis-Putnam 1960 [DP]
O lterative existential quantification by “resolution”
o0 Backtrack Search
o Davis, Logemann and Loveland 1962 [DLL]
O Exhaustive search for satisfying assignment
o Conflict Driven Clause Learning [CDCL]
o GRASP: Integrate a constraint learning procedure, 1996
o Locality Based Search

o Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

o Added focus on efficient implementation
0 “Pre-processing”

o Peephole optimization, e.g. miniSAT, 2005



Success with Chaff

First major instance: Tough (Industrial Processor Verification)
Bounded Model Checking, 14 cycle behavior
Statistics
1 million variables
10 million literals initially
200 million literals including added clauses
30 million literals finally
4 million clauses (initially)
200K clauses added
1.5 million decisions
3 hour run time

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proc., 38th Design Automation Conference (DAC2001), June 2001.



Chaff Contribution 1: Lazy Data Structures

2 Literal Watching for Unit-Propagation
[ |
o Avoid expensive book-keeping for unit-propagation
o N-literal clause can be unit or conflicting only after N-1 of the literals have
been assigned to F
(v1 + v2 + v3): implied cases: (0 + 0 + v3) or (0 + v2 + 0) or (vl + 0 + 0)
o Can completely ignore the first N-2 assignments to this clause
o Pick two literals in each clause to “watch” and thus can ignore any
assignments to the other literals in the clause.
Example: (v1 + v2 + v3 + v4 + v5)
(v1=X+ v2=X + v3=2 {i.e. X or O or 1} + v4=2 + v5=2))
0 Maintain the invariant: If a clause can become newly implied via any

sequence of assignments, then this sequence will include an assignment of
one of the watched literals to F



2 Literal Watching

For every clause, two
literals are watched

o When a variable is assigned

true, only need to visit clauses
where its watched literal is
false (only one polarity)
Pointers from each literal to all
clauses it is watched in
In a n clause formula with v
variables and m literals
Total number of pointers is 2n
On average, visit n/v clauses
per assignment
*No updates to watched
literals on backtrack*



Decision Heuristics — Conventional
Wisdom
-

0 “Assign most tightly constrained variable” : e.g. DLIS (Dynamic
Largest Individual Sum)
Simple and intuitive: At each decision simply choose the assignment that
satisfies the most unsatisfied clauses.
Expensive book-keeping operations required

= Must touch *every* clause that contains a literal that has been set to true.
Often restricted to initial (not learned) clauses.

m Need to reverse the process for un-assignment.
01 Look ahead algorithms even more compute intensive

C. Li, Anbulagan, “Look-ahead versus look-back for satisfiability problems”
Proc. of CP, 1997.

o Take a more “global” view of the problem



Chaff Contribution 2:
Activity Based Decision Heuristics

o VSIDS: Variable State Independent Decaying Sum
Rank variables by literal count in the initial clause database
Only increment counts as new (learnt) clauses are added

Periodically, divide all counts by a constant

o0 Quasi-static:
Static because it doesn’t depend on variable state
Not static because it gradually changes as new clauses are added
m Decay causes bias toward *recent® conflicts.

® Has a beneficial interaction with 2-literal watching



Activity Based Heuristics

and Locality Based Search
-—

o By focusing on a sub-space, the covered spaces tend to coalesce
o More opportunities for resolution since most of the variables are common.

o Variable activity based heuristics lead to locality based search



SAT Solvers: A Condensed History

I I ——
o0 Deductive
o Davis-Putnam 1960 [DP]
O lterative existential quantification by “resolution”
o0 Backtrack Search
o Davis, Logemann and Loveland 1962 [DLL]
O Exhaustive search for satisfying assignment
o Conflict Driven Clause Learning [CDCL]
o GRASP: Integrate a constraint learning procedure, 1996
0 Locality Based Search

o Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

O Added focus on efficient implementation
o “Pre-processing”

o Peephole optimization, e.g. miniSAT, 2005



Pre-Processing of CNF Formulas
-

N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and
Clause Elimination, In Proceedings of SAT 2005

0 Use structural information to simplify
Subsumption
Self-subsumption
Substitution



Pre-Processing: Subsumption
-

0 Clause C, subsumes clause C, if C, implies C,

0 Subsumed clauses can be discarded




Pre-Processing: Self-Subsumption

I I ——
o1 Subsumption after resolution step

(ZT+y+2)




Pre-Processing: Substitution

[ ]
01 Tseitin transformation introduces definition of variable

Y Dn eles)

(T1+7+2) (T1+Z2+y)- (Y+7+z1) - (y+2z+21)

01 Occurrence of x; can be eliminated by substitution

o1 Corresponds to resolution with defining clauses

(z1 4+ u) . (y<—>z) - (T1+z+y)

\/ um

(u+T7+2) (u+z+y)



Concluding Remarks

SAT: Significant shift from theoretical interest to practical impact.
Quantum leaps between generations of SAT solvers

Successful application of diverse CS techniques

Logic (Deduction and Solving), Search, Caching, Randomization, Data
structures, efficient algorithms

Engineering developments through experimental computer science
Presence of drivers results in maximum progress.

Electronic design automation — primary driver and main beneficiary

Software verification- the next frontier
Opens attack on even harder problems

SMT, Max-SAT, QBF...

Sharad Malik and Lintao Zhang. 2009. Boolean satisfiability from theoretical
hardness to practical success. Commun. ACM 52, 8 (August 2009), 76-82.
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