Semantics of Loops and Recursive Procedures

Viktor Kunčak

Properties of Program Contexts

Some Properties of Relations

$$
\begin{aligned}
& \left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p_{1} \circ p\right) \subseteq\left(p_{2} \circ p\right) \\
& \left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p \circ p_{1}\right) \subseteq\left(p \circ p_{2}\right) \\
& \left(p_{1} \subseteq p_{2}\right) \wedge\left(q_{1} \subseteq q_{2}\right) \rightarrow\left(p_{1} \cup q_{1}\right) \subseteq\left(p_{2} \cup q_{2}\right) \\
& \left(p_{1} \cup p_{2}\right) \circ q=\left(p_{1} \circ q\right) \cup\left(p_{2} \circ q\right)
\end{aligned}
$$

Monotonicity of Expressions using \cup and \circ

Consider relations that are subsets of $S \times S$ (i.e. S^{2})
The set of all such relations is

$$
C=\left\{r \mid r \subseteq S^{2}\right\}
$$

Let $E(r)$ be given by any expression built from relation r and some additional relations b_{1}, \ldots, b_{n}, using \cup and \circ.
Example: $E(r)=\left(b_{1} \circ r\right) \cup\left(r \circ b_{2}\right)$
$E(r)$ is function $C \rightarrow C$, maps relations to relations
Claim: E is monotonic function on C :

$$
r_{1} \subseteq r_{2} \rightarrow E\left(r_{1}\right) \subseteq E\left(r_{2}\right)
$$

Prove of disprove.

Monotonicity of Expressions using \cup and \circ

Consider relations that are subsets of $S \times S$ (i.e. S^{2})
The set of all such relations is

$$
C=\left\{r \mid r \subseteq S^{2}\right\}
$$

Let $E(r)$ be given by any expression built from relation r and some additional relations b_{1}, \ldots, b_{n}, using \cup and \circ.
Example: $E(r)=\left(b_{1} \circ r\right) \cup\left(r \circ b_{2}\right)$
$E(r)$ is function $C \rightarrow C$, maps relations to relations
Claim: E is monotonic function on C :

$$
r_{1} \subseteq r_{2} \rightarrow E\left(r_{1}\right) \subseteq E\left(r_{2}\right)
$$

Prove of disprove.
Proof: induction on the expression tree defining E, using monotonicity properties of u and \circ

Union-Distributivity of Expressions using \cup and \circ

Claim: E distributes over unions, that is, if $r_{i}, i \in I$ is a family of relations,

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

Prove or disprove.

Union-Distributivity of Expressions using \cup and o

Claim: E distributes over unions, that is, if $r_{i}, i \in I$ is a family of relations,

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

Prove or disprove.
False. Take $E(r)=r \circ r$ and consider relations r_{1}, r_{2}. The claim becomes

$$
\left(r_{1} \cup r_{2}\right) \circ\left(r_{1} \cup r_{2}\right)=r_{1} \circ r_{1} \cup r_{2} \circ r_{2}
$$

that is,

$$
r_{1} \circ r_{1} \cup r_{1} \circ r_{2} \cup r_{2} \circ r_{1} \cup r_{2} \circ r_{2}=r_{1} \circ r_{1} \cup r_{2} \circ r_{2}
$$

Taking, for example, $r_{1}=\{(1,2)\}, r_{2}=\{(2,3)\}$ we obtain

$$
\{(1,3)\}=\emptyset \quad(\text { false })
$$

Union "Distributivity" in One Direction

Lemma:

$$
E\left(\bigcup_{i \in I} r_{i}\right) \supseteq \bigcup_{i \in I} E\left(r_{i}\right)
$$

Union "Distributivity" in One Direction

Lemma:

$$
E\left(\bigcup_{i \in I} r_{i}\right) \supseteq \bigcup_{i \in I} E\left(r_{i}\right)
$$

Proof. Let $r=\bigcup_{i \in I} r_{i}$. Note that, for every $i, r_{i} \subseteq r$. We have shown that E is monotonic, so $E\left(r_{i}\right) \subseteq E(r)$. Since all $E\left(r_{i}\right)$ are included in $E(r)$, so is their union, so

$$
\bigcup E\left(r_{i}\right) \subseteq E(r)
$$

as desired.

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once?

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once? Proof: Induction on expression for $E(r)$. Only one branch of the tree may contain r. Note previous counter-example uses r twice.

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once? Proof: Induction on expression for $E(r)$. Only one branch of the tree may contain r. Note previous counter-example uses r twice.
2. If $E(r)$ contains r any number of times, but l is a set of natural numbers and r_{i} is an increasing sequence: $r_{1} \subseteq r_{2} \subseteq r_{3} \subseteq \ldots$

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once? Proof: Induction on expression for $E(r)$. Only one branch of the tree may contain r. Note previous counter-example uses r twice.
2. If $E(r)$ contains r any number of times, but l is a set of natural numbers and r_{i} is an increasing sequence: $r_{1} \subseteq r_{2} \subseteq r_{3} \subseteq \ldots$ Induction. In the previous counter-example the largest relation will contain all other $r_{i} \circ r_{j}$.
3. If $E(r)$ contains r any number of times, but $r_{i}, i \in I$ is a directed family of relations: for each i, j there exists k such that $r_{i} \cup r_{j} \subseteq r_{k}$, and I is possibly uncountably infinite.

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once? Proof: Induction on expression for $E(r)$. Only one branch of the tree may contain r. Note previous counter-example uses r twice.
2. If $E(r)$ contains r any number of times, but l is a set of natural numbers and r_{i} is an increasing sequence: $r_{1} \subseteq r_{2} \subseteq r_{3} \subseteq \ldots$ Induction. In the previous counter-example the largest relation will contain all other $r_{i} \circ r_{j}$.
3. If $E(r)$ contains r any number of times, but $r_{i}, i \in l$ is a directed family of relations: for each i, j there exists k such that $r_{i} \cup r_{j} \subseteq r_{k}$, and I is possibly uncountably infinite. Induction. Generalizes the previous case.

More on Mapping Code to Formulas

Local Mutable Variables

Assume our global variables are $V=\{x, z\}$
Program P introduces a local variable y inside a nested block:

$$
x=x+1 ;\{\operatorname{var} y ; y=x+3 ; z=x+y+z\} ; x=x+z
$$

$R(P)$ should be a relation between (x, z) and $\left(x^{\prime}, z^{\prime}\right)$.
Each statement should be relation between variables in scope. Inside the block we have variables $V_{1}=\{x, y, z\}$. For assignment statement $c: \quad z=x+y+z$, $R(c)$ is a relation between x, y, z and $x^{\prime}, y^{\prime}, z^{\prime}$.
Convention: consider the initial values of variables to be arbitrary
$R(y=x+3 ; z=x+y+z)=$

Local Mutable Variables

Assume our global variables are $V=\{x, z\}$
Program P introduces a local variable y inside a nested block:

$$
x=x+1 ;\{\operatorname{var} y ; y=x+3 ; z=x+y+z\} ; x=x+z
$$

$R(P)$ should be a relation between (x, z) and $\left(x^{\prime}, z^{\prime}\right)$.
Each statement should be relation between variables in scope. Inside the block we have variables $V_{1}=\{x, y, z\}$. For assignment statement $c: \quad z=x+y+z$, $R(c)$ is a relation between x, y, z and $x^{\prime}, y^{\prime}, z^{\prime}$.
Convention: consider the initial values of variables to be arbitrary $R(y=x+3 ; z=x+y+z)=y^{\prime}=x+3 \wedge z^{\prime}=2 x+3+z \wedge x^{\prime}=x$

Local Mutable Variables

Assume our global variables are $V=\{x, z\}$
Program P introduces a local variable y inside a nested block:

$$
x=x+1 ;\{\operatorname{var} y ; y=x+3 ; z=x+y+z\} ; x=x+z
$$

$R(P)$ should be a relation between (x, z) and $\left(x^{\prime}, z^{\prime}\right)$.
Each statement should be relation between variables in scope. Inside the block we have variables $V_{1}=\{x, y, z\}$. For assignment statement $c: \quad z=x+y+z$, $R(c)$ is a relation between x, y, z and $x^{\prime}, y^{\prime}, z^{\prime}$.
Convention: consider the initial values of variables to be arbitrary
$R(y=x+3 ; z=x+y+z)=y^{\prime}=x+3 \wedge z^{\prime}=2 x+3+z \wedge x^{\prime}=x$
$R(\{\operatorname{var} y ; y=x+3 ; z=x+y+z\})=$

Local Mutable Variables

Assume our global variables are $V=\{x, z\}$
Program P introduces a local variable y inside a nested block:

$$
x=x+1 ;\{\operatorname{var} y ; y=x+3 ; z=x+y+z\} ; x=x+z
$$

$R(P)$ should be a relation between (x, z) and $\left(x^{\prime}, z^{\prime}\right)$.
Each statement should be relation between variables in scope. Inside the block we have variables $V_{1}=\{x, y, z\}$. For assignment statement $c: \quad z=x+y+z$, $R(c)$ is a relation between x, y, z and $x^{\prime}, y^{\prime}, z^{\prime}$.
Convention: consider the initial values of variables to be arbitrary
$R(y=x+3 ; z=x+y+z)=y^{\prime}=x+3 \wedge z^{\prime}=2 x+3+z \wedge x^{\prime}=x$
$R(\{$ var $y ; y=x+3 ; z=x+y+z\})=z^{\prime}=2 x+3+z \wedge x^{\prime}=x$

Local Variable Translation

$R_{V}(P)$ is formula for P in the scope that has the set of variables V For example,

$$
R_{V}(x=t)=x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Then define

$$
R_{V}(\{\operatorname{var} y ; P\})=
$$

Local Variable Translation

$R_{V}(P)$ is formula for P in the scope that has the set of variables V For example,

$$
R_{V}(x=t)=x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Then define

$$
R_{V}(\{\text { var } y ; P\})=\exists y, y^{\prime} \cdot R_{V \cup\{y\}}(P)
$$

Local Variable Translation

$R_{V}(P)$ is formula for P in the scope that has the set of variables V For example,

$$
R_{V}(x=t)=x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Then define

$$
R_{V}(\{\text { var } y ; P\})=\exists y, y^{\prime} . R_{V \cup\{y\}}(P)
$$

Exercise: express havoc(x) using var.

Local Variable Translation

$R_{V}(P)$ is formula for P in the scope that has the set of variables V For example,

$$
R_{V}(x=t)=x^{\prime}=t \wedge \bigwedge_{v \in V\{x\}} v^{\prime}=v
$$

Then define

$$
R_{V}(\{\text { var } y ; P\})=\exists y, y^{\prime} . R_{V \cup\{y\}}(P)
$$

Exercise: express havoc(x) using var.

$$
R_{V}(\operatorname{havoc}(x)) \Longleftrightarrow R_{V}(\{\text { var } y ; x=y\})
$$

Expressing Specifications as Commands

Shorthand: Havoc Multiple Variables at Once

$$
\begin{aligned}
& \text { Variables } V=\left\{x_{1}, \ldots, x_{n}\right\} \\
& \text { Translation of } R\left(\operatorname{havoc}\left(y_{1}, \ldots, y_{m}\right)\right) \text { : }
\end{aligned}
$$

Shorthand: Havoc Multiple Variables at Once

Variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$
Translation of $R\left(\operatorname{havoc}\left(y_{1}, \ldots, y_{m}\right)\right)$:

$$
\bigwedge_{v \in V \backslash\left\{y_{1}, \ldots, y_{m}\right\}} v^{\prime}=v
$$

Exercise: the resulting formula is the same as for:

$$
\operatorname{havoc}\left(y_{1}\right) ; \ldots ; \operatorname{havoc}\left(y_{m}\right)
$$

Thus, the order of distinct havoc-s does not matter.

Programs and Specs are Relations

$$
\begin{array}{rc}
\text { program: } & x=x+2 ; y=x+10 \\
\text { relation: } & \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z\right\} \\
\text { formula: } & x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z
\end{array}
$$

Specification:

$$
z^{\prime}=z \wedge\left(x>0 \rightarrow\left(x^{\prime}>0 \wedge y^{\prime}>0\right)\right.
$$

Adhering to specification is relation subset:

$$
\begin{aligned}
& \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z\right\} \\
\subseteq & \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid z^{\prime}=z \wedge\left(x>0 \rightarrow\left(x^{\prime}>0 \wedge y^{\prime}>0\right)\right)\right\}
\end{aligned}
$$

Non-deterministic programs are a way of writing specifications

Writing Specs Using Havoc and Assume: Examples
Program variables $V=\{x, y, z\}$
Formula for relation (talks only about resulting state):

$$
z^{\prime}=z \wedge x^{\prime}>0 \wedge y^{\prime}>0
$$

Corresponding program:

Writing Specs Using Havoc and Assume: Examples
Program variables $V=\{x, y, z\}$
Formula for relation (talks only about resulting state):

$$
z^{\prime}=z \wedge x^{\prime}>0 \wedge y^{\prime}>0
$$

Corresponding program:

$$
\text { havoc }(x, y) ; \operatorname{assume}(x>0 \wedge y>0)
$$

Writing Specs Using Havoc and Assume: Examples
Program variables $V=\{x, y, z\}$
Formula for relation (talks only about resulting state):

$$
z^{\prime}=z \wedge x^{\prime}>0 \wedge y^{\prime}>0
$$

Corresponding program:

$$
\operatorname{havoc}(x, y) ; \operatorname{assume}(x>0 \wedge y>0)
$$

Formula for relation:

$$
z^{\prime}=z \wedge x^{\prime}>x \wedge y^{\prime}>y
$$

Corresponding program?

Writing Specs Using Havoc and Assume: Examples

Program variables $V=\{x, y, z\}$
Formula for relation (talks only about resulting state):

$$
z^{\prime}=z \wedge x^{\prime}>0 \wedge y^{\prime}>0
$$

Corresponding program:

$$
\operatorname{havoc}(x, y) ; \operatorname{assume}(x>0 \wedge y>0)
$$

Formula for relation:

$$
z^{\prime}=z \wedge x^{\prime}>x \wedge y^{\prime}>y
$$

Corresponding program?
Use local variables to store initial values.

Writing Specs Using Havoc and Assume: Examples

Program variables $V=\{x, y, z\}$
Formula for relation (talks only about resulting state):

$$
z^{\prime}=z \wedge x^{\prime}>0 \wedge y^{\prime}>0
$$

Corresponding program:

$$
\operatorname{havoc}(x, y) ; \operatorname{assume}(x>0 \wedge y>0)
$$

Formula for relation:

$$
z^{\prime}=z \wedge x^{\prime}>x \wedge y^{\prime}>y
$$

Corresponding program?
Use local variables to store initial values.

```
{ var x0; var y0;
```

 \(x 0=x ; y 0=y\);
 havoc(\(\mathrm{x}, \mathrm{y}\));
 assume (\(x>x 0 \& \& y>y 0\))
 \}

Writing Specs Using Havoc and Assume

Global variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$
Specification

$$
F\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

Becomes

Writing Specs Using Havoc and Assume

Global variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$
Specification

$$
F\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

Becomes

$$
\begin{aligned}
& \left\{\operatorname{var} y_{1}, \ldots, y_{n} ;\right. \\
& \quad y_{1}=x_{1} ; \ldots ; y_{n}=x_{n} ; \\
& \quad \operatorname{havoc}\left(x_{1}, \ldots, x_{n}\right) \\
& \left.\quad \operatorname{assume}\left(F\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)\right)\right\}
\end{aligned}
$$

Program Refinement and Equivalence

For two programs, define refinement $P_{1} \sqsubseteq P_{2}$ iff

$$
R\left(P_{1}\right) \rightarrow R\left(P_{2}\right)
$$

is a valid formula.
(Some books use the opposite meaning of \sqsubseteq.)
As usual, $P_{2} \sqsupseteq P_{1}$ iff $P_{1} \sqsubseteq P_{2}$.

- $P_{1} \sqsubseteq P_{2}$ iff $\rho\left(P_{1}\right) \subseteq \rho\left(P_{2}\right)$

Define equivalence $P_{1} \equiv P_{2}$ iff $P_{1} \sqsubseteq P_{2} \wedge P_{2} \sqsubseteq P_{1}$

- $P_{1} \equiv P_{2}$ iff $\rho\left(P_{1}\right)=\rho\left(P_{2}\right)$

Example for $V=\{x, y\}$

$$
\{\operatorname{var} x 0 ; x 0=x ; \operatorname{havoc}(x) ; \operatorname{assume}(x>x 0)\} \sqsupseteq(x=x+1)
$$

Proof: Use R to compute formulas for both sides and simplify.

Program Refinement and Equivalence

For two programs, define refinement $P_{1} \sqsubseteq P_{2}$ iff

$$
R\left(P_{1}\right) \rightarrow R\left(P_{2}\right)
$$

is a valid formula.
(Some books use the opposite meaning of \sqsubseteq.)
As usual, $P_{2} \sqsupseteq P_{1}$ iff $P_{1} \sqsubseteq P_{2}$.

- $P_{1} \sqsubseteq P_{2}$ iff $\rho\left(P_{1}\right) \subseteq \rho\left(P_{2}\right)$

Define equivalence $P_{1} \equiv P_{2}$ iff $P_{1} \sqsubseteq P_{2} \wedge P_{2} \sqsubseteq P_{1}$

- $P_{1} \equiv P_{2}$ iff $\rho\left(P_{1}\right)=\rho\left(P_{2}\right)$

Example for $V=\{x, y\}$

$$
\{\operatorname{var} x 0 ; x 0=x ; \operatorname{havoc}(x) ; \operatorname{assume}(x>x 0)\} \sqsupseteq(x=x+1)
$$

Proof: Use R to compute formulas for both sides and simplify.

$$
x^{\prime}=x+1 \wedge y^{\prime}=y \rightarrow x^{\prime}>x \wedge y^{\prime}=y
$$

Stepwise Refinement Methodology

Start form a possibly non-deterministic specification P_{0}
Refine the program until it becomes deterministic and efficiently executable.

$$
P_{0} \sqsupseteq P_{1} \sqsupseteq \ldots \sqsupseteq P_{n}
$$

Example:

$$
\begin{array}{ll}
& \text { havoc }(x) ; \operatorname{assume}(x>0) ; \text { havoc }(y) ; \text { assume }(x<y) \\
\sqsupseteq & \text { havoc }(x) ; \operatorname{assume}(x>0) ; y=x+1 \\
\sqsupseteq & x=42 ; y=x+1 \\
\sqsupseteq & x=42 ; y=43
\end{array}
$$

In the last step program equivalence holds as well

Monotonicity with Respect to Refinement

Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P_{1} ; P\right) \sqsubseteq\left(P_{2} ; P\right)$

Monotonicity with Respect to Refinement

Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P_{1} ; P\right) \sqsubseteq\left(P_{2} ; P\right)$
Version for relations: $\left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p_{1} \circ p\right) \subseteq\left(p_{2} \circ p\right)$

Monotonicity with Respect to Refinement

Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P_{1} ; P\right) \sqsubseteq\left(P_{2} ; P\right)$
Version for relations: $\left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p_{1} \circ p\right) \subseteq\left(p_{2} \circ p\right)$
Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P ; P_{1}\right) \sqsubseteq\left(P ; P_{2}\right)$

Monotonicity with Respect to Refinement

Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P_{1} ; P\right) \sqsubseteq\left(P_{2} ; P\right)$
Version for relations: $\left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p_{1} \circ p\right) \subseteq\left(p_{2} \circ p\right)$
Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P ; P_{1}\right) \sqsubseteq\left(P ; P_{2}\right)$
Version for relations: $\left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p \circ p_{1}\right) \subseteq\left(p \circ p_{2}\right)$
Theorem: if $P_{1} \sqsubseteq P_{2}$ and $Q_{1} \sqsubseteq Q_{2}$ then

$$
\left(\text { if }(*) P_{1} \text { else } Q_{1}\right) \sqsubseteq\left(\text { if }(*) P_{2} \text { else } Q_{2}\right)
$$

Monotonicity with Respect to Refinement

Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P_{1} ; P\right) \sqsubseteq\left(P_{2} ; P\right)$
Version for relations: $\left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p_{1} \circ p\right) \subseteq\left(p_{2} \circ p\right)$
Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P ; P_{1}\right) \sqsubseteq\left(P ; P_{2}\right)$
Version for relations: $\left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p \circ p_{1}\right) \subseteq\left(p \circ p_{2}\right)$
Theorem: if $P_{1} \sqsubseteq P_{2}$ and $Q_{1} \sqsubseteq Q_{2}$ then

$$
\left(\text { if }(*) P_{1} \text { else } Q_{1}\right) \sqsubseteq\left(\text { if }(*) P_{2} \text { else } Q_{2}\right)
$$

Version for relations: $\left(p_{1} \subseteq p_{2}\right) \wedge\left(q_{1} \subseteq q_{2}\right) \rightarrow\left(p_{1} \cup q_{1}\right) \subseteq\left(p_{2} \cup q_{2}\right)$

Loops

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :

```
while (x>0) {
```

 \(x=x-y\)
 \}

When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :

```
while (x>0) {
    x = x-y
}
```

When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$? Let k be the number of times loop executes.

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :
while $(x>0)$ \{
$x=x-y$
\}
When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0$:

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :
while $(x>0)$ \{

```
    x = x - y
```

\}

When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :

```
while (x>0) {
    x = x-y
}
```

When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$
- $k=1$:

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :

```
while \((x>0)\) \{
    \(x=x-y\)
\}
```

When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$
- $k=1: x>0 \wedge x^{\prime}=x-y \wedge y^{\prime}=y \wedge x^{\prime} \leq 0$

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :

```
while (x>0) {
    x = x-y
}
```

When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$? Let k be the number of times loop executes.

- $k=0: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$
- $k=1: x>0 \wedge x^{\prime}=x-y \wedge y^{\prime}=y \wedge x^{\prime} \leq 0$
- $k>0$:

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :

$$
\begin{aligned}
& \text { while }(x>0)\{ \\
& x=x-y
\end{aligned}
$$

When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$? Let k be the number of times loop executes.

- $k=0: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$
- $k=1: x>0 \wedge x^{\prime}=x-y \wedge y^{\prime}=y \wedge x^{\prime} \leq 0$
- $k>0: x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y$

Solution:

$$
\begin{aligned}
& \left(x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y\right) \vee \\
& \left(\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y\right)
\end{aligned}
$$

Heuristically Eliminating a Quantifier from formula

$$
\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Heuristically Eliminating a Quantifier from formula

$$
\begin{aligned}
& \exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y \\
& \exists k . k>0 \wedge x>0 \wedge k y=x-x^{\prime} \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
\end{aligned}
$$

Heuristically Eliminating a Quantifier from formula

$$
\begin{aligned}
& \exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y \\
& \exists k . k>0 \wedge x>0 \wedge k y=x-x^{\prime} \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
\end{aligned}
$$

Note that $x-x^{\prime}>0$ and $k>0$ so from $k y=x-x^{\prime}$ we get $y>0$.

Heuristically Eliminating a Quantifier from formula

$$
\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

$$
\exists k . k>0 \wedge x>0 \wedge k y=x-x^{\prime} \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Note that $x-x^{\prime}>0$ and $k>0$ so from $k y=x-x^{\prime}$ we get $y>0$.

$$
\exists k . k>0 \wedge y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge k=\left(x-x^{\prime}\right) / y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Apply one-point rule to eliminate k

Heuristically Eliminating a Quantifier from formula

$$
\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

$$
\exists k . k>0 \wedge x>0 \wedge k y=x-x^{\prime} \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Note that $x-x^{\prime}>0$ and $k>0$ so from $k y=x-x^{\prime}$ we get $y>0$.

$$
\exists k . k>0 \wedge y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge k=\left(x-x^{\prime}\right) / y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Apply one-point rule to eliminate k

$$
\left(\left(x-x^{\prime}\right) / y\right)>0 \wedge y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

which is also equivalent to simply

Heuristically Eliminating a Quantifier from formula

$$
\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

$$
\exists k . k>0 \wedge x>0 \wedge k y=x-x^{\prime} \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Note that $x-x^{\prime}>0$ and $k>0$ so from $k y=x-x^{\prime}$ we get $y>0$.

$$
\exists k . k>0 \wedge y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge k=\left(x-x^{\prime}\right) / y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Apply one-point rule to eliminate k

$$
\left(\left(x-x^{\prime}\right) / y\right)>0 \wedge y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

which is also equivalent to simply

$$
y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Formula for Loop

```
Meaning of
while (x>0) {
    x = x-y
}
```

is given by formula

$$
\begin{aligned}
& \left(x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y\right) \vee \\
& \left(y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y\right)
\end{aligned}
$$

Formula for Loop

Meaning of
while $(x>0)$ \{
$x=x-y$
\}
is given by formula

$$
\begin{aligned}
& \left(x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y\right) \vee \\
& \left(y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y\right)
\end{aligned}
$$

What happens if initially $x>0 \wedge y \leq 0$?

- in the formula
- in the program

Integer Programs with Loops

Integer programs with loops are Turing complete and can compute all computable functions (we can use large integers as Turing machine tape).

Even if we cannot find a closed-form integer arithmetic formula, we may be able to find

- a formula in a richer logic
- a property of the meaning of the loop (e.g. formula for the superset)

To help with these tasks, we give mathematical semantics of loops Useful concept for this is transitive closure: $r^{*}=\bigcup_{n \geq 0} r^{n}$ (We may or may not have a general formula for r^{n} or r^{*})

Some facts about relations

Let $r \subseteq S \times S$ and $\Delta=\{(x, x) \mid x \in S\}$. Then

$$
\Delta \circ r=r=r \circ \Delta
$$

We say that r is reflexive iff $\forall x \in S .(x, x) \in r$.

- equivalently, reflexivity means $\Delta \subseteq r$

Relation r is transitive iff

$$
\forall x, y, z .((x, y) \in r \wedge(y, z) \in r \rightarrow(x, z) \in r)
$$

which is the same as saying $r \circ r \subseteq r$

Transitive Closure of a Relation

$r \subseteq S \times S$. Define $r^{0}=\Delta$ and $r^{n+1}=r \circ r^{n}$. Then $\left(x_{0}, x_{n}\right) \in r^{n}$ iff $\exists x_{1}, \ldots, x_{n-1}$ such that $\left(x_{i}, x_{i+1}\right) \in r$ for $0 \leq i \leq n-1$.
Define reflexive transitive closure of r by

$$
r^{*}=\bigcup_{n \geq 0} r^{n}
$$

Properties that follow from the definition:

- $\left(x_{0}, x_{n}\right) \in r^{*}$ iff there exists $n \geq 0$ and $\exists x_{1}, \ldots, x_{n-1}$ such that $\left(x_{i}, x_{i+1}\right) \in r$ for $0 \leq i \leq n-1$ (a path in the graph r)
- r^{*} is a reflexive and transitive relation
- If s is a reflexive transitive relation and $r \subseteq s$, then $r^{*} \subseteq s$
- r^{*} is the smallest reflexive transitive relation containing r
- $\left(r^{-1}\right)^{*}=\left(r^{*}\right)^{-1}$
- $r_{1} \subseteq r_{2}$ implies $r_{1}^{*} \subseteq r_{2}^{*}$
- $r^{*}=\Delta \cup\left(r \circ r^{*}\right)$ and, likewise, $r^{*}=\Delta \cup\left(r^{*} \circ r\right)$

Towards meaning of loops: unfolding

Loops can describe an infinite number of basic paths (for a larger input, program takes a longer path)
Consider loop

$$
L \equiv \text { while }(F) c
$$

We would like to have

$$
\begin{aligned}
L & \equiv \text { if }(F)(c ; L) \\
& \equiv \text { if }(F)(c ; \text { if }(F)(c ; L))
\end{aligned}
$$

For $r_{L}=\rho(L), r_{c}=\rho(c), \Delta_{1}=\Delta_{\tilde{F}}, \Delta_{2}=\Delta_{\tilde{\neg} F}$ we have

$$
\begin{aligned}
r_{L}= & \left(\Delta_{1} \circ r_{c} \circ r_{L}\right) \cup \Delta_{2} \\
= & \left(\Delta_{1} \circ r_{c} \circ\left(\left(\Delta_{1} \circ r_{c} \circ r_{L}\right) \cup \Delta_{2}\right)\right) \cup \Delta_{2} \\
= & \Delta_{2} \cup \\
& \left(\Delta_{1} \circ r_{c}\right) \circ \Delta_{2} \cup \\
& \left(\Delta_{1} \circ r_{c}\right)^{2} \circ r_{L}
\end{aligned}
$$

Unfolding Loops

$$
\begin{aligned}
r_{L}= & \Delta_{2} \cup \\
& \left(\Delta_{1} \circ r_{c}\right) \circ \Delta_{2} \cup \\
& \left(\Delta_{1} \circ r_{c}\right)^{2} \circ \Delta_{2} \cup \\
& \left(\Delta_{1} \circ r_{c}\right)^{3} \circ r_{L}
\end{aligned}
$$

We prove by induction that for every $n \geq 0$,

$$
\left(\Delta_{1} \circ r_{c}\right)^{n} \circ \Delta_{2} \subseteq r_{L}
$$

So, $\bigcup_{n \geq 0}\left(\left(\Delta_{1} \circ r_{c}\right)^{n} \circ \Delta_{2}\right) \subseteq r_{L}$, that is

$$
\left(\bigcup_{n \geq 0}\left(\Delta_{1} \circ r_{c}\right)^{n}\right) \circ \Delta_{2} \subseteq r_{L}
$$

We do not wish to have unnecessary elements in relation, so we try

$$
r_{L}=\left(\Delta_{1} \circ r_{c}\right)^{*} \circ \Delta_{2}
$$

and this does satisfy $r_{L}=\left(\Delta_{1} \circ r_{c} \circ r_{L}\right) \cup \Delta_{2}$, so we define

$$
\rho(\boldsymbol{w h i l e}(F) c)=\left(\Delta_{\tilde{F}} \circ \rho(c)\right)^{*} \circ \Delta_{\sim \tilde{F}}
$$

Why loop semantics satisfies the condition

We defined

$$
r_{L}=\left(\Delta_{1} \circ r_{c}\right)^{*} \circ \Delta_{2}
$$

Show that $\left(\Delta_{1} \circ r_{c} \circ r_{L}\right) \cup \Delta_{2}$ equals r_{L}, as we expect from recursive definition of a while loop.

Why loop semantics satisfies the condition

We defined

$$
r_{L}=\left(\Delta_{1} \circ r_{c}\right)^{*} \circ \Delta_{2}
$$

Show that $\left(\Delta_{1} \circ r_{c} \circ r_{L}\right) \cup \Delta_{2}$ equals r_{L}, as we expect from recursive definition of a while loop.
Using property $r^{*}=\Delta \cup r \circ r^{*}$ we have

$$
\begin{aligned}
r_{L} & =\left(\Delta_{1} \circ r_{c}\right)^{*} \circ \Delta_{2} \\
& =\left[\Delta \cup \Delta_{1} \circ r_{c} \circ\left(\Delta_{1} \circ r_{c}\right)^{*}\right] \circ \Delta_{2} \\
& =\Delta_{2} \cup\left[\Delta_{1} \circ r_{c} \circ\left(\Delta_{1} \circ r_{c}\right)^{*} \circ \Delta_{2}\right] \\
& =\Delta_{2} \cup \Delta_{1} \circ r_{c} \circ r_{L}
\end{aligned}
$$

Using Loop Semantics in Example

ρ of L :

$$
\text { while }(x>0)\{
$$

$$
x=x-y
$$

is:

Using Loop Semantics in Example

ρ of L :
while $(x>0)$ \{
$x=x-y$
\}
is:

$$
\left(\Delta_{x>0} \circ \rho(x=x-y)\right)^{*} \circ \Delta_{\neg(\tilde{x}>0)}
$$

Compute each relation:

$$
\begin{aligned}
& \Delta_{x \tilde{} 0}=\{((x, y),(x, y)) \mid x>0\} \\
& \Delta_{\neg(\tilde{x}>0)}=\{((x, y),(x, y)) \mid x \leq 0\} \\
& \rho(x=x-y)=\{((x, y),(x-y, y)) \mid x, y \in \mathbb{Z}\} \\
& \Delta_{x \tilde{>} 0} \circ \rho(x=x-y)= \\
&\left(\Delta_{\left.x \tilde{x} 0^{\circ} \rho(x=x-y)\right)^{k}}=\right. \\
&\left(\Delta_{x>0} \circ \rho(x=x-y)\right)^{*}= \\
& \rho(L)=
\end{aligned}
$$

Semantics of a Program with a Loop

Compute and simplify relation for this program:

$$
x=0
$$

$$
\text { while }(y>0)\{
$$

$$
\rho(x=0)
$$

$$
x=x+y
$$

$$
\left(\Delta_{y>0} \circ \rho(x=x+y ; y=y-1)\right)^{*} \circ
$$

$$
y=y-1
$$

$$
\}
$$

$$
\Delta_{y \leq 0}
$$

$\begin{array}{r} R(x=0) \\ R([y>0]) \\ R([y \leq 0]) \end{array}$	$\begin{aligned} & x^{\prime}=0 \wedge y^{\prime}=y \\ & y^{\prime}>0 \wedge x^{\prime}=x \wedge y^{\prime}=y \\ & y^{\prime} \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y \end{aligned}$
$\begin{aligned} R\binom{[y>0] ;}{x} \\ y=y+y ; \end{aligned}$	$y>0 \wedge x^{\prime}=x+y \wedge y^{\prime}=y-1$
	$\begin{aligned} & y-(k-1)>0 \wedge \\ & x^{\prime}=x+(y+(y-1)+\cdots+y-(k-1)) \wedge y^{\prime}=y-k \\ & \text { i.e. } \\ & y \geq k \wedge x^{\prime}=x+k(y+y-(k-1)) / 2 \wedge y^{\prime}=y-k \end{aligned}$
$\begin{gathered} R\left(\left(\begin{array}{l} {[y>0] ;} \\ x=x+y ; \\ \left.y=y-1)^{*}\right) \end{array}\right.\right. \end{gathered}$	$\begin{aligned} & \quad\left(x^{\prime}=x \wedge y^{\prime}=y\right) \vee \\ & \exists k>0 . \\ & \left.y \geq k \wedge x^{\prime}=x+k(2 y-k+1)\right) / 2 \wedge y^{\prime}=y-k \\ & \text { i.e. }\left(k=y-y^{\prime}\right) \\ & \text { i.e. }\left(x^{\prime}=x \wedge y^{\prime}=y\right) \vee\left(y-y^{\prime}>0 \wedge y^{\prime} \geq 0 \wedge x^{\prime}=x+\left(y-y^{\prime}\right)\left(y+y^{\prime}+1\right) / 2\right) \end{aligned}$
R (program)	$\left(x^{\prime}=0 \wedge y^{\prime}=y \wedge y^{\prime} \leq 0\right) \vee\left(y>0 \wedge y^{\prime}=0 \wedge x^{\prime}=y(y+1) / 2\right)$

Remarks on Previous Solution

Intermediate components can be more complex than final result

- they must account for all possible initial states, even those never reached in actual executions

Be careful with handling base case. This solution is "almost correct" but incorrectly describes behavior when the initial state has, for example, $y=-2$:

$$
y^{\prime}=0 \wedge x^{\prime}=y(y+1) / 2
$$

Approximate Semantics of Loops

Instead of computing exact semantics, it can be sufficient to compute approximate semantics.
Observation: $r_{1} \subseteq r_{2} \rightarrow r_{1}^{*} \subseteq r_{2}^{*}$
Suppose we only wish to show that the semantics satisfies $y^{\prime} \leq y$

$$
\begin{array}{ll}
\begin{array}{l}
\mathrm{x}=0 \\
\text { while }(\mathrm{y}>0)\{ \\
\mathrm{x}=\mathrm{x}+\mathrm{y}
\end{array} & \rho(x=0) \circ \\
\mathrm{y}=\mathrm{y}-1 & \left(\Delta_{y \tilde{}} \circ \rho(x=x+y ; y=y-1)\right)^{* \circ} \\
\} & \Delta_{y \tilde{y} 0}
\end{array}
$$

Approximate Semantics of Loops

Instead of computing exact semantics, it can be sufficient to compute approximate semantics.
Observation: $r_{1} \subseteq r_{2} \rightarrow r_{1}^{*} \subseteq r_{2}^{*}$
Suppose we only wish to show that the semantics satisfies $y^{\prime} \leq y$

$$
\left.\begin{array}{l}
x=0 \\
\text { while }(y>0)\{ \\
x=x+y \\
y=y-1
\end{array}\right\}
$$

$$
\rho(x=0)
$$

$$
\left(\Delta_{y>0} \circ \rho(x=x+y ; y=y-1)\right)^{*} \circ
$$

$$
\square
$$

$1 \cap$

Approximate Semantics of Loops

Instead of computing exact semantics, it can be sufficient to compute approximate semantics.
Observation: $r_{1} \subseteq r_{2} \rightarrow r_{1}^{*} \subseteq r_{2}^{*}$
Suppose we only wish to show that the semantics satisfies $y^{\prime} \leq y$

```
x = 0
while (y>0) {
    x = x+y
    y=y-1
}
|
x=0
while (y>0) {
    val y0 = y
    havoc(y)
    assume(y>y0)
}
```

$\rho(x=0)$ 。
$\left(\Delta_{y>0} \circ \rho(x=x+y ; y=y-1)\right)^{*} \circ$
$\Delta_{y \tilde{\leq} 0}$
$1 \cap$
$\rho(x=0)$ 。

Recursion

Example of Recursion

For simplicity assume no parameters
(we can simulate them using global variables)

```
def f=
    if (x>0) {
\[
\text { if }(x \% 2==0)\{
\]
\[
x=x / 2 ;
\]
f;
\[
y=y * 2
\]
        } else {
            x = x-1;
            y = y + x;
            f
        }
    }
```

$$
\begin{aligned}
& E\left(r_{f}\right)= \\
& \Delta_{x>0} \circ(\\
& \left(\Delta_{x} \% 2=0^{\circ}\right. \\
& \rho(x=x / 2) \circ \\
& r_{f} \circ \\
& \rho(y=y * 2)) \\
& \cup^{\rho(y)}
\end{aligned}
$$

 \(\left(\Delta_{x} \% \neq 0^{\circ}\right.\)
 \(\rho(x=x-1)\) 。
 \(\rho(y=y+x)\) 。
 \(r_{f}\))
 $) \cup \Delta_{x \leq 0}$

Assume recursive function call denotes some relation r_{f} Need to find relation r_{f} such that $r_{f}=E\left(r_{f}\right)$

Simpler Example of Recursion

$$
\begin{aligned}
& \text { def } f= \\
& \text { if }(x>0)\{ \\
& x=x-1 \\
& f \\
& y=y+2
\end{aligned}
$$

$$
\begin{gathered}
E\left(r_{f}\right)=\left(\Delta_{x>0} \circ(\right. \\
\rho(x=x-1) \circ \\
r_{f} \circ \\
\rho(y=y+2)) \\
) \cup \Delta_{x \tilde{\leq} 0}
\end{gathered}
$$

Simpler Example of Recursion

$$
\begin{aligned}
& \text { def } f= \\
& \text { if }(x>0)\{ \\
& x=x-1 \\
& f \\
& y=y+2
\end{aligned}
$$

$$
\begin{gathered}
E\left(r_{f}\right)=\left(\Delta_{x>0} \circ(\right. \\
\rho(x=x-1) \circ \\
r_{f} \circ \\
\rho(y=y+2)) \\
) \cup \Delta_{x \tilde{\leq} 0}
\end{gathered}
$$

What is $E(\emptyset)$?

Simpler Example of Recursion

$$
\begin{aligned}
& \text { def } f= \\
& \text { if }(x>0)\{ \\
& x=x-1 \\
& f \\
& y=y+2
\end{aligned}
$$

$$
\begin{gathered}
E\left(r_{f}\right)=\left(\Delta_{x>0} \circ(\right. \\
\rho(x=x-1) \circ \\
r_{f} \circ \\
\rho(y=y+2)) \\
) \cup \Delta_{x \tilde{\leq} 0}
\end{gathered}
$$

What is $E(\emptyset)$?
What is $E(E(\emptyset))$?

Simpler Example of Recursion

$$
\begin{aligned}
& \text { def } f= \\
& \text { if }(x>0)\{ \\
& x=x-1 \\
& f \\
& y=y+2
\end{aligned}
$$

$$
\begin{gathered}
E\left(r_{f}\right)=\left(\Delta_{x>0} \circ(\right. \\
\rho(x=x-1) \circ \\
r_{f} \circ \\
\rho(y=y+2)) \\
) \cup \Delta_{x \leq 0}
\end{gathered}
$$

What is $E(\emptyset)$?
What is $E(E(\emptyset))$?
$E^{k}(\emptyset)$?

Review from Before: Expressions E on Relations

The law

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

holds, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once.
2. \Rightarrow If $E(r)$ contains r any number of times, but l is a set of natural numbers and r_{i} is an increasing sequence: $r_{1} \subseteq r_{2} \subseteq r_{3} \subseteq \ldots$
3. If $E(r)$ contains r any number of times, but $r_{i}, i \in I$ is a directed family of relations: for each i, j there exists k such that $r_{i} \cup r_{j} \subseteq r_{k}$, and I is possibly uncountably infinite.

Sequence of Bounded Recursions

Consider the sequence of relations $r_{0}=\emptyset, r_{k}=E^{k}(\emptyset)$.
What is the relationship between r_{k} and r_{k+1} ?

Sequence of Bounded Recursions

Consider the sequence of relations $r_{0}=\emptyset, r_{k}=E^{k}(\emptyset)$.
What is the relationship between r_{k} and r_{k+1} ?

- $r_{0} \subseteq r_{1}$ because $\emptyset \subseteq \ldots$. Moreover, we showed several lectures earlier that E is monotonic
- from here it follows $r_{1} \subseteq r_{2}$ and, by induction, $r_{k} \subseteq r_{k+1}$

Sequence of Bounded Recursions

Consider the sequence of relations $r_{0}=\emptyset, r_{k}=E^{k}(\emptyset)$.
What is the relationship between r_{k} and r_{k+1} ?

- $r_{0} \subseteq r_{1}$ because $\emptyset \subseteq \ldots$. Moreover, we showed several lectures earlier that E is monotonic
- from here it follows $r_{1} \subseteq r_{2}$ and, by induction, $r_{k} \subseteq r_{k+1}$

Define

$$
s=\bigcup_{k \geq 0} r_{k}
$$

Then

$$
E(s)=E\left(\bigcup_{k \geq 0} r_{k}\right) \stackrel{?}{\stackrel{?}{\bigcup}} \bigcup_{k \geq 0} E\left(r_{k}\right)=\bigcup_{k \geq 0} r_{k+1}=\bigcup_{k \geq 1} r_{k}=\emptyset \cup \bigcup_{k \geq 1} r_{k}=s
$$

Sequence of Bounded Recursions

Consider the sequence of relations $r_{0}=\emptyset, r_{k}=E^{k}(\emptyset)$.
What is the relationship between r_{k} and r_{k+1} ?

- $r_{0} \subseteq r_{1}$ because $\emptyset \subseteq \ldots$. Moreover, we showed several lectures earlier that E is monotonic
- from here it follows $r_{1} \subseteq r_{2}$ and, by induction, $r_{k} \subseteq r_{k+1}$

Define

$$
s=\bigcup_{k \geq 0} r_{k}
$$

Then

$$
E(s)=E\left(\bigcup_{k \geq 0} r_{k}\right) \stackrel{?}{=} \bigcup_{k \geq 0} E\left(r_{k}\right)=\bigcup_{k \geq 0} r_{k+1}=\bigcup_{k \geq 1} r_{k}=\emptyset \cup \bigcup_{k \geq 1} r_{k}=s
$$

If $E(s)=s$ we say s is a fixed point (fixpoint) of function E

Sequence of Bounded Recursions

Consider the sequence of relations $r_{0}=\emptyset, r_{k}=E^{k}(\emptyset)$.
What is the relationship between r_{k} and r_{k+1} ?

- $r_{0} \subseteq r_{1}$ because $\emptyset \subseteq \ldots$. Moreover, we showed several lectures earlier that E is monotonic
- from here it follows $r_{1} \subseteq r_{2}$ and, by induction, $r_{k} \subseteq r_{k+1}$

Define

$$
s=\bigcup_{k \geq 0} r_{k}
$$

Then

$$
E(s)=E\left(\bigcup_{k \geq 0} r_{k}\right) \stackrel{?}{=} \bigcup_{k \geq 0} E\left(r_{k}\right)=\bigcup_{k \geq 0} r_{k+1}=\bigcup_{k \geq 1} r_{k}=\emptyset \cup \bigcup_{k \geq 1} r_{k}=s
$$

If $E(s)=s$ we say s is a fixed point (fixpoint) of function E
Meaning of a recursive program is fixpoint of the corresponding E

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x)=x^{2}-x-3
$$

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x)=x^{2}-x-3
$$

Solution of $x^{2}-x-3=x$, that is, $(x-1)^{2}=4$, i.e., $|x-1|=2$, is $x_{1}=-1$ and $x_{2}=3$

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x)=x^{2}-x-3
$$

Solution of $x^{2}-x-3=x$, that is, $(x-1)^{2}=4$, i.e., $|x-1|=2$, is $x_{1}=-1$ and $x_{2}=3$
2. Compute the fixpoint that is smaller than all other fixpoints

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x)=x^{2}-x-3
$$

Solution of $x^{2}-x-3=x$, that is, $(x-1)^{2}=4$, i.e., $|x-1|=2$, is $x_{1}=-1$ and $x_{2}=3$
2. Compute the fixpoint that is smaller than all other fixpoints $x_{1}=-1$ is the smallest.

Union of Finite Unfoldings is Least Fixpoint

C - a collection (set) of sets (e.g. sets of pairs, i.e. relations)
$E: C \rightarrow C$ such that for $r_{0} \subseteq r_{1} \subseteq r_{2} \ldots$
we have

$$
E\left(\bigcup_{i} r_{i}\right)=\bigcup_{i} E\left(r_{i}\right)
$$

(This holds when E is given in terms of \circ and \cup.) Then $s=\bigcup_{i} E^{i}(\emptyset)$ is such that

1. $E(s)=s$ (we have shown this)
2. if r is such that $E(r) \subseteq r$ (special case: if $E(r)=r$), then $s \subseteq r$ (we show this next)

Showing that the Fixpoint is Least

$$
s=\bigcup_{i} E^{i}(\emptyset)
$$

Now take any r such that $E(r) \subseteq r$.
We will show $s \subseteq r$, that is

$$
\begin{equation*}
\bigcup_{i} E^{i}(\emptyset) \subseteq r \tag{*}
\end{equation*}
$$

This means showing $E^{i}(\emptyset) \subseteq r$, for every i. For $i=0$ this is just $\emptyset \subseteq r$. We proceed by induction. If $E^{i}(\emptyset) \subseteq r$, then by monotonicity of E

$$
E\left(E^{i}(\emptyset)\right) \subseteq E(r) \subseteq r
$$

This completes the proof of $(*)$

Summary: Least Fixpoint as Meaning of Recursion

A recursive program is a recursive definition of a relation $E(r)=r$
We define the intended meaning as $s=\bigcup_{i \geq 0} E(\emptyset)$, which satisfies $E(s)=s$ and also is the least among all relations r such that $E(r) \subseteq r$ (and therefore, also the least among those r for which $E(r)=r$)

We picked least fixpoint, so if the execution cannot terminate on a state x, then there is no x^{\prime} such that $\left(x, x^{\prime}\right) \in s$

- Let q be a program that never terminates, then
- $\rho(q)=\emptyset$ and $\rho(c \square q)=\rho(c) \cup \emptyset=\rho(c)$
- also, $\rho(q)=\rho\left(\Delta_{\emptyset}\right)$ (assume(false))

Summary: Least Fixpoint as Meaning of Recursion

A recursive program is a recursive definition of a relation $E(r)=r$
We define the intended meaning as $s=\bigcup_{i \geq 0} E(\emptyset)$, which satisfies $E(s)=s$ and also is the least among all relations r such that $E(r) \subseteq r$ (therefore, also the least among r for which $E(r)=r$)

We picked least fixpoint, so if the execution cannot terminate on a state x, then there is no x^{\prime} such that $\left(x, x^{\prime}\right) \in s$.
This model is simple (just relations on states) though it has some limitations: let q be a program that never terminates, then

- $\rho(q)=\emptyset$ and $\rho(c \square q)=\rho(c) \cup \emptyset=\rho(c)$ (we cannot observe optional non-termination in this model)
- also, $\rho(q)=\rho\left(\Delta_{\emptyset}\right)$ (assume(false)), so the absence of results due to path conditions and infinite loop are represented in the same way

Alternative: error states for non-termination (we will not pursue)

Procedure Meaning is the Least Relation

$$
\begin{array}{cc}
\text { def } f= & E\left(r_{f}\right)=\left(\Delta_{x \tilde{0} 0} \circ(\right. \\
\text { if }(x>0)\{ & \rho(x=x-1) \circ \\
x=x-1 & \\
\mathrm{f} & r_{f} \circ \\
\mathrm{y}=\mathrm{y}+2 & \rho(y=y+2)) \\
\} &) \cup \Delta_{x \tilde{\leq} 0}
\end{array}
$$

What does it mean that $E(r) \subseteq r$?

Procedure Meaning is the Least Relation

```
def f}
    if (x>0) {
        x=x-1
        f
        y=y+2
    }
```

 \(E\left(r_{f}\right)=\left(\Delta_{x>0} \circ(\right.\)
 \(\rho(x=x-1) \circ\)
 What does it mean that $E(r) \subseteq r$?
Plugging r instead of the recursive call results in something that conforms to r
Justifies modular reasoning for recursive functions
To prove that recursive procedure with body E satisfies specification r, show

- $E(r) \subseteq r$
- then because procedure meaning s is least, $s \subseteq r$

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

$$
\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \in s \rightarrow y^{\prime} \geq y
$$

$$
\begin{aligned}
& \operatorname{def} f= \\
& \text { if }(x>0)\{ \\
& x=x-1 \\
& f \\
& y=y+2
\end{aligned}
$$

$$
\begin{gathered}
E\left(r_{f}\right)=\left(\Delta_{x \sim \tilde{0}^{\circ}} \circ(\right. \\
\rho(x=x-1) \circ \\
r_{f} \circ \\
\rho(y=y+2)) \\
) \cup \Delta_{x \tilde{\leq} 0}
\end{gathered}
$$

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

$$
\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \in s \rightarrow y^{\prime} \geq y
$$

$$
\begin{aligned}
& \operatorname{def} f= \\
& \text { if }(x>0)\{ \\
& x=x-1 \\
& f \\
& y=y+2
\end{aligned}
$$

$$
\begin{gathered}
E\left(r_{f}\right)=\left(\Delta_{x \sim 0} \circ(\right. \\
\rho(x=x-1) \circ \\
r_{f} \circ \\
\rho(y=y+2)) \\
) \cup \Delta_{x \tilde{\leq} 0}
\end{gathered}
$$

Solution: let specification relation be $q=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid y^{\prime} \geq y\right\}$

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

$$
\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \in s \rightarrow y^{\prime} \geq y
$$

$$
\begin{aligned}
& \operatorname{def} f= \\
& \text { if }(x>0)\{ \\
& x=x-1 \\
& f \\
& y=y+2
\end{aligned}
$$

$$
\begin{gathered}
E\left(r_{f}\right)=\left(\Delta_{x>0} \circ(\right. \\
\rho(x=x-1) \circ \\
r_{f} \circ \\
\rho(y=y+2)) \\
) \cup \Delta_{x \leq 0}
\end{gathered}
$$

Solution: let specification relation be $q=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid y^{\prime} \geq y\right\}$
Prove $E(q) \subseteq q$ - given by a quantifier-free formula

Formula for Checking Specification

```
deff}
    if (x>0) {
        x =x-1
        f
        y=y+2
    }
```

Specification: $q=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid y^{\prime} \geq y\right\}$
Formula to prove, generated by representing $E(q) \subseteq q$:

$$
\begin{aligned}
& {\left[\left(x>0 \wedge x_{1}=x-1 \wedge y_{1}=y \wedge y_{2} \geq y_{1} \wedge y^{\prime}=y_{2}+2\right)\right.} \\
& \left.\vee\left(\neg(x>0) \wedge x^{\prime}=x \wedge y^{\prime}=y\right)\right) \rightarrow y^{\prime} \geq y
\end{aligned}
$$

- Because q appears as $E(q)$ and q, the condition appears twice.
- Proving $f \subseteq q$ by $E(q) \subseteq q$ is always sound, whether or not function f terminates; the meaning of f talks only about properties of terminating executions (relations can be partial)

Multiple Procedures: Functions on Pairs of Relations

Two mutually recursive procedures $r_{1}=E_{1}\left(r_{1}, r_{2}\right), \quad r_{2}=E_{2}\left(r_{1}, r_{2}\right)$
We extend the approach to work on pairs of relations:

$$
\left(r_{1}, r_{2}\right)=\left(E_{1}\left(r_{1}, r_{2}\right), E_{2}\left(r_{1}, r_{2}\right)\right)
$$

Define $\bar{E}\left(r_{1}, r_{2}\right)=\left(E_{1}\left(r_{1}, r_{2}\right), E_{2}\left(r_{1}, r_{2}\right)\right)$, let $\bar{r}=\left(r_{1}, r_{2}\right)$. We define semantics of procedures as the least solution of

$$
\bar{E}(\bar{r})=\bar{r}
$$

where $\left(r_{1}, r_{2}\right) \sqsubseteq\left(r_{1}^{\prime}, r_{2}^{\prime}\right)$ means $r_{1} \subseteq r_{1}^{\prime}$ and $r_{2} \subseteq r_{2}^{\prime}$
Even though pairs of relations are not sets but pairs of sets, we can define set-like operations on them, e.g.

$$
\left(r_{1}, r_{2}\right) \sqcup\left(r_{1}^{\prime}, r_{2}^{\prime}\right)=\left(r_{1} \cup r_{1}^{\prime}, r_{2} \cup r_{2}^{\prime}\right)
$$

The entire theory works when we have a partial order \sqsubseteq with some "good properties". (Lattice elements are a generalization of sets.)

Multiple Procedures: Least Fixedpoint and Consequences

Two mutually recursive procedures $r_{1}=E_{1}\left(r_{1}, r_{2}\right), \quad r_{2}=E_{2}\left(r_{1}, r_{2}\right)$
For $E\left(r_{1}, r_{2}\right)=\left(E_{1}\left(r_{1}, r_{2}\right), E_{2}\left(r_{1}, r_{2}\right)\right)$, semantics is

$$
\left(s_{1}, s_{2}\right)=\bigsqcup_{i \geq 0} \bar{E}^{i}(\emptyset, \emptyset)
$$

It follows that for any c_{1}, c_{2} if

$$
E_{1}\left(c_{1}, c_{2}\right) \subseteq c_{1} \text { and } E_{2}\left(c_{1}, c_{2}\right) \subseteq c_{2}
$$

then $s_{1} \subseteq c_{1}$ and $s_{2} \subseteq c_{2}$.
Induction-like principle: To prove that mutually recursive relations satisfy two contracts, prove those contracts for the relation body definitions in which recursive calls are replaced by those contracts.

Replacing Calls by Contracts: Example

```
def r1 = {
    if (x % 2 == 1) {
        x = x-1
    }
    y=y+2
    r2
} ensuring(y > old(y))
```

```
def \(\mathrm{r} 2=\{\)
    if \((x!=0)\{\)
        \(x=x / 2\)
        r1
    \}
\} ensuring ( \(\mathrm{y}>=\operatorname{old}(\mathrm{y})\) )
```


Replacing Calls by Contracts: Example

```
def r1 = {
    if (x % 2 == 1) {
        x = x-1
    }
    y=y+2
    r2
} ensuring(y > old(y))
```

```
def r2 = {
    if (x !=0) {
        x = x/2
        r1
    }
ensuring(y>= old(y))
```

Reduces to checking these two non-recursive procedures:

```
def r1 = {
    if (x % 2 == 1) {
        x = x-1
    }
    y = y + 2
    {val x0 = x; y0 = y
        havoc(x,y)
        assume(y >= y0)}
} ensuring(y > old(y))
```

```
def r2 = {
    if (x !=0) {
        x = x/2
        val x0 = x; y0 = y
        havoc(x,y)
        assume(y>y0)
    }
} ensuring(y >= old(y))
```

