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SAT in a Nutshell

� Given a Boolean formula, find a variable assignment such that the 
formula evaluates to 1, or prove that no such assignment exists.

� For n variables, there are 2n possible truth assignments to be checked.

� First established NP-Complete problem.

S. A. Cook, The complexity of theorem proving procedures, Proceedings, Third 
Annual ACM Symp. on the Theory of Computing,1971, 151-158
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Where are we today?

� Intractability of the problem no longer daunting
� Can regularly handle practical instances with millions of 

variables and constraints

� SAT has matured from theoretical interest to practical 
impact
� Electronic Design Automation (EDA)

� Widely used in many aspects of chip design

� Increasing use in software verification
� Commercial use at Microsoft, NEC,�







Where are we today? (contd.)

� Significant SAT community
� SatLive Portal and SAT competitions

� SAT Conference

� Emboldened researchers to take on even harder 
problems
� Satisfiability Modulo Theories (SMT) 

� Max-SAT

� Quantified Boolean Formulas (QBF)



SAT Solvers: A Condensed History

� Deductive 

� Davis-Putnam 1960 [DP]

� Iterative existential quantification by �resolution�

� Backtrack Search

� Davis, Logemann and Loveland 1962 [DLL]

� Exhaustive search for satisfying assignment

� Conflict Driven Clause Learning [CDCL]

� GRASP: Integrate a constraint learning procedure, 1996

� Locality Based Search

� Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and 
others, 2001 onwards

� Added focus on efficient implementation

� �Pre-processing�

� Peephole optimization, e.g. miniSAT, 2005



Problem Representation

� Conjunctive Normal Form
� Representation of choice for modern SAT solvers

(a+b+c)(a�+b�+c)(a�+b+c�)(a+b�+c�)

Variables ClausesLiterals



Circuit to CNF Conversion

� Tseitin Transformation

� Can �e� ever become true?

a
b

d e

c

(a + b + d�)
(a� + d)
(b� + d)

d ≡ (a + b)
(c� + d� + e)
(d + e�)
(c + e�)

e ≡ (c ⋅ d)

Is (e)(a + b + d�)(a�+d)(b�+d)(c�+d+e)(d+e�)(c+e�) satisfiable?

Consistency conditions 
for circuit variables



a + b + g + h�

Resolution

� Resolution of a pair of distance-one clauses

(a + b + c� + f) (g + h� + c + f)

Resolvent implied by the original clauses

+f



(a + b) (a + b�) (a� + c) (a� + c�)

Davis Putnam Algorithm

M .Davis, H. Putnam, �A computing procedure for quantification 
theory", J. of ACM, Vol. 7, pp. 201-214, 1960

� Iterative existential quantification of variables

(a + b + c) (b + c� + f�) (b� + e)

(a + c + e) (c� + e + f)

(a + e + f)

(a� + c) (a� + c�)

(c) (c�)

( )SAT
UNSAT

(a)

Potential memory explosion problem!

∃b, f
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∃{b,c}, f

∃b, f

f

∃{b,a}, f

∃{b,a,c}, f



SAT Solvers: A Condensed History

� Deductive 

� Davis-Putnam 1960 [DP]

� Iterative existential quantification by �resolution�

� Backtrack Search

� Davis, Logemann and Loveland 1962 [DLL]

� Exhaustive search for satisfying assignment

� Conflict Driven Clause Learning [CDCL]

� GRASP: Integrate a constraint learning procedure, 1996

� Locality Based Search

� Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and 
others, 2001 onwards

� Added focus on efficient implementation

� �Pre-processing�

� Peephole optimization, e.g. miniSAT, 2005



Basic DLL Search

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

M. Davis, G. Logemann, and D. Loveland. A machine program for 
theorem-proving. Communications of the ACM, 5:394�397, 1962
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Basic DLL Search

a
0

(a + c + d)
(a + c + d�)

(a + c� + d)
(a + c� + d�)

(a� + b + c)

(b� + c� + d)
(a� + b + c�)
(a� + b� + c)

b

0

c

0

d=1

c=0

(a + c + d)
a=0

Implication Graph

⇐ Unit→
→

d=1

Unit Clause Rule



Basic DLL Search
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Basic DLL Search
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Basic DLL Search
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Basic DLL Search
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Basic DLL Search
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Basic DLL Search
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SAT Solvers: A Condensed History

� Deductive 

� Davis-Putnam 1960 [DP]

� Iterative existential quantification by �resolution�

� Backtrack Search

� Davis, Logemann and Loveland 1962 [DLL]

� Exhaustive search for satisfying assignment

� Conflict Driven Clause Learning [CDCL]

� GRASP: Integrate a constraint learning procedure, 1996

� Locality Based Search

� Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and 
others, 2001 onwards

� Added focus on efficient implementation

� �Pre-processing�

� Peephole optimization, e.g. miniSAT, 2005



Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4

x1 + x3� + x8�

x1 + x8 + x12

x2 + x11

x7� + x3� + x9

x7� + x8 + x9�

x7 + x8 + x10�

x7 + x10 + x12�

J. P. Marques-Silva and Karem A. Sakallah, �GRASP: A Search Algorithm for 
Propositional Satisfiability�, IEEE Trans. Computers, C-48, 5:506-521, 1999.



Conflict Driven Learning and
Non-chronological Backtracking
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Conflict Driven Learning and
Non-chronological Backtracking
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Conflict Driven Learning and
Non-chronological Backtracking
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Conflict Driven Learning and
Non-chronological Backtracking
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Conflict Driven Learning and
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Conflict Driven Learning and
Non-chronological Backtracking
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Conflict Driven Learning and
Non-chronological Backtracking
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Conflict Driven Learning and
Non-chronological Backtracking
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Conflict Driven Learning and
Non-chronological Backtracking
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Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
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x2 + x11
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x1=0, x4=1

x3=1, x8=0, x12=1
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Conflict Driven Learning and
Non-chronological Backtracking
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x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1
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Add conflict clause: x3�+x7�+x8

x3=1∧x7=1∧x8=0 → conflict



Backtrack to the decision level of x3=1

Conflict Driven Learning and
Non-chronological Backtracking
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Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�
x3� + x7� + x8

x1

x3

x1=0, x4=1

x3=1, x8=0, x12=1,x7=0

Backtrack to the decision level of x3=1
Assign x7 = 0

x4=1

x12=1

x3=1

x8=0

x1=0

←new clause

x7=0



What’s the big deal?

Conflict clause: x1�+x3+x5�

Significantly prune the search space �
learned clause is useful forever!

Useful in generating future conflict
clauses.

x1

x2

x3x3

x4 x4

x5x5x5 x5



Restart

� Abandon the 
current search tree 
and reconstruct a 
new one

� The clauses learned 
prior to the restart 
are still there after 
the restart and can 
help pruning the 
search space

� Adds to robustness 
in the solver

x2

x1

x4

x3

x4

x3

x5x5x5x5

Conflict clause: x1�+x3+x5�

x2

x1

x3

x5



SAT Solvers: A Condensed History

� Deductive 

� Davis-Putnam 1960 [DP]

� Iterative existential quantification by �resolution�

� Backtrack Search

� Davis, Logemann and Loveland 1962 [DLL]

� Exhaustive search for satisfying assignment

� Conflict Driven Clause Learning [CDCL]

� GRASP: Integrate a constraint learning procedure, 1996

� Locality Based Search

� Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and 
others, 2001 onwards

� Added focus on efficient implementation

� �Pre-processing�

� Peephole optimization, e.g. miniSAT, 2005



Success with Chaff

� First major instance: Tough (Industrial Processor Verification)
� Bounded Model Checking, 14 cycle behavior

� Statistics
� 1 million variables

� 10 million literals initially
� 200 million literals including added clauses

� 30 million literals finally

� 4 million clauses (initially)
� 200K clauses added

� 1.5 million decisions

� 3 hour run time

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik. Chaff: Engineering an 
efficient SAT solver. In Proc., 38th Design Automation Conference (DAC2001), June 2001.



Chaff Contribution 1: Lazy Data Structures
2 Literal Watching for Unit-Propagation

� Avoid expensive book-keeping for unit-propagation

� N-literal clause can be unit or conflicting only after N-1 of the literals have 
been assigned to F

� (v1 + v2 + v3): implied cases: (0 + 0 + v3) or (0 + v2 + 0) or (v1 + 0 + 0)

� Can completely ignore the first N-2 assignments to this clause

� Pick two literals in each clause to �watch� and thus can ignore any 
assignments to the other literals in the clause. 

� Example: (v1 + v2 + v3 + v4 + v5)

� ( v1=X + v2=X + v3=? {i.e. X or 0 or 1} + v4=? + v5=? )

� Maintain the invariant: If a clause can become newly implied via any 
sequence of assignments, then this sequence will include an assignment of 
one of the watched literals to F



2 Literal Watching

-V1 V3 V5 V6 -V7

V2 V4 V6

-V1 V4 -V7 V11 V12 V15

-V1 V3 V4 -V5 V6

-V3 V2 -V5 -V6

-V2 -V3 V11 V12 V13 V15

V1

V2

+

-

+

-

For every clause, two 
literals are watched

� When a variable is assigned 
true, only need to visit clauses 
where its watched literal is 
false (only one polarity)
� Pointers from each literal to all 

clauses it is watched in

� In a n clause formula with v
variables and m literals
� Total number of pointers is 2n
� On average, visit n/v clauses 

per assignment 

� *No updates to watched 
literals on backtrack*



Decision Heuristics –Conventional 
Wisdom

� �Assign most tightly constrained variable� : e.g. DLIS (Dynamic 
Largest Individual Sum)
� Simple and intuitive: At each decision simply choose the assignment that 

satisfies the most unsatisfied clauses.

� Expensive book-keeping operations required
� Must touch *every* clause that contains a literal that has been set to true. 

Often restricted to initial (not learned) clauses.

� Need to reverse the process for un-assignment.

� Look ahead algorithms even more compute intensive
C. Li, Anbulagan, �Look-ahead versus look-back for satisfiability problems� 
Proc. of CP, 1997. 

� Take a more �global� view of the problem



Chaff Contribution 2:
Activity Based Decision Heuristics

� VSIDS: Variable State Independent Decaying Sum
� Rank variables by literal count in the initial clause database

� Only increment counts as new (learnt) clauses are added

� Periodically, divide all counts by a constant

� Quasi-static:
� Static because it doesn�t depend on variable state

� Not static because it gradually changes as new clauses are added

� Decay causes bias toward *recent* conflicts.

� Has a beneficial interaction with 2-literal watching



Activity Based Heuristics
and Locality Based Search

� By focusing on a sub-space, the covered spaces tend to coalesce

� More opportunities for resolution since most of the variables are common.

� Variable activity based heuristics lead to locality based search



SAT Solvers: A Condensed History

� Deductive 

� Davis-Putnam 1960 [DP]

� Iterative existential quantification by �resolution�

� Backtrack Search

� Davis, Logemann and Loveland 1962 [DLL]

� Exhaustive search for satisfying assignment

� Conflict Driven Clause Learning [CDCL]

� GRASP: Integrate a constraint learning procedure, 1996

� Locality Based Search

� Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and 
others, 2001 onwards

� Added focus on efficient implementation

� �Pre-processing�

� Peephole optimization, e.g. miniSAT, 2005



Pre-Processing of CNF Formulas

N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and 
Clause Elimination, In Proceedings of SAT 2005

� Use structural information to simplify
� Subsumption

� Self-subsumption

� Substitution



Pre-Processing: Subsumption

� Clause C1 subsumes clause C2 if C1 implies C2

� Subsumed clauses can be discarded



Pre-Processing: Self-Subsumption

� Subsumption after resolution step



Pre-Processing: Substitution

� Tseitin transformation introduces definition of variable

� Occurrence of x1 can be eliminated by substitution
� Corresponds to resolution with defining clauses



Concluding Remarks

� SAT: Significant shift from theoretical interest to practical impact.

� Quantum leaps between generations of SAT solvers

� Successful application of diverse CS techniques
� Logic (Deduction and Solving), Search, Caching, Randomization, Data 

structures, efficient algorithms

� Engineering developments through experimental computer science

� Presence of drivers results in maximum progress.
� Electronic design automation � primary driver and main beneficiary

� Software verification- the next frontier

� Opens attack on even harder problems
� SMT, Max-SAT, QBF�

Sharad Malik and Lintao Zhang. 2009. Boolean satisfiability from theoretical 
hardness to practical success. Commun. ACM 52, 8 (August 2009), 76-82.
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