Lecture 17b:
Bounded Model Checking. Elements of Abstract Interpretation

Viktor Kuncak



Bounded Model Checking and k-Induction



Concrete program semantics and verification

For each program there is a (monotonic, w-continuous) function F : C" — C" such that

& =JF@©....0

i>0

describes the set of reachable states for each program point.
(Safety) verification can be stated as saying that the semantics remains within the set of good
states G, that is ¢, C G, or

UF®....00)cc
i>0

which is equivalent to
Vn. F"(@,...,0) C G



Unfolding for Counterexamples: Bounded Model Checking

Vn. F"(0,...,0) C G
The above condition is false iff there exists kK and ¢ € C" such that
ceFXO0,....0)AC¢ G

For a fixed k this can often be expressed as a quantifier-free formula.

Example: replace a loop ([c]s)  [!c] with finite unrolding ([c]s)¥[!c]
Specifically, for n=1, S =72, C =2°, and F : C — C describes the program:
x=0;while(*)x=x+y

F(B) ={(x,y) | x=0}U{(x+y,y) | (x,y) € B}
We have F(0) = {(x,y) | x =0} = {(0,y) | y € Z}
F>(0) ={(0,y) |y € ZYyU{(y,y) | y € Z}

F30)={(x,y) [ x=0Vx=yVx=2xy}



Formula for Bounded Model Checking

Let Pg(x,y) be a formula in Presburger arithmetic such that B = {(x, y) | Ps(x,y)} then the
formula
x =0V (Ixo,Yo.x =x0+ Yo ANy = yo A Ps(x0,)0))

describes F(B). Suppose the set FX(B) can be described by a PA formula Py. If G is given by
a formula Pg then the program can reach error in k steps iff

Pi N —Pg

is satisfiable.
Suppose Pg is x < y. For k = 3 we obtain

(x=0Vx=yVx=2xy)A=(x<y)

By checking satisfiability of the formula we obtain counterexample values x = —1,y = —2.



Bounded Model Checking Algorithm

B=10
while (%) {
checksat(!(B C G)) match
case Assignment(v) => return Counterexample(v)
case Unsat =>
B’ = F(B)
if (B’ C B) return Valid
else B=FB’
}

Good properties
P> subsumes testing up to given depth for all possible initial states
» for a buggy program k, can be small, tools can find many bugs fast

» a semi-decision procedure for finding all error inputs



Bounded Model Checking is Bounded

Bad properties
» can prove correctness only if F™1(()) = F"(() for a finite n
» errors after initializations of long arrays require unfolding for large n. This program requires
unfolding past all loop iterations, even if the property does not depend on the loop:

i=0

z=20

while (i < 1000) {
a(i)=0

y=1/z

» For large k formula FX becomes large, so deep bugs are hard to find



Unfolding for Proving Correctness: k-Induction

Goal:  Vn. F"(0,...,0) C G

Suppose that, for some k > 1
FK(G)C G

By induction on p, for every p > 1,
FPK(G)C G

By monotonicity of F, if n < pk then
Fr(D) € FP(D) C FPX(G) < G

Therefore, (1) holds.
Algorithm: check (2) for increasing k € {1,2,...}



Summary: Using F¥ for Proofs and Counterexamples

Exact semantics is: |J,>o Fr(0)
Specification is G
If for some k:
> —(FK(0) C G) then we prove that specification does not hold (and there is a “k-step”
execution in G C FK()) showing this)
> FK(G) C G, then we prove that specification holds by showing that it holds in all base
cases up to k and assuming it holds for all recursive steps at depth k and deeper
(k-induction)
Least fixedpoint of FX is the same as least fixedpoint of F: F(()) C F¥(0), so | J gives same
result as sequences are monotonic.
Each F* defines the program with the meaning same as F but syntactically more obvious as k
grows and we unfold more.



k-induction Algorithm

For monotonic F, prove or find counterexample for:

Vn. F7(0,...,0)C G

Fk=F
while (x) {
checksat(!(Fk(G) C G)) match
case Unsat => return Valid
case Assignment(v0) =>
checksat(!(Fk(0) C G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fko F’ // unfold one more

}

F'(c) can be F(c) or, thanks to previous checks, F(c) N G
Save work: preserve solver state in checksats across different k
Lucky test: if (!(/fp(F)(initState(v0)) C G)) return Counterexample(v0)



Explanation for Sequences in k-Induction

=l

C F(D), so Fi(B) C F1((). We have an ascending sequence:

0 C F@)C FX@)C...C Fi(D) C FHYD) C ...

In general, it need not be G C F(G) nor F(G) C
Define F'(c) = F(c) N G. Clearly F'(c) C F(c). Moreover,

caaCo— F/(Cl) - F/(Cg)

F(G)=F(G)NGCG

So F’ is monotonic and F/(G) C G. We have descending sequence:

L C(F)*HG) S (F)(6) S ...CF(G) C

G



Divergence in k-Induction

Fk=F
while (x) {
checksat(!(Fk(G) C G)) match
case Unsat => return Valid
case Assignment(v0) =
checksat(!(Fk(0) C G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fko F' // unfold one more

}

Subsumes bounded model checking, so finds all counterexamples
But, it often cannot find proofs when Ifp(F) C G. G may be too weak to be inductive,
(F)"(G) may remain too weak:

F"(D) < Ifp(F) < (F')(G) € F"(G)

Need weakening of F"({)) or strengthening of (F')"(G)



Approximate Postconditions

Suppose we did not find counterexample yet and we have sequence
cogclg...ckg G

where ¢; = Fi(()), so F(¢;) = ciy1
Instead of simply increasing k, we try to obtain larger values by finding another sequence a;
satisfying a; C a;41 and

F(ai) € a1

for 0 < i < k, and with a, C G.
co C ag and, by induction, ¢; C a;
If a;11 = a; for some i, then F(a;) = a; so

Ifp(F) Cai CaxC G

so we have proven Ifp(F) C G, i.e., program satisfies spec.
We can also dually require a;_1 C F(a;), ensuring a; C F*~/(G).



Abstract Interpretation

A Method for Constructing Inductive Invariants



Basic idea of abstract interpretation

Abstract interpretation is a way to infer properties of program computations.
Consider the assignment: z = x + y.

Interpreter:
x: 10 B x 10
y:=2 =, y:—=2
z:3 z:8
Abstract interpreter:
x € [0,10] B x € [0,10]
ye [-55| =5 | ye [-55]
ze [0,10] ze [-5,15]

Each abstract state represents a set of concrete states



Program Meaning is a Fixpoint. We Approximate It.

C: Concrete domain A: Abstract domain

approx. of
fixpoint

monotonic

function

approx. of

Initial state N initial state

~ maps abstract states to concrete states



Proving through Fixpoints of Approximate Functions

Meaning of a program (e.g. a relation) is a least fixpoint of F.
Given specification s, the goal is to prove Ifp(F) C's

> if F(s) C s then Ifp(F) C s and we are done

> Ifp(F) = U0 F¥(D), but that is too hard to compute because it is infinite union unless, by some
luck, F™*1(@) = F" for some n

Instead, we search for an inductive strengthening of s: find s’ such that:
> F(s’)C s’ (s isinductive). If so, theorem says Ifp(F) C s
> ' Cs (s’ implies the desired specification). Then Ifp(F) C s’ Cs
How to find s'? Iterating F is hard, so we try some simpler function Fyu
> suppose Fy is approximation: F(r) C Fu(r) for all r
> we can find s’ such that: Fu(s') Cs' (e.g. s = F"(0) = FZ(0))

Then: F(s') C Fu(s')Cs' Cs
Abstract interpretation: automatically construct Fx from F (and sometimes s)



Programs as control-flow graphs

/ One possible corresponding control-flow graph is:
a
i=0;
//b
while (i < 10) {
//d
if (i >1)
//e
i=i4+ 3
else
//f
=i+ 2
//8
}
//c



Programs as control-flow graphs

/ One possible corresponding control-flow graph is:
a
i=0;
//b
while (i < 10) {
//d
if (i >1)
/e
i=i4+ 3
else
//f
=i+ 2
//8
}
//c




Sets of states at each program point

Suppose that
P> program state is given by the value of the integer variable i
P initially, it is possible that i has any value

Compute the set of states at each vertex in the CFG.

//a
i =0;
//b
while (i < 10) {
//d
if i >1)
//e
i=i+3
else
//f
=i+ 2
//8
}
//c




Sets of states at each program point

Suppose that
P> program state is given by the value of the integer variable i
P initially, it is possible that i has any value

Compute the set of states at each vertex in the CFG.

//a @Z\
i =0; i=0
//b [i > 10]

while (i < 10) { {0,2,5,8,11}
//d <o
if (i >1)
//e
i=i43; {O.[’?élsl}
else
//f /@ o
=14+ 2;
I=i+2
} //g {2,578.;;}

//c



Sets of states at each program point

Running the Program
One way to describe the set of states for each program point: for each initial state, run the
CFG with this state and insert the modified states at appropriate points.

Reachable States as A Set of Recursive Equations
If ¢ is the label on the edge of the graph, let p(c) denotes the relation between initial and final
state that describes the meaning of statement. For example,

p(i =0) ={(i,7") [ " = 0}
oli=i+2) = (i) |7 =i +2)
p(i=i+3)={0,i")|i"=i+3}
p([i <10]) ={(i,i") | " =iAi<10}



Sets of states at each program point

We will write T(S, c) (transfer function) for the image of set S under relation p(c). For
example,
T({10,15,20},i = i +2) = {12,17,22}

General definition can be given using the notion of strongest postcondition

T(S,¢) =sp(S, p(c))

If [p] is a condition (assume(p), coming from 'if" or 'while’) then

T(S,[p]) ={x€S|p}

If an edge has no label, we denote it skip. So, T(S, skip) = S.



Reachable States as A Set of Recursive Equations

Now we can describe the meaning of our program using recursive equations:

i=0

S(a)=4...,-2,-1,0,1,2,...} [:210]@{11}
S(b) = T(S5(a),i =0)U T(S(g), skip) {0,2,5,8,11}
S5(c) = T(S(b), [~(i < 10)]) i=9
S(d) = T(S(b),[i < 10]) _ {0.2,5.8)
S(e) = T(S(d),[i > 1]) (=2 =1l
5(f) = T(5(d), [-(i > 1)]) )
Sg) = T(S(e).i =i +3) o~

UT(S(f),i=1i+2) e {2f5fsl,1+1}

Our solution is the unique least solution of these equations. Can be computed by iterating starting from
empty sets as initial solution.

The problem: These exact equations are as difficult to compute as running the program on all possible
input states. Instead, we consider approximate descriptions of these sets of states.



A Large Analysis Domain: All Intervals of Integers

For every L, U € Z interval:
{x|L<xAx< U}

This domain has infinitely many elements, but is already an approximation of all possible sets of
integers.



Smaller Domain: Finitely Many Intervals

We continue with the same example but instead of allowing to denote all possible sets, we will allow sets
represented by expressions

[L, U]

which denote the set {x | L < x A x < U}.
Example: [0,127] denotes integers between 0 and 127,

» [ is the lower bound and U is the upper bound, with L < U.

» to ensure that we have only a few elements, we let

L, U € {MININT,—128,1,0,1,127, MAXINT}
> [MININT, MAXINT] denotes all possible integers, denote it T
> instead of writing [1,0] and other empty sets, we will always write L

So, we only work with a finite number of sets 1 + (;) =22.
Denote the family of these sets by D (domain).



New Set of Recursive Equations
We want to write the same set of equations as before, but because we have only a finite
number of sets, we must approximate. We approximate sets with possibly larger sets.

S#*a)=T
S#(b) = T#(5%(a),i = 0)
U T#(S5%(g), skip)
S#(c) = T#(S (b),[ﬂ(i < 10)])
( ) = T#(S#(b),[i < 10])
5%(e) = T#(S#( ),[i >1])
S#(f) = T#(S#(d), [-(i > 1)])
S#(g) = T#(S7(e),i =i +3)
)

)
U T#(S#(f),i=i+2

> S; LIS, denotes the approximation of S; U Sy: it is the set that contains both $; and 5o,
that belongs to D, and is otherwise as small as possible. Here
[a, b] U [c, d] = [min(a, c), max(b, d)]

» We use approximate functions T#(S, c) that give a result in D.



Updating Sets

We solve the equations by starting in the initial state and repeatedly applying them.
» in the 'entry’ point, we put T, in all others we put L.

S#(c) = T#(5#(b), [~(i < 10)])
S#(d) = T#(S#(b), [i < 10])
5% (e) = T#(S%(d),[i > 1])
S#(f) = T#(S%(d),[-(i > 1))
S#(g) = T#(S*(e),i=i+3)
U TH#(S#(F),i = i +2)




Updating Sets

Sets after a few iterations:

i
®\_ )
[i >10]
1
[0,0] @
[i <9

S#*a)=T
S#(b) = T#(5%(a),i =0)
LU T#(5%(g), skip)

S#(c) = T#(5#(b).[-(i < 10)])

S#(d) = T#(S#(b),[i < 10]) [0,0]

S*(e) = T#(S*(d),[i > 1)) [Fi=1]

S#(f) = T#(S5#(d), [-(i > 1)])

S#(g) = TH#(S*(e),i=i+3) [0.0]
U TH(SH#(f),i=i+2) i

2.2]



Updating Sets

Sets after a few more iterations:

i
®\_ )
[i > 10]
1
[0,2] @
[i <9

S#*a)=T
S#(b) = T#(5%(a),i =0)
LU T#(5%(g), skip)

S#(c) = T#(5#(b).[-(i < 10)])

S#(d) = T#(S#(b),[i < 10]) [0,2]

S*(e) = T#(S*(d),[i > 1)) [Fi=1]

S#(f) = T#(S5#(d), [-(i > 1)])

S*(g) = T#(S*(e),i=i+3) [0.1]
U TH(SH#(f),i=i+2) i

(2,5]



Fixpoint Found

Final values of sets:

S#*a)=T

S#(b) = T#(S%(a),i = 0)
U T#(S5%(g), skip)

S#(c) = T#(S

S#(d) = T#(S

S#(e) = T#(S*(d

S#(f) = T#(S7(d

S*(g) = T#(
U T#(

If we map intervals to sets, this is also solution of the original constraints.



Automatically Constructed Hoare Logic Proof

Final values of sets:

//a: true
i=0;
//b:0<i<12
while (i < 10) {
//d:0<i<9
if (i >1)
JJe2<i<9
i=i+3
else
J/f0<i<1
i=i+ 2
//g:2<i<12
}
//c10<i <12

This method constructed a sufficiently annotated program and ensured that all Hoare triples
that were constructed hold



