
Semantics and Verification of Loops and Recursion
Quantifier Elimination

Viktor Kunčak

Semantics of a Program with a Loop
Compute and simplify relation for this program:
x = 0
while (y > 0) {

x = x + y
y = y − 1

}

ρ(x = 0)◦
(∆ ˜y>0 ◦ρ(x = x + y ;y = y −1))∗◦
∆ ˜y≤0

R(x = 0) x ′ = 0∧y ′ = y
R([y > 0]) y ′ > 0∧x ′ = x ∧y ′ = y
R([y ≤ 0]) y ′ ≤ 0∧x ′ = x ∧y ′ = y

R([y > 0];
x = x +y ;
y = y −1) y > 0∧x ′ = x +y ∧y ′ = y −1

R(([y > 0];
x = x +y ;
y = y −1)k),k > 0

y − (k −1)> 0∧
x ′ = x +(y +(y−1)+ · · ·+y − (k−1))∧y ′ = y −k
i.e.
y ≥ k ∧x ′ = x +k(y +y − (k−1))/2∧y ′ = y −k

R(([y > 0];
x = x +y ;
y = y −1)∗)

(x ′ = x ∧y ′ = y) ∨
∃k > 0.

y ≥ k ∧x ′ = x +k(2y −k +1))/2∧y ′ = y −k
i.e. (k = y −y ′)

(x ′ = x ∧y ′ = y)∨ �y −y ′ > 0∧y ′ ≥ 0∧x ′ = x +(y −y ′)(y +y ′+1)/2
�

i.e.
R(program) (x ′ = 0∧y ′ = y ∧y ′ ≤ 0)∨ �y > 0∧y ′ = 0∧x ′ = y(y +1)/2

�

Remarks on Previous Solution

Intermediate components can be more complex than final result
▶ they must account for all possible initial states, even those never reached in actual

executions

Be careful with handling base case. This solution is “almost correct” but incorrectly
describes behavior when the initial state has, for example, y =−2:

y ′= 0∧ x ′= y(y +1)/2

Approximate Semantics of Loops
Instead of computing exact semantics, it can be sufficient to compute approximate
semantics. Observation: r1 ⊆ r2→ r ∗1 ⊆ r ∗2 (monotonicity still holds).
Suppose we only wish to show that the semantics is included in
s = {(x ,y ,x ′,y ′) | y ′ ≤ y}. Note s ◦ s ⊆ s, s∗ ⊆ s. Then
x = 0
while (y > 0) {

x = x + y
y = y − 1

}

ρ(x = 0)◦
(∆ ˜y>0 ◦ρ(x = x + y ;y = y −1))∗ ◦∆ ˜y≤0

⊑ ⊆

x = 0
while (y > 0) {

val y0 = y
havoc(x,y); assume(y ≤ y0)

}

s ◦
(s ◦ s)∗ ◦ s⊆

s

Approximate Semantics of Loops
Instead of computing exact semantics, it can be sufficient to compute approximate
semantics. Observation: r1 ⊆ r2→ r ∗1 ⊆ r ∗2 (monotonicity still holds).
Suppose we only wish to show that the semantics is included in
s = {(x ,y ,x ′,y ′) | y ′ ≤ y}. Note s ◦ s ⊆ s, s∗ ⊆ s. Then
x = 0
while (y > 0) {

x = x + y
y = y − 1

}

ρ(x = 0)◦
(∆ ˜y>0 ◦ρ(x = x + y ;y = y −1))∗ ◦∆ ˜y≤0

⊑ ⊆

x = 0
while (y > 0) {

val y0 = y
havoc(x,y); assume(y ≤ y0)

}

s ◦
(s ◦ s)∗ ◦ s⊆

s

Approximate Semantics of Loops
Instead of computing exact semantics, it can be sufficient to compute approximate
semantics. Observation: r1 ⊆ r2→ r ∗1 ⊆ r ∗2 (monotonicity still holds).
Suppose we only wish to show that the semantics is included in
s = {(x ,y ,x ′,y ′) | y ′ ≤ y}. Note s ◦ s ⊆ s, s∗ ⊆ s. Then
x = 0
while (y > 0) {

x = x + y
y = y − 1

}

ρ(x = 0)◦
(∆ ˜y>0 ◦ρ(x = x + y ;y = y −1))∗ ◦∆ ˜y≤0

⊑ ⊆

x = 0
while (y > 0) {

val y0 = y
havoc(x,y); assume(y ≤ y0)

}

s ◦
(s ◦ s)∗ ◦ s⊆

s

Recursion

Example of Recursion
For simplicity assume no parameters
(we can simulate them using global variables)

def f =
if (x > 0) {

if (x % 2 == 0) {
x = x / 2;
f;
y = y ∗ 2

} else {
x = x − 1;
y = y + x;
f

}
}

E(rf)=
∆ ˜x>0 ◦
�

(∆x%2=0◦
ρ(x = x/2)◦
rf ◦
ρ(y = y ∗2))
∪
(∆x%2 ̸=0◦
ρ(x = x −1)◦
ρ(y = y + x)◦
rf)�∪∆ ˜x≤0

Assume recursive function call denotes some relation rf
Need to find relation rf such that rf =E(rf)

Simpler Example of Recursion

def f =
if (x > 0) {

x = x − 1
f
y = y + 2

}

E(rf)= (∆ ˜x>0 ◦
�

ρ(x = x −1)◦
rf ◦
ρ(y = y +2))�∪∆ ˜x≤0

What is E(;)?
What is E(E(;))?
E k(;)?

Simpler Example of Recursion

def f =
if (x > 0) {

x = x − 1
f
y = y + 2

}

E(rf)= (∆ ˜x>0 ◦
�

ρ(x = x −1)◦
rf ◦
ρ(y = y +2))�∪∆ ˜x≤0

What is E(;)?

What is E(E(;))?
E k(;)?

Simpler Example of Recursion

def f =
if (x > 0) {

x = x − 1
f
y = y + 2

}

E(rf)= (∆ ˜x>0 ◦
�

ρ(x = x −1)◦
rf ◦
ρ(y = y +2))�∪∆ ˜x≤0

What is E(;)?
What is E(E(;))?

E k(;)?

Simpler Example of Recursion

def f =
if (x > 0) {

x = x − 1
f
y = y + 2

}

E(rf)= (∆ ˜x>0 ◦
�

ρ(x = x −1)◦
rf ◦
ρ(y = y +2))�∪∆ ˜x≤0

What is E(;)?
What is E(E(;))?
E k(;)?

Review from Before: Expressions E on Relations

The law
E(
∪
i∈I

ri)=
∪
i∈I

E(ri)

holds, for each of these cases
1. If E(r) is given by an expression containing r at most once.
2. ⇒ If E(r) contains r any number of times, but I is a set of natural numbers and

ri is an increasing sequence: r1 ⊆ r2 ⊆ r3 ⊆ . . .

3. If E(r) contains r any number of times, but ri , i ∈ I is a directed family of
relations: for each i , j there exists k such that ri ∪ rj ⊆ rk , and I is possibly
uncountably infinite.

Sequence of Bounded Recursions

Consider the sequence of relations r0 = ;, rk =E k(;).
What is the relationship between rk and rk+1?

▶ r0 ⊆ r1 because ; ⊆ Moreover, we showed several lectures earlier that E is
monotonic
▶ from here it follows r1 ⊆ r2 and, by induction, rk ⊆ rk+1

Define
s =
∪
k≥0

rk

Then
E(s)=E(
∪
k≥0

rk)
?
=
∪
k≥0

E(rk)=
∪
k≥0

rk+1 =
∪
k≥1

rk = ;∪
∪
k≥1

rk = s

If E(s)= s we say s is a fixed point (fixpoint) of function E

We will define meaning of a recursive program as a fixpoint of the corresponding E

Sequence of Bounded Recursions

Consider the sequence of relations r0 = ;, rk =E k(;).
What is the relationship between rk and rk+1?
▶ r0 ⊆ r1 because ; ⊆ Moreover, we showed several lectures earlier that E is

monotonic
▶ from here it follows r1 ⊆ r2 and, by induction, rk ⊆ rk+1

Define
s =
∪
k≥0

rk

Then
E(s)=E(
∪
k≥0

rk)
?
=
∪
k≥0

E(rk)=
∪
k≥0

rk+1 =
∪
k≥1

rk = ;∪
∪
k≥1

rk = s

If E(s)= s we say s is a fixed point (fixpoint) of function E

We will define meaning of a recursive program as a fixpoint of the corresponding E

Sequence of Bounded Recursions

Consider the sequence of relations r0 = ;, rk =E k(;).
What is the relationship between rk and rk+1?
▶ r0 ⊆ r1 because ; ⊆ Moreover, we showed several lectures earlier that E is

monotonic
▶ from here it follows r1 ⊆ r2 and, by induction, rk ⊆ rk+1

Define
s =
∪
k≥0

rk

Then
E(s)=E(
∪
k≥0

rk)
?
=
∪
k≥0

E(rk)=
∪
k≥0

rk+1 =
∪
k≥1

rk = ;∪
∪
k≥1

rk = s

If E(s)= s we say s is a fixed point (fixpoint) of function E

We will define meaning of a recursive program as a fixpoint of the corresponding E

Sequence of Bounded Recursions

Consider the sequence of relations r0 = ;, rk =E k(;).
What is the relationship between rk and rk+1?
▶ r0 ⊆ r1 because ; ⊆ Moreover, we showed several lectures earlier that E is

monotonic
▶ from here it follows r1 ⊆ r2 and, by induction, rk ⊆ rk+1

Define
s =
∪
k≥0

rk

Then
E(s)=E(
∪
k≥0

rk)
?
=
∪
k≥0

E(rk)=
∪
k≥0

rk+1 =
∪
k≥1

rk = ;∪
∪
k≥1

rk = s

If E(s)= s we say s is a fixed point (fixpoint) of function E

We will define meaning of a recursive program as a fixpoint of the corresponding E

Sequence of Bounded Recursions

Consider the sequence of relations r0 = ;, rk =E k(;).
What is the relationship between rk and rk+1?
▶ r0 ⊆ r1 because ; ⊆ Moreover, we showed several lectures earlier that E is

monotonic
▶ from here it follows r1 ⊆ r2 and, by induction, rk ⊆ rk+1

Define
s =
∪
k≥0

rk

Then
E(s)=E(
∪
k≥0

rk)
?
=
∪
k≥0

E(rk)=
∪
k≥0

rk+1 =
∪
k≥1

rk = ;∪
∪
k≥1

rk = s

If E(s)= s we say s is a fixed point (fixpoint) of function E

We will define meaning of a recursive program as a fixpoint of the corresponding E

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function f :R→R defined as

f (x)= x2− x −3

Solution of x2− x −3= x , that is, (x −1)2 = 4, i.e., |x −1|= 2, is x1 =−1 and x2 = 3
2. Compute the fixpoint that is smaller than all other fixpoints x1 =−1 is the smallest.

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function f :R→R defined as

f (x)= x2− x −3

Solution of x2− x −3= x , that is, (x −1)2 = 4, i.e., |x −1|= 2, is x1 =−1 and x2 = 3

2. Compute the fixpoint that is smaller than all other fixpoints x1 =−1 is the smallest.

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function f :R→R defined as

f (x)= x2− x −3

Solution of x2− x −3= x , that is, (x −1)2 = 4, i.e., |x −1|= 2, is x1 =−1 and x2 = 3
2. Compute the fixpoint that is smaller than all other fixpoints

x1 =−1 is the smallest.

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function f :R→R defined as

f (x)= x2− x −3

Solution of x2− x −3= x , that is, (x −1)2 = 4, i.e., |x −1|= 2, is x1 =−1 and x2 = 3
2. Compute the fixpoint that is smaller than all other fixpoints x1 =−1 is the smallest.

Union of Finite Unfoldings is the Least Fixpoint

C - a collection (set) of sets (e.g. sets of pairs, i.e. relations)
E :C →C such that for r0 ⊆ r1 ⊆ r2 . . .
we have

E(
∪

i
ri)=
∪

i
E(ri)

(This holds when E is given in terms of ◦ and ∪.) Then s =
∪

i E i(;) is such that
1. E(s)= s (we have shown this)
2. if r is arbitrary such that E(r)⊆ r (special case: if E(r)= r), then s ⊆ r

(we will show this fact in next slide)

Showing that the Fixpoint is Least

s =
∪

i
E i(;)

Now take any r such that E(r)⊆ r .
We will show s ⊆ r , that is ∪

i
E i(;)⊆ r (∗)

This means showing E i(;)⊆ r , for every i . For i = 0 this is just ; ⊆ r . We proceed by
induction. If E i(;)⊆ r , then by monotonicity of E

E(E i(;))⊆E(r)⊆ r

This completes the proof of (∗)

Summary: Least Fixpoint as Meaning of Recursion
A recursive program is a recursive definition of a relation E(r)= r

We define the intended meaning as s =
∪

i≥0 E(;), which satisfies E(s)= s and also is
the least among all relations r such that E(r)⊆ r (therefore, also the least among r for
which E(r)= r)

We picked least fixpoint, so if the execution cannot terminate on a state x , then there
is no x ′ such that (x ,x ′) ∈ s.
This model is simple (just relations on states) though it has some limitations: let q be
a program that never terminates, then
▶ ρ(q)= ; and ρ(c q)=ρ(c)∪;=ρ(c)

(we cannot observe optional non-termination in this model)
▶ also, ρ(q)=ρ(∆;) (assume(false)), so the absence of results due to path

conditions and infinite loop are represented in the same way

Alternative: error states for non-termination (we will not pursue this approach)

Summary: Least Fixpoint as Meaning of Recursion
A recursive program is a recursive definition of a relation E(r)= r

We define the intended meaning as s =
∪

i≥0 E(;), which satisfies E(s)= s and also is
the least among all relations r such that E(r)⊆ r (therefore, also the least among r for
which E(r)= r)

We picked least fixpoint, so if the execution cannot terminate on a state x , then there
is no x ′ such that (x ,x ′) ∈ s.
This model is simple (just relations on states) though it has some limitations: let q be
a program that never terminates, then
▶ ρ(q)= ; and ρ(c q)=ρ(c)∪;=ρ(c)

(we cannot observe optional non-termination in this model)
▶ also, ρ(q)=ρ(∆;) (assume(false)), so the absence of results due to path

conditions and infinite loop are represented in the same way
Alternative: error states for non-termination (we will not pursue this approach)

Procedure Meaning is the Least Relation

def f =
if (x > 0) {

x = x − 1
f
y = y + 2

}

E(rf)= (∆ ˜x>0 ◦
�

ρ(x = x −1)◦
rf ◦
ρ(y = y +2))�∪∆ ˜x≤0

What does it mean that E(r)⊆ r ?

Plugging r instead of the recursive call results in something that conforms to r

Justifies modular reasoning for recursive functions

To prove that recursive procedure with body E satisfies specification r , show
▶ E(r)⊆ r
▶ Because procedure meaning s is least, conclude s ⊆ r

Procedure Meaning is the Least Relation

def f =
if (x > 0) {

x = x − 1
f
y = y + 2

}

E(rf)= (∆ ˜x>0 ◦
�

ρ(x = x −1)◦
rf ◦
ρ(y = y +2))�∪∆ ˜x≤0

What does it mean that E(r)⊆ r ?
Plugging r instead of the recursive call results in something that conforms to r

Justifies modular reasoning for recursive functions

To prove that recursive procedure with body E satisfies specification r , show
▶ E(r)⊆ r
▶ Because procedure meaning s is least, conclude s ⊆ r

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

((x ,y),(x ′,y ′)) ∈ s→ y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2

}

E(rf)= (∆ ˜x>0 ◦
�

ρ(x = x −1)◦
rf ◦
ρ(y = y +2))�∪∆ ˜x≤0

Solution: let specification relation be q = {((x ,y),(x ′,y ′)) | y ′ ≥ y}
Prove E(q)⊆ q - given by a quantifier-free formula

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

((x ,y),(x ′,y ′)) ∈ s→ y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2

}

E(rf)= (∆ ˜x>0 ◦
�

ρ(x = x −1)◦
rf ◦
ρ(y = y +2))�∪∆ ˜x≤0

Solution: let specification relation be q = {((x ,y),(x ′,y ′)) | y ′ ≥ y}

Prove E(q)⊆ q - given by a quantifier-free formula

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

((x ,y),(x ′,y ′)) ∈ s→ y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2

}

E(rf)= (∆ ˜x>0 ◦
�

ρ(x = x −1)◦
rf ◦
ρ(y = y +2))�∪∆ ˜x≤0

Solution: let specification relation be q = {((x ,y),(x ′,y ′)) | y ′ ≥ y}
Prove E(q)⊆ q - given by a quantifier-free formula

Formula for Checking Specification
def f =

if (x > 0) {
x = x − 1
f
y = y + 2

}

Specification: q = {((x ,y),(x ′,y ′)) | y ′ ≥ y}
Formula to prove, generated by representing E(q)⊆ q:�

(x > 0∧ x1 = x −1∧ y1 = y ∧ y2 ≥ y1 ∧ y ′= y2 +2)
∨(¬(x > 0)∧ x ′= x ∧ y ′= y)

� → y ′ ≥ y

▶ Because q appears as E(q) and q, the condition appears twice.
▶ Proving f ⊆ q by E(q)⊆ q is always sound, whether or not function f terminates;

the meaning of f talks only about properties of terminating executions (relations
can be partial)

Multiple Procedures: Functions on Pairs of Relations
Two mutually recursive procedures r1 =E1(r1, r2), r2 =E2(r1, r2)
We extend the approach to work on pairs of relations:

(r1, r2)= (E1(r1, r2),E2(r1, r2))

Define Ē(r1, r2)= (E1(r1, r2),E2(r1, r2)), let r̄ =(r1, r2). We define semantics of
procedures as the least solution of

Ē(r̄)= r̄

where (r1, r2)⊑ (r ′1, r ′2) means r1 ⊆ r ′1 and r2 ⊆ r ′2
Even though pairs of relations are not sets but pairs of sets, we can define set-like
operations on them, e.g.

(r1, r2)⊔ (r ′1, r ′2)= (r1 ∪ r ′1, r2 ∪ r ′2)

The entire theory works when we have a partial order ⊑ with some “good properties”.
(Lattice elements are a generalization of sets.)

Multiple Procedures: Least Fixedpoint and Consequences

Two mutually recursive procedures r1 =E1(r1, r2), r2 =E2(r1, r2)
For E(r1, r2)= (E1(r1, r2),E2(r1, r2)), semantics is

(s1,s2)=
⊔
i≥0

Ē i(;,;)

It follows that for any c1,c2 if

E1(c1,c2)⊆ c1 and E2(c1,c2)⊆ c2

then s1 ⊆ c1 and s2 ⊆ c2.

Induction-like principle: To prove that mutually recursive relations satisfy two
contracts, prove those contracts for the relation body definitions in which recursive
calls are replaced by those contracts.

Replacing Calls by Contracts: Example
def r1 = {

if (x % 2 == 1) {
x = x − 1

}
y = y + 2
r2

} ensuring(y > old(y))

def r2 = {
if (x != 0) {

x = x / 2
r1

}
} ensuring(y >= old(y))

Reduces to checking these two non-recursive procedures:
def r1 = {

if (x % 2 == 1) {
x = x − 1

}
y = y + 2
{ val x0 = x; y0 = y

havoc(x,y)
assume(y >= y0) }

} ensuring(y > old(y))

def r2 = {
if (x != 0) {

x = x / 2
val x0 = x; y0 = y
havoc(x,y)
assume(y > y0)

}
} ensuring(y >= old(y))

Replacing Calls by Contracts: Example
def r1 = {

if (x % 2 == 1) {
x = x − 1

}
y = y + 2
r2

} ensuring(y > old(y))

def r2 = {
if (x != 0) {

x = x / 2
r1

}
} ensuring(y >= old(y))

Reduces to checking these two non-recursive procedures:
def r1 = {

if (x % 2 == 1) {
x = x − 1

}
y = y + 2
{ val x0 = x; y0 = y

havoc(x,y)
assume(y >= y0) }

} ensuring(y > old(y))

def r2 = {
if (x != 0) {

x = x / 2
val x0 = x; y0 = y
havoc(x,y)
assume(y > y0)

}
} ensuring(y >= old(y))

Deductive Verification

Three-step approach:
1. Compile program meaning to logical formulas (verification-condition generator,

symbolic execution)
2. Express properties in logic or code (assertions, preconditions, post-conditions,

invariants, run-time error conditions)
3. Develop and use an automated theorem prover for generated conditions (SAT

solving, SMT solving, resolution-based theorem proving, rewriting, interactive
provers)

Which logic to use? Today: integer linear arithmetic

Presburger arithmetic
Integer arithmetic with logical operations (and, or, not), quantifiers, only addition as
an arithmetic operation, and < and = as a relation.
▶ minimalistically one can define a variant of it over non-negative natural numbers

as having ∧,¬,∀,+,= as the only symbols

One of the earliest theories shown decidable. Mojesz Presburger gave an algorithm for
quantifier elimination in 1929.
▶ a student of a famous logician Alfred Tarski
▶ Tarski gave him this question for his MSc thesis

The result at this time was of interest to mathematical logic and foundations of
mathematics
▶ only much later it found applications in automated reasoning (Cooper 1972,

Derek C. Oppen - STOC 1973)

Presburger Arithmetic for Verification

res = 0
i = x
while // invariant I(res,i): res + 2∗i == 2∗x && 0 <= i
(i > 0) {

i = i − 1
res = res + 2

}

Verification condition (VC) for preservation of loop invariant:�
I(res , i)∧ i ′= i −1∧ res ′= res +2∧0< i

�→ I(res ′, i ′)
To prove that this VC is valid, we check whether its negation

I(res , i)∧ i ′= i −1∧ res ′= res +2∧0< i ∧¬I(res ′, i ′)
is satisfiable, i.e. whether this PA formula is true:

∃x , res , i , res ′, i ′.
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧

i ′= i −1 ∧ res ′= res +2 ∧ ¬(res ′+2i ′= 2x ∧ 0≤ i ′)
�

Introducing: One-Point Rule

If ȳ is a tuple of variables not containing x , then

∃x .(x = t(ȳ)∧F (x , ȳ)) ⇐⇒ F (t(ȳ), ȳ)

Proof:
→ : Consider the values of ȳ such that there exists x , say x1, for which

x1 = t(ȳ)∧F (x1, ȳ). Because F (x1, ȳ) evaluates to true and the values of x1 and
t(ȳ) are the same, F (t , ȳ) also evaluates to true.

← : Let ȳ be such that F (t , ȳ) holds. Let x be the value of t(ȳ). Then of course
x = t(ȳ) evaluates to true and so does F (x , ȳ). So there exists x for which
x = t(ȳ)∧F (x , ȳ) holds.

One point rule:
replaces left side (LHS) of equivalence by the right side (RHS).

Flattening, used when t is complex, replaces RHS by LHS.

Dual One-Point Rule for ∀

∀x .(x = t(ȳ)→ F (x , ȳ)) ⇐⇒ F (t(ȳ), ȳ)

To prove it, negate both sides:

∃x .(x = t(ȳ)∧¬F (x , ȳ)) ⇐⇒ ¬F (t(ȳ), ȳ)

so it reduces to the rule for ∃.

Using One-Point Rule on Negated Verification Condition

∃x , res , i , res ′, i’.
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧

i’ = i - 1 ∧ res ′= res +2 ∧
¬(res ′+2i ′= 2x ∧ 0≤ i ′)

�

∃x , res , i ,res’.
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧

res’ = res + 2 ∧
¬(res ′+2(i −1)= 2x ∧ 0≤ i −1)

�
∃x , res , i .
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧
¬(res +2+2(i −1)= 2x ∧ 0≤ i −1)

�
∃x ,res, i .
�
res = 2x - 2i ∧ 0≤ i ∧ 0< i ∧
¬(res +2+2(i −1)= 2x ∧ 0≤ i −1)

�
∃x , i .
�
0≤ i ∧ 0< i ∧
¬(2x −2i +2+2(i −1)= 2x ∧ 0≤ i −1)

�
Simplifies to ∃x , i . 0< i ∧¬(0≤ i −1) and then to false.

Using One-Point Rule on Negated Verification Condition

∃x , res , i , res ′, i’.
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧

i’ = i - 1 ∧ res ′= res +2 ∧
¬(res ′+2i ′= 2x ∧ 0≤ i ′)

�
∃x , res , i ,res’.
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧

res’ = res + 2 ∧
¬(res ′+2(i −1)= 2x ∧ 0≤ i −1)

�

∃x , res , i .
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧
¬(res +2+2(i −1)= 2x ∧ 0≤ i −1)

�
∃x ,res, i .
�
res = 2x - 2i ∧ 0≤ i ∧ 0< i ∧
¬(res +2+2(i −1)= 2x ∧ 0≤ i −1)

�
∃x , i .
�
0≤ i ∧ 0< i ∧
¬(2x −2i +2+2(i −1)= 2x ∧ 0≤ i −1)

�
Simplifies to ∃x , i . 0< i ∧¬(0≤ i −1) and then to false.

Using One-Point Rule on Negated Verification Condition

∃x , res , i , res ′, i’.
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧

i’ = i - 1 ∧ res ′= res +2 ∧
¬(res ′+2i ′= 2x ∧ 0≤ i ′)

�
∃x , res , i ,res’.
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧

res’ = res + 2 ∧
¬(res ′+2(i −1)= 2x ∧ 0≤ i −1)

�
∃x , res , i .
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧
¬(res +2+2(i −1)= 2x ∧ 0≤ i −1)

�

∃x ,res, i .
�
res = 2x - 2i ∧ 0≤ i ∧ 0< i ∧
¬(res +2+2(i −1)= 2x ∧ 0≤ i −1)

�
∃x , i .
�
0≤ i ∧ 0< i ∧
¬(2x −2i +2+2(i −1)= 2x ∧ 0≤ i −1)

�
Simplifies to ∃x , i . 0< i ∧¬(0≤ i −1) and then to false.

Using One-Point Rule on Negated Verification Condition

∃x , res , i , res ′, i’.
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧

i’ = i - 1 ∧ res ′= res +2 ∧
¬(res ′+2i ′= 2x ∧ 0≤ i ′)

�
∃x , res , i ,res’.
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧

res’ = res + 2 ∧
¬(res ′+2(i −1)= 2x ∧ 0≤ i −1)

�
∃x , res , i .
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧
¬(res +2+2(i −1)= 2x ∧ 0≤ i −1)

�
∃x ,res, i .
�
res = 2x - 2i ∧ 0≤ i ∧ 0< i ∧
¬(res +2+2(i −1)= 2x ∧ 0≤ i −1)

�

∃x , i .
�
0≤ i ∧ 0< i ∧
¬(2x −2i +2+2(i −1)= 2x ∧ 0≤ i −1)

�
Simplifies to ∃x , i . 0< i ∧¬(0≤ i −1) and then to false.

Using One-Point Rule on Negated Verification Condition

∃x , res , i , res ′, i’.
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧

i’ = i - 1 ∧ res ′= res +2 ∧
¬(res ′+2i ′= 2x ∧ 0≤ i ′)

�
∃x , res , i ,res’.
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧

res’ = res + 2 ∧
¬(res ′+2(i −1)= 2x ∧ 0≤ i −1)

�
∃x , res , i .
�
res +2i = 2x ∧ 0≤ i ∧ 0< i ∧
¬(res +2+2(i −1)= 2x ∧ 0≤ i −1)

�
∃x ,res, i .
�
res = 2x - 2i ∧ 0≤ i ∧ 0< i ∧
¬(res +2+2(i −1)= 2x ∧ 0≤ i −1)

�
∃x , i .
�
0≤ i ∧ 0< i ∧
¬(2x −2i +2+2(i −1)= 2x ∧ 0≤ i −1)

�
Simplifies to ∃x , i . 0< i ∧¬(0≤ i −1) and then to false.

But there is more

One-point rule is one of the many steps used in
quantifier elimination procedures.

Quantifier Elimination (QE) ∀∃∅
Given a formula F (ȳ) containing quantifiers find a formula G(ȳ)
▶ equivalent to F (ȳ)
▶ that has no quantifiers
▶ and has a subset (or equal set) of free variables of F

Note
▶ Equivalence: For all ȳ , F (ȳ) and G(ȳ) have same truth value
⇝ we can use G(ȳ) instead of F (ȳ)
▶ No quantifiers: easier to check satisfiability of G(ȳ)

ȳ is a possibly empty tuple of variables

We are lucky when a theory has (“admits”) QE

Suppose F has no free variables (all variables are quantified).
What is the result of applying QE to F?

Are there any variables in the resulting formula?
▶ No free variables: they are a subset of the original, empty set
▶ No quantified variables: because it has no quantifiers ,

Formula without any variables! Example:

(2+4= 7)∨ (1+1= 2)

We check the truth value of such formula by simply evaluating it!

We are lucky when a theory has (“admits”) QE

Suppose F has no free variables (all variables are quantified).
What is the result of applying QE to F?
Are there any variables in the resulting formula?

▶ No free variables: they are a subset of the original, empty set
▶ No quantified variables: because it has no quantifiers ,

Formula without any variables! Example:

(2+4= 7)∨ (1+1= 2)

We check the truth value of such formula by simply evaluating it!

We are lucky when a theory has (“admits”) QE

Suppose F has no free variables (all variables are quantified).
What is the result of applying QE to F?
Are there any variables in the resulting formula?
▶ No free variables: they are a subset of the original, empty set
▶ No quantified variables: because it has no quantifiers ,

Formula without any variables! Example:

(2+4= 7)∨ (1+1= 2)

We check the truth value of such formula by simply evaluating it!

Using QE for Deciding Satisfiability/Validity

▶ To check satisfiability of H(ȳ): eliminate the quantifiers from ∃ȳ .H(ȳ) and
evaluate.
▶ Validity: eliminate quantifiers from ∀ȳ .H(ȳ) and evaluate

We can even check formulas like this:

∀x ,y , r . ∃z . (5≤ r ∧ x + r ≤ y)→ (x < z ∧ z < y ∧3|z)
Here 3|z denotes that z is divisible by 3.

Does Presburger Arithmetic admit QE?

Depends on the particular set of symbols!
(Recall objective: given F (ȳ) containing quantifiers find a formula G(ȳ)
▶ equivalent to F (ȳ)
▶ that has no quantifiers
▶ and has a subset (or equal set) of free variables of F)

If we lack some operations that can be expressed using quantifiers, there may be no
equivalent formula without quantifiers.
▶ ∃y .x = y + y + y , so we better have divisibility

Quantifier elimination says: if you can define some relationship between variables using
an arbitrary, possibly quantified, formula F ,

r def
= {(x ,y) | F (x ,y)}

then you can also define same r using another quantifier-free formula G .

Does Presburger Arithmetic admit QE?
Depends on the particular set of symbols!
(Recall objective: given F (ȳ) containing quantifiers find a formula G(ȳ)
▶ equivalent to F (ȳ)
▶ that has no quantifiers
▶ and has a subset (or equal set) of free variables of F)

If we lack some operations that can be expressed using quantifiers, there may be no
equivalent formula without quantifiers.
▶ ∃y .x = y + y + y , so we better have divisibility

Quantifier elimination says: if you can define some relationship between variables using
an arbitrary, possibly quantified, formula F ,

r def
= {(x ,y) | F (x ,y)}

then you can also define same r using another quantifier-free formula G .

Presburger Arithmetic (PA)
We look at the theory of integers with addition.
▶ introduce constant for each integer constant
▶ to be able to restrict values to natural numbers when needed, and to compare

them, we introduce <
▶ introduce not only addition but also subtraction
▶ to conveniently express certain expressions, introduce function mK for each

K ∈Z , to be interpreted as multiplication by a constant, mK (x)=K ·x . We write
mK as K · x .
Note: there is no multiplication between variables in PA
▶ to enable quantifier elimination from ∃x .y =K · x introduce for each K predicate

K |y (divisibility, y%K = 0)
The resulting language has these function and relation symbols:
{+,−,=,<}∪ {K |K ∈Z}∪ {(K ·_) |K ∈Z}∪ {(K |_) |K ∈Z} We also have, as usual:
∧,∨,¬,→ and also: ∃,∀

Example

Eliminate y from this formula:

∃y . 3y −2w +1>−w ∧2y −6< z ∧4 | 5y +1

What should we do first?

Simplify/normalize what we can using properties of integer operations:

∃y . 0<−w +3y +1 ∧ 0<−2y + z +6 ∧ 4 | 5y +1

First we will consider only eliminating existential from a conjunction of literals.

Example

Eliminate y from this formula:

∃y . 3y −2w +1>−w ∧2y −6< z ∧4 | 5y +1

What should we do first?
Simplify/normalize what we can using properties of integer operations:

∃y . 0<−w +3y +1 ∧ 0<−2y + z +6 ∧ 4 | 5y +1

First we will consider only eliminating existential from a conjunction of literals.

Example

Eliminate y from this formula:

∃y . 3y −2w +1>−w ∧2y −6< z ∧4 | 5y +1

What should we do first?
Simplify/normalize what we can using properties of integer operations:

∃y . 0<−w +3y +1 ∧ 0<−2y + z +6 ∧ 4 | 5y +1

First we will consider only eliminating existential from a conjunction of literals.

Conjunctions of Literals

Atomic formula: a relation applied to argument.
Here, relations are: =, <, K |_. So, atomic formulas are:

t1 = t2, t1 < t2, K | t

Literal: Atomic formula or its negation. Example: ¬(x = y +1)
Conjunction of literals: L1 ∧ . . .∧Ln

▶ no disjunctions, no implications
▶ negation only applies to atomic formulas

We first consider the quantifier elimination problem of the form:

∃y . L1 ∧ . . .∧Ln

This will prove to be sufficient to eliminate all quantifiers!

Conjunctions of Literals

Atomic formula: a relation applied to argument.
Here, relations are: =, <, K |_. So, atomic formulas are:

t1 = t2, t1 < t2, K | t
Literal: Atomic formula or its negation. Example: ¬(x = y +1)
Conjunction of literals: L1 ∧ . . .∧Ln

▶ no disjunctions, no implications
▶ negation only applies to atomic formulas

We first consider the quantifier elimination problem of the form:

∃y . L1 ∧ . . .∧Ln

This will prove to be sufficient to eliminate all quantifiers!

Eliminating ∃ from conjunction of literals suffices

Can we eliminate ∃ from any quantifier-free formula?

∃x .F (x , ȳ)

where F is quantifier-free?

Formula without quantifiers has ∧,∨,¬ applied to atomic formulas.
Convert F to disjunctive normal form:

F ⇐⇒
m∨

i=1
Ci

each Ci is a conjunction of literals.

�∃x .
m∨

i=1
Ci
� ⇐⇒ m∨

i=1
(∃x .Ci)

Eliminating ∃ from conjunction of literals suffices

Can we eliminate ∃ from any quantifier-free formula?

∃x .F (x , ȳ)

where F is quantifier-free?
Formula without quantifiers has ∧,∨,¬ applied to atomic formulas.

Convert F to disjunctive normal form:

F ⇐⇒
m∨

i=1
Ci

each Ci is a conjunction of literals.

�∃x .
m∨

i=1
Ci
� ⇐⇒ m∨

i=1
(∃x .Ci)

Eliminating ∃ from conjunction of literals suffices

Can we eliminate ∃ from any quantifier-free formula?

∃x .F (x , ȳ)

where F is quantifier-free?
Formula without quantifiers has ∧,∨,¬ applied to atomic formulas.
Convert F to disjunctive normal form:

F ⇐⇒
m∨

i=1
Ci

each Ci is a conjunction of literals.

�∃x .
m∨

i=1
Ci
� ⇐⇒ m∨

i=1
(∃x .Ci)

Eliminating ∃ from conjunction of literals suffices

Can we eliminate ∃ from any quantifier-free formula?

∃x .F (x , ȳ)

where F is quantifier-free?
Formula without quantifiers has ∧,∨,¬ applied to atomic formulas.
Convert F to disjunctive normal form:

F ⇐⇒
m∨

i=1
Ci

each Ci is a conjunction of literals.

�∃x .
m∨

i=1
Ci
� ⇐⇒ m∨

i=1
(∃x .Ci)

How does disjunctive normal form (DNF) transformation work?

Which steps should we use?

Negation propagation:
¬(p ∧q) ⇝ (¬p)∨ (¬q)

¬(p ∨q) ⇝ (¬p)∧ (¬q)

¬¬p ⇝ p

Result is negation-normal form, NNF
NNF transformation is polynomial (exercise!)
Distributivity

a∧ (b1 ∨b2) ⇝ (a∧b1)∨ (a∧b2)

This can lead to exponential explosion.
Can we obtain equivalent DNF formula without explosion?
No! We can prove this (no equivalent DNF formula exists), unrelated to NP vs P

How does disjunctive normal form (DNF) transformation work?

Which steps should we use?
Negation propagation:

¬(p ∧q) ⇝ (¬p)∨ (¬q)

¬(p ∨q) ⇝ (¬p)∧ (¬q)

¬¬p ⇝ p

Result is negation-normal form, NNF
NNF transformation is polynomial (exercise!)

Distributivity
a∧ (b1 ∨b2) ⇝ (a∧b1)∨ (a∧b2)

This can lead to exponential explosion.
Can we obtain equivalent DNF formula without explosion?
No! We can prove this (no equivalent DNF formula exists), unrelated to NP vs P

How does disjunctive normal form (DNF) transformation work?

Which steps should we use?
Negation propagation:

¬(p ∧q) ⇝ (¬p)∨ (¬q)

¬(p ∨q) ⇝ (¬p)∧ (¬q)

¬¬p ⇝ p

Result is negation-normal form, NNF
NNF transformation is polynomial (exercise!)
Distributivity

a∧ (b1 ∨b2) ⇝ (a∧b1)∨ (a∧b2)

This can lead to exponential explosion.
Can we obtain equivalent DNF formula without explosion?

No! We can prove this (no equivalent DNF formula exists), unrelated to NP vs P

How does disjunctive normal form (DNF) transformation work?

Which steps should we use?
Negation propagation:

¬(p ∧q) ⇝ (¬p)∨ (¬q)

¬(p ∨q) ⇝ (¬p)∧ (¬q)

¬¬p ⇝ p

Result is negation-normal form, NNF
NNF transformation is polynomial (exercise!)
Distributivity

a∧ (b1 ∨b2) ⇝ (a∧b1)∨ (a∧b2)

This can lead to exponential explosion.
Can we obtain equivalent DNF formula without explosion?
No! We can prove this (no equivalent DNF formula exists), unrelated to NP vs P

Eliminating from quantifier free formulas

∃x .F ⇐⇒ �∃x .
m∨

i=1
Ci
� ⇐⇒ m∨

i=1
(∃x .Ci)

Nested Existential Quantifiers

∃x1.∃x2.∃x3.F0(x1,x2,x3, ȳ)

∃x1.∃x2.F1(x1,x2, ȳ)

∃x1.F2(x1, ȳ)

F3(ȳ)

,

Nested Existential Quantifiers

∃x1.∃x2.∃x3.F0(x1,x2,x3, ȳ)

∃x1.∃x2.F1(x1,x2, ȳ)

∃x1.F2(x1, ȳ)

F3(ȳ)

,

Nested Existential Quantifiers

∃x1.∃x2.∃x3.F0(x1,x2,x3, ȳ)

∃x1.∃x2.F1(x1,x2, ȳ)

∃x1.F2(x1, ȳ)

F3(ȳ)

,

Nested Existential Quantifiers

∃x1.∃x2.∃x3.F0(x1,x2,x3, ȳ)

∃x1.∃x2.F1(x1,x2, ȳ)

∃x1.F2(x1, ȳ)

F3(ȳ)

,

Nested Existential Quantifiers

∃x1.∃x2.∃x3.F0(x1,x2,x3, ȳ)

∃x1.∃x2.F1(x1,x2, ȳ)

∃x1.F2(x1, ȳ)

F3(ȳ)

,

Universal Quantifiers
If F0(x , ȳ) is quantifier-free, how to eliminate

∀y .F0(x , ȳ)

Equivalence (property always holds if there is no counterexample):

∀y .F0(x , ȳ) ⇐⇒ ¬�∃y .¬F0(x , ȳ)
�

It thus suffices to process:
¬�∃y .¬F0(x , ȳ)
�

Note that ¬F0(x , ȳ) is quantifier-free, so we know how to handle it:

∃y .¬F0(x , ȳ) ⇝ F1(ȳ)

Therefore, we obtain
¬F1(ȳ)

Universal Quantifiers
If F0(x , ȳ) is quantifier-free, how to eliminate

∀y .F0(x , ȳ)

Equivalence (property always holds if there is no counterexample):

∀y .F0(x , ȳ) ⇐⇒ ¬�∃y .¬F0(x , ȳ)
�

It thus suffices to process:
¬�∃y .¬F0(x , ȳ)
�

Note that ¬F0(x , ȳ) is quantifier-free, so we know how to handle it:

∃y .¬F0(x , ȳ) ⇝ F1(ȳ)

Therefore, we obtain
¬F1(ȳ)

Removing any alternation of quantifiers: illustration

Alternation: switch between existentials and universals

∃x1.∀x2.∀x3.∃x4.F0(x1,x2,x3,x4, ȳ)

∃x1.¬∃x2.∃x3.¬∃x4.F0(x1,x2,x3,x4, ȳ)

∃x1.¬∃x2.∃x3.¬F1(x1,x2,x3, ȳ)

∃x1.¬∃x2.F2(x1,x2, ȳ)

∃x1.¬F3(x1, ȳ)

F4(ȳ)

Each quantifier alternation involves a disjunctive normal form transformation.
In practice, we do not have many alternations.

Back to Presburger Arithmetic

Consider the quantifier elimination problem of the form:

∃y . L1 ∧ . . .∧Ln

where Li are literals from PA.
Note that, for integers:
▶ ¬(x < y) ⇐⇒ y ≤ x
▶ x < y ⇐⇒ x +1≤ y
▶ x ≤ y ⇐⇒ x < y +1

We use these observations below.
Instead of ≤ we choose to use < only.
We do not write x > y but only y < x .

Normalizing Literals for PA
Normal Form of Terms: All terms are built from K ,+,−,K ·_, so using standard
transformations they can be represented as: K0 +

∑n
i=1 Kixi We call such term a linear

term.
Normal Form for Literals in PA:

¬(t1 < t2) becomes t2 < t1 +1
¬(t1 = t2) becomes t1 < t2 ∨ t2 < t1

t1 = t2 becomes t1 < t2 +1∧ t2 < t1 +1 (∗)
¬(K | t) becomes

K−1∨
i=1

K | t + i

t1 < t2 becomes 0< t2− t1

To remove disjunctions we generated, compute DNF again.
(∗) We transformed equalities just for simplicity. Usually we handle them directly.

Why one-point rule will not be enough

Note that we must handle inequalities, not merely equalities

If we have integers, we cannot always divide perfectly.
Variable to eliminate can occur not as y but as, e.g. 3y

Exposing the Variable to Eliminate: Example

∃y . 0<−w +3y+1 ∧ 0<−2y+ z +6 ∧ 4 | 5y+1

Least common multiple of coefficients next to y , M = lcm(3,2,5)= 30
Make all occurrences of y in the body have this coefficient:

∃y . 0<−10w +30y+10∧0<−30y+15z +90∧24 | 30y+6

Now we are quantifying over y and using 30y everywhere.
Let x denote 30y .
It is not an arbitrary x . It is divisible by 30.

∃x . 0<−10w + x +10∧ 0<−x +15z +90 ∧ 24 | x +6 ∧ 30 | x

Exposing the Variable to Eliminate in General
Eliminating y from conjunction F (y) of literals:
▶ 0< t
▶ K | t

where t is a linear term. To eliminate ∃y from such conjunction, we wish to ensure
that the coefficient next to y is one or minus one.
Observation:
▶ 0< t is equivalent to 0< c t
▶ K | t is equivalent to c K | c t

for c a positive integer.
Let K1, . . . ,Kn be all coefficients next to y in the formula.
Let M be a positive integer such that Ki |M for all i , 1≤ i ≤ n
▶ for example, let M be the least common multiple

M = lcm(K1, . . . ,Kn)

Ensuring Coefficient One

Multiply each literal where y occurs in subterm Kiy by constant M/|Ki |
▶ the point is, M is divisible by |Ki | by construction

What is the coefficient next to y in the resulting formula?

M or −M

We obtain a formula of the form ∃y .F (M · y).
Letting x =My , we conclude the formula is equivalent to

∃x . F (x)∧ (M | x)
What is the coefficient next to y in the resulting formula?

1 or −1

Ensuring Coefficient One

Multiply each literal where y occurs in subterm Kiy by constant M/|Ki |
▶ the point is, M is divisible by |Ki | by construction

What is the coefficient next to y in the resulting formula?
M or −M

We obtain a formula of the form ∃y .F (M · y).
Letting x =My , we conclude the formula is equivalent to

∃x . F (x)∧ (M | x)
What is the coefficient next to y in the resulting formula?

1 or −1

Ensuring Coefficient One

Multiply each literal where y occurs in subterm Kiy by constant M/|Ki |
▶ the point is, M is divisible by |Ki | by construction

What is the coefficient next to y in the resulting formula?
M or −M

We obtain a formula of the form ∃y .F (M · y).
Letting x =My , we conclude the formula is equivalent to

∃x . F (x)∧ (M | x)
What is the coefficient next to y in the resulting formula?

1 or −1

Ensuring Coefficient One

Multiply each literal where y occurs in subterm Kiy by constant M/|Ki |
▶ the point is, M is divisible by |Ki | by construction

What is the coefficient next to y in the resulting formula?
M or −M

We obtain a formula of the form ∃y .F (M · y).
Letting x =My , we conclude the formula is equivalent to

∃x . F (x)∧ (M | x)
What is the coefficient next to y in the resulting formula?

1 or −1

Lower and upper bounds:

Consider the coefficient next to x in 0< t. If it is −1, move the term to left side. If it
is 1, move the remaining terms to the left side. We obtain formula F1(x) of the form

L∧
i=1

ai < x ∧
U∧

j=1
x < bj ∧

D∧
i=1

Ki | (x + ti)

Lower and upper bounds:

Consider the coefficient next to x in 0< t. If it is −1, move the term to left side. If it
is 1, move the remaining terms to the left side. We obtain formula F1(x) of the form

L∧
i=1

ai < x ∧
U∧

j=1
x < bj ∧

D∧
i=1

Ki | (x + ti)

If there are no divisibility constraints (D = 0), what is the formula equivalent to?

max
i

ai +1≤min
j

bj −1 which is equivalent to
∧
ij

ai +1< bj

Lower and upper bounds:

Consider the coefficient next to x in 0< t. If it is −1, move the term to left side. If it
is 1, move the remaining terms to the left side. We obtain formula F1(x) of the form

L∧
i=1

ai < x ∧
U∧

j=1
x < bj ∧

D∧
i=1

Ki | (x + ti)

If there are no divisibility constraints (D = 0), what is the formula equivalent to?

max
i

ai +1≤min
j

bj −1 which is equivalent to
∧
ij

ai +1< bj

Lower and upper bounds:

Consider the coefficient next to x in 0< t. If it is −1, move the term to left side. If it
is 1, move the remaining terms to the left side. We obtain formula F1(x) of the form

L∧
i=1

ai < x ∧
U∧

j=1
x < bj ∧

D∧
i=1

Ki | (x + ti)

If there are no divisibility constraints (D = 0), what is the formula equivalent to?

max
i

ai +1≤min
j

bj −1 which is equivalent to
∧
ij

ai +1< bj

Replacing variable by test terms
There is a an alternative way to express the above condition by replacing F1(x) with∨

k F1(tk) where tk do not contain x . This is a common technique in quantifier
elimination. Note that if F1(tk) holds then certainly ∃x .F1(x).
What are example terms ti when D = 0 and L> 0? Hint: ensure that at least one of
them evaluates to maxai +1.

L∨
k=1

F1(ak +1)

What if D > 0 i.e. we have additional divisibility constraints?

L∨
k=1

N∨
i=1

F1(ak + i)

What is N? least common multiple of K1, . . . ,KD
Note that if F1(u) holds then also F1(u−N) holds.

Back to Example

∃x .−10+10w < x ∧ x < 90+15z ∧24 | x +6∧30|x

120∨
i=1

10w + i < 100+15z ∧0< i ∧24 | 10w −4+ i ∧30|10w −10+ i

Back to Example

∃x .−10+10w < x ∧ x < 90+15z ∧24 | x +6∧30|x
120∨
i=1

10w + i < 100+15z ∧0< i ∧24 | 10w −4+ i ∧30|10w −10+ i

Special cases

What if L= 0? We first drop all constraints except divisibility, obtaining F2(x)

D∧
i=1

Ki | (x + ti)

and then eliminate quantifier as
N∨

i=1
F2(i)

It works

We finished describing a complete quantifier elimination algorithm for Presburger
Arithmetic!

This algorithm and its correctness prove that:
▶ PA admits quantifier elimination
▶ Satisfiability, validity, entailment, equivalence of PA formulas is decidable

We can use the algorithm to prove verification conditions.
Even if not the most efficient way, it gives us insights on which we can later build
to come up with better algorithms.
▶ Quantified and quantifier-free formulas have the same expressive power

Many other properties follow (e.g. interpolation).

It works

We finished describing a complete quantifier elimination algorithm for Presburger
Arithmetic!
This algorithm and its correctness prove that:
▶ PA admits quantifier elimination
▶ Satisfiability, validity, entailment, equivalence of PA formulas is decidable

We can use the algorithm to prove verification conditions.
Even if not the most efficient way, it gives us insights on which we can later build
to come up with better algorithms.
▶ Quantified and quantifier-free formulas have the same expressive power

Many other properties follow (e.g. interpolation).

Interpolation For Logical Theories

Interpolation can be useful in generalizing counterexamples to invariants.
Universal Entailment: we will write F1 |= F2 to denote that for all free variables of F1
and F2, if F1 holds then F2 holds.
Given two formulas such that

F0(x̄ , ȳ) |= F1(ȳ , z̄)

an interpolant for F1,F2 is a formula I(ȳ), which has only variables common to F0 and
F1, such that
▶ F0(x̄ , ȳ) |= I(ȳ), and
▶ I(ȳ) |= F1(ȳ , z̄)

In other words, the entailment between F0 and F1 can be explained through I(ȳ).
Logic has interpolation property if, whenever F0 |= F1, then there exists an
interpolant for F0,F1.
We often wish to have simple interpolants, for example ones that are quantifier free.

Quantifier Elimination Implies Interpolation
If logic has QE, it also has quantifier-free interpolants.
Consider the formula

∀x̄ , ȳ , z̄ . F0(x̄ , ȳ)→ F1(ȳ , z̄)

pushing x̄ into assumption we get

∀ȳ , z̄ . (∃x̄ .F0(x̄ , ȳ))→ F1(ȳ , z̄)

and pushing z̄ into conclusion we get

∀x̄ , ȳ . F0(x̄ , ȳ)→ (∀z̄ .F1(ȳ , z̄))

Given two formulas F0 and F1, each of the formulas satisfies properties of
interpolation:
▶ ∃x̄ .F0(x̄ , ȳ)
▶ ∀z̄ .F1(ȳ , z̄)

Applying QE to them, we obtain quantifier-free interpolants.

More on QE: One Direction to Make it More Efficient

Avoid transforming to conjunctions of literals: work directly on negation-normal form.
The technique is similar to what we described for conjunctive normal form.

+ no need for DNF
- we may end up trying irrelevant bounds

This is the Cooper’s algorithm:
▶ Reddy, Loveland: Presburger Arithmetic with Bounded Quantifier Alternation.

(Gives a slight improvement of the original Cooper’s algorithm.)
▶ Section 7.2 of the Calculus of Computation Textbook

Eliminate Quantifiers: Example

∃y .∃x . x <−2∧1−5y < x ∧1+ y < 13x

Check whether the formula is satisfiable

x < y +2 ∧ y < x +1∧ x = 3k ∧ (y = 6p+1∨ y = 6p−1)

Apply quantifier elimination

∃x . (3x +1< 10∨7x −6< 7) ∧ 2 | x

Another Direction for Improvement

Handle a system of equalities more efficiently, without introducing divisibility
constraints too eagerly.

Hermite normal form of an integer matrix.

Eliminate variables x and y

5x +7y = a∧ x ≤ y ∧0≤ x

Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and < relation, interpreted over rationals.
This theory is called dense linear order without endpoints
For example:

∀ϵ.∃δ.
�|x1− x2|<δ∧ |y1− y2|<δ→ |3x1 +4y1−3x2−4y2|< ϵ�

(i) Show that absolute value can be defined in first-order logic in terms of other linear
operations and comparison.

Answer: replace F (|t |) with, for example

(t > 0∧F (t))∨ (¬(t > 0)∧F (−t))

Is there a way to remove |...| while increasing formula size only linearly?
(ii) Give quantifier elimination algorithm for this theory.
Solution is simpler than for Presburger arithmetic—no divisibility.

Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and < relation, interpreted over rationals.
This theory is called dense linear order without endpoints
For example:

∀ϵ.∃δ.
�|x1− x2|<δ∧ |y1− y2|<δ→ |3x1 +4y1−3x2−4y2|< ϵ�

(i) Show that absolute value can be defined in first-order logic in terms of other linear
operations and comparison.
Answer: replace F (|t |) with, for example

(t > 0∧F (t))∨ (¬(t > 0)∧F (−t))

Is there a way to remove |...| while increasing formula size only linearly?

(ii) Give quantifier elimination algorithm for this theory.
Solution is simpler than for Presburger arithmetic—no divisibility.

Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and < relation, interpreted over rationals.
This theory is called dense linear order without endpoints
For example:

∀ϵ.∃δ.
�|x1− x2|<δ∧ |y1− y2|<δ→ |3x1 +4y1−3x2−4y2|< ϵ�

(i) Show that absolute value can be defined in first-order logic in terms of other linear
operations and comparison.
Answer: replace F (|t |) with, for example

(t > 0∧F (t))∨ (¬(t > 0)∧F (−t))

Is there a way to remove |...| while increasing formula size only linearly?
(ii) Give quantifier elimination algorithm for this theory.

Solution is simpler than for Presburger arithmetic—no divisibility.

Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and < relation, interpreted over rationals.
This theory is called dense linear order without endpoints
For example:

∀ϵ.∃δ.
�|x1− x2|<δ∧ |y1− y2|<δ→ |3x1 +4y1−3x2−4y2|< ϵ�

(i) Show that absolute value can be defined in first-order logic in terms of other linear
operations and comparison.
Answer: replace F (|t |) with, for example

(t > 0∧F (t))∨ (¬(t > 0)∧F (−t))

Is there a way to remove |...| while increasing formula size only linearly?
(ii) Give quantifier elimination algorithm for this theory.
Solution is simpler than for Presburger arithmetic—no divisibility.

