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Properties of Program Contexts



Some Properties of Relations

(p1 ⊆ p2)→ (p1 ◦p)⊆ (p2 ◦p)

(p1 ⊆ p2)→ (p ◦p1)⊆ (p ◦p2)

(p1 ⊆ p2)∧ (q1 ⊆ q2) → (p1 ∪q1)⊆ (p2 ∪q2)

(p1 ∪p2) ◦q =(p1 ◦q)∪ (p2 ◦q)



Monotonicity of Expressions using ∪ and ◦
Consider relations that are subsets of S ×S (i.e. S2)
The set of all such relations is

C = {r | r ⊆ S2}
Let E(r) be given by any expression built from relation r and some additional relations
b1, . . . ,bn, using ∪ and ◦.
Example: E(r)= (b1 ◦ r)∪ (r ◦b2)
E(r) is function C →C , maps relations to relations
Claim: E is monotonic function on C :

r1 ⊆ r2→E(r1)⊆E(r2)

Prove of disprove.

Proof: induction on the expression tree defining E , using monotonicity properties of ∪
and ◦



Monotonicity of Expressions using ∪ and ◦
Consider relations that are subsets of S ×S (i.e. S2)
The set of all such relations is

C = {r | r ⊆ S2}
Let E(r) be given by any expression built from relation r and some additional relations
b1, . . . ,bn, using ∪ and ◦.
Example: E(r)= (b1 ◦ r)∪ (r ◦b2)
E(r) is function C →C , maps relations to relations
Claim: E is monotonic function on C :

r1 ⊆ r2→E(r1)⊆E(r2)

Prove of disprove.
Proof: induction on the expression tree defining E , using monotonicity properties of ∪
and ◦



Union-Distributivity of Expressions using ∪ and ◦
Claim: E distributes over unions, that is, if ri , i ∈ I is a family of relations,

E(
∪
i∈I

ri)=
∪
i∈I

E(ri)

Prove or disprove.

False. Take E(r)= r ◦ r and consider relations r1, r2. The claim becomes

(r1 ∪ r2) ◦ (r1 ∪ r2)= r1 ◦ r1 ∪ r2 ◦ r2

that is,
r1◦r1 ∪ r1◦r2 ∪ r2◦r1 ∪ r2◦r2 = r1◦r1 ∪ r2◦r2

Taking, for example, r1 = {(1,2)}, r2 = {(2,3)} we obtain

{(1,3)}= ; (false)



Union-Distributivity of Expressions using ∪ and ◦
Claim: E distributes over unions, that is, if ri , i ∈ I is a family of relations,

E(
∪
i∈I

ri)=
∪
i∈I

E(ri)

Prove or disprove.
False. Take E(r)= r ◦ r and consider relations r1, r2. The claim becomes

(r1 ∪ r2) ◦ (r1 ∪ r2)= r1 ◦ r1 ∪ r2 ◦ r2

that is,
r1◦r1 ∪ r1◦r2 ∪ r2◦r1 ∪ r2◦r2 = r1◦r1 ∪ r2◦r2

Taking, for example, r1 = {(1,2)}, r2 = {(2,3)} we obtain

{(1,3)}= ; (false)



Union “Distributivity” in One Direction

Lemma:
E(
∪
i∈I

ri)⊇
∪
i∈I

E(ri)

Proof. Let r =
∪

i∈I ri . Note that, for every i , ri ⊆ r . We have shown that E is
monotonic, so E(ri)⊆E(r). Since all E(ri) are included in E(r), so is their union, so∪

E(ri)⊆E(r)

as desired.
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Union-Distributivity - Refined

Does distributivity
E(
∪
i∈I

ri)=
∪
i∈I

E(ri)

hold, for each of these cases
1. If E(r) is given by an expression containing r at most once?

Proof: Induction on
expression for E(r). Only one branch of the tree may contain r . Note previous
counter-example uses r twice.

2. If E(r) contains r any number of times, but I is a set of natural numbers and ri is
an increasing sequence: r1 ⊆ r2 ⊆ r3 ⊆ . . . Induction. In the previous
counter-example the largest relation will contain all other ri ◦ rj .

3. If E(r) contains r any number of times, but ri , i ∈ I is a directed family of
relations: for each i , j there exists k such that ri ∪ rj ⊆ rk , and I is possibly
uncountably infinite. Induction. Generalizes the previous case.
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More on Mapping Code to Formulas



Local Mutable Variables

Assume our global variables are V = {x ,z}
Program P introduces a local variable y inside a nested block:

x = x +1;{var y ;y = x +3;z = x + y + z};x = x + z

R(P) should be a relation between (x ,z) and (x ′,z ′).
Each statement should be relation between variables in scope. Inside the block we
have variables V1 = {x ,y ,z}. For assignment statement c: z = x + y + z ,
R(c) is a relation between x ,y ,z and x ′,y ′,z ′.
Convention: consider the initial values of variables to be arbitrary
R(y = x +3;z = x + y + z)=

y ′= x +3∧ z ′= 2x +3+ z ∧ x ′= x

R({var y ;y = x +3;z = x + y + z})= z ′= 2x +3+ z ∧ x ′= x
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Local Variable Translation

RV (P) is formula for P in the scope that has the set of variables V
For example,

RV (x = t) = x ′= t ∧ ∧
v∈V \{x}

v ′= v

Then define
RV ({var y ;P}) =

∃y ,y ′.RV∪{y}(P)

Exercise: express havoc(x) using var.

RV (havoc(x)) ⇐⇒ RV ({var y ; x = y})
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Expressing Specifications as Commands



Shorthand: Havoc Multiple Variables at Once

Variables V = {x1, . . . ,xn}
Translation of R(havoc(y1, . . . ,ym)):

∧
v∈V \{y1,...,ym}

v ′= v

Exercise: the resulting formula is the same as for:

havoc(y1); . . . ;havoc(ym)

Thus, the order of distinct havoc-s does not matter.
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Programs and Specs are Relations

program: x = x +2;y = x +10
relation: {(x ,y ,z ,x ′,y ′,z ′) | x ′= x +2∧ y ′= x +12∧ z ′= z}
formula: x ′= x +2∧ y ′= x +12∧ z ′= z

Specification:
z ′= z ∧ (x > 0→ (x ′ > 0∧ y ′ > 0)

Adhering to specification is relation subset:

{(x ,y ,z ,x ′,y ′,z ′) | x ′= x +2∧ y ′= x +12∧ z ′= z}
⊆ {(x ,y ,z ,x ′,y ′,z ′) | z ′= z ∧ (x > 0→ (x ′ > 0∧ y ′ > 0))}

Non-deterministic programs are a way of writing specifications



Writing Specs Using Havoc and Assume: Examples
Program variables V = {x ,y ,z}
Formula for relation (talks only about resulting state):

z ′= z ∧ x ′ > 0∧ y ′ > 0

Corresponding program:

havoc(x ,y);assume(x > 0∧ y > 0)

Formula for relation:
z ′= z ∧ x ′ > x ∧ y ′ > y

Corresponding program?
Use local variables to store initial values.
{ var x0; var y0;

x0 = x; y0 = y;
havoc(x,y);
assume(x > x0 && y > y0)

}
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Writing Specs Using Havoc and Assume

Global variables V = {x1, . . . ,xn}
Specification

F (x1, . . . ,xn,x ′1, . . . ,x ′n)
Becomes

{ var y1, . . . ,yn;
y1 = x1; . . . ;yn = xn;
havoc(x1, . . . ,xn);
assume(F (y1, . . . ,yn,x1, . . . ,xn)) }
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Program Refinement and Equivalence
For two programs, define refinement P1 ⊑P2 iff

R(P1)→R(P2)

is a valid formula.
(Some books use the opposite meaning of ⊑.)
As usual, P2 ⊒P1 iff P1 ⊑P2.
▶ P1 ⊑P2 iff ρ(P1)⊆ρ(P2)

Define equivalence P1 ≡P2 iff P1 ⊑P2 ∧P2 ⊑P1
▶ P1 ≡P2 iff ρ(P1)=ρ(P2)

Example for V = {x ,y}
{var x0;x0= x ;havoc(x);assume(x > x0)} ⊒ (x = x +1)

Proof: Use R to compute formulas for both sides and simplify.

x ′= x +1∧ y ′= y → x ′ > x ∧ y ′= y
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Stepwise Refinement Methodology

Start form a possibly non-deterministic specification P0
Refine the program until it becomes deterministic and efficiently executable.

P0 ⊒P1 ⊒ . . .⊒Pn

Example:
havoc(x);assume(x > 0);havoc(y);assume(x < y)

⊒ havoc(x);assume(x > 0);y = x +1
⊒ x = 42;y = x +1
⊒ x = 42;y = 43

In the last step program equivalence holds as well



Monotonicity with Respect to Refinement

Theorem: if P1 ⊑P2 then (P1;P)⊑ (P2;P)

Version for relations: (p1 ⊆ p2)→ (p1 ◦p)⊆ (p2 ◦p)
Theorem: if P1 ⊑P2 then (P;P1)⊑ (P;P2)
Version for relations: (p1 ⊆ p2)→ (p ◦p1)⊆ (p ◦p2)

Theorem: if P1 ⊑P2 and Q1 ⊑Q2 then

(if (∗)P1 else Q1)⊑ (if (∗)P2 else Q2)

Version for relations: (p1 ⊆ p2)∧ (q1 ⊆ q2) → (p1 ∪q1)⊆ (p2 ∪q2)
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Loops



Loops: Example

Consider the set of variables V = {x ,y} and this program L:
while (x > 0) {

x = x − y
}

When the loop terminates, what is the (smallest) relation ρ(L) between state (x ,y)
before loop started executing and the final state (x ′,y ′)?

Let k be the number of times loop executes.
▶ k = 0: x ≤ 0∧ x ′= x ∧ y ′= y
▶ k = 1: x > 0∧ x ′= x − y ∧ y ′= y ∧ x ′ ≤ 0
▶ k > 0: x > 0∧ x ′= x −ky ∧ x ′ ≤ 0∧ y ′= y

Solution:
(x ≤ 0∧ x ′= x ∧ y ′= y) ∨
(∃k . k > 0∧ x > 0∧ x ′= x −ky ∧ x ′ ≤ 0∧ y ′= y)
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before loop started executing and the final state (x ′,y ′)?
Let k be the number of times loop executes.
▶ k = 0:

x ≤ 0∧ x ′= x ∧ y ′= y
▶ k = 1: x > 0∧ x ′= x − y ∧ y ′= y ∧ x ′ ≤ 0
▶ k > 0: x > 0∧ x ′= x −ky ∧ x ′ ≤ 0∧ y ′= y

Solution:
(x ≤ 0∧ x ′= x ∧ y ′= y) ∨
(∃k . k > 0∧ x > 0∧ x ′= x −ky ∧ x ′ ≤ 0∧ y ′= y)
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Heuristically Eliminating a Quantifier from formula

∃k . k > 0∧ x > 0∧ x ′= x −ky ∧ x ′ ≤ 0∧ y ′= y

∃k . k > 0∧ x > 0∧ky = x − x ′ ∧ x ′ ≤ 0∧ y ′= y

Note that x − x ′ > 0 and k > 0 so from ky = x − x ′ we get y > 0.

∃k . k > 0∧ y > 0∧ x > 0∧ y |(x − x ′)∧k =(x − x ′)/y ∧ x ′ ≤ 0∧ y ′= y

Apply one-point rule to eliminate k

((x − x ′)/y)> 0∧ y > 0∧ x > 0∧ y |(x − x ′)∧ x ′ ≤ 0∧ y ′= y

which is also equivalent to simply

y > 0∧ x > 0∧ y |(x − x ′)∧ x ′ ≤ 0∧ y ′= y
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Formula for Loop

Meaning of
while (x > 0) {

x = x − y
}

is given by formula

(x ≤ 0∧ x ′= x ∧ y ′= y) ∨
(y > 0∧ x > 0∧ y |(x − x ′)∧ x ′ ≤ 0∧ y ′= y)

What happens if initially x > 0∧ y ≤ 0 ?
▶ in the formula
▶ in the program
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Integer Programs with Loops

Integer programs with loops are Turing complete and can compute all computable
functions (we can use large integers as Turing machine tape).

Even if we cannot find a closed-form integer arithmetic formula, we may be able to
find
▶ a formula in a richer logic
▶ a property of the meaning of the loop

(e.g. formula for the superset)
To help with these tasks, we give mathematical semantics of loops
Useful concept for this is transitive closure: r ∗=

∪
n≥0 rn

( We may or may not have a general formula for rn or r ∗ )



Some facts about relations

Let r ⊆ S ×S and ∆= {(x ,x) | x ∈ S}. Then

∆ ◦ r = r = r ◦∆
We say that r is reflexive iff ∀x ∈ S .(x ,x) ∈ r .
▶ equivalently, reflexivity means ∆⊆ r

Relation r is transitive iff

∀x ,y ,z . ((x ,y) ∈ r ∧ (y ,z) ∈ r → (x ,z) ∈ r)

which is the same as saying r ◦ r ⊆ r



Transitive Closure of a Relation
r ⊆ S ×S. Define r0 =∆ and rn+1 = r ◦ rn. Then (x0,xn) ∈ rn iff ∃x1, . . . ,xn−1 such that
(xi ,xi+1) ∈ r for 0≤ i ≤ n−1.
Define reflexive transitive closure of r by

r ∗=
∪
n≥0

rn

Properties that follow from the definition:
▶ (x0,xn) ∈ r ∗ iff there exists n≥ 0 and ∃x1, . . . ,xn−1 such that (xi ,xi+1) ∈ r for

0≤ i ≤ n−1 (a path in the graph r)
▶ r ∗ is a reflexive and transitive relation
▶ If s is a reflexive transitive relation and r ⊆ s, then r ∗ ⊆ s
▶ r ∗ is the smallest reflexive transitive relation containing r

▶ (r−1)∗=(r ∗)−1

▶ r1 ⊆ r2 implies r ∗1 ⊆ r ∗2
▶ r ∗=∆∪ (r ◦ r ∗) and, likewise, r ∗=∆∪ (r ∗ ◦ r)



Towards meaning of loops: unfolding
Loops can describe an infinite number of basic paths
(for a larger input, program takes a longer path)
Consider loop

L ≡ while(F )c

We would like to have
L ≡ if (F ) (c ;L)
≡ if (F ) (c ; if (F ) (c ;L))

For rL =ρ(L), rc =ρ(c), ∆1 =∆F̃ , ∆2 =∆¬̃F we have

rL = (∆1 ◦ rc ◦ rL)∪∆2
= (∆1 ◦ rc ◦ ((∆1 ◦ rc ◦ rL)∪∆2))∪∆2
= ∆2 ∪

(∆1 ◦ rc) ◦∆2 ∪
(∆1 ◦ rc)

2 ◦ rL



Unfolding Loops

rL = ∆2 ∪
(∆1 ◦ rc) ◦∆2 ∪
(∆1 ◦ rc)

2 ◦∆2 ∪
(∆1 ◦ rc)

3 ◦ rL

We prove by induction that for every n≥ 0,
(∆1 ◦ rc)

n ◦∆2 ⊆ rL

So,
∪

n≥0
�
(∆1 ◦ rc)

n ◦∆2
�⊆ rL, that is�∪

n≥0
(∆1 ◦ rc)

n� ◦∆2 ⊆ rL

We do not wish to have unnecessary elements in relation, so we try
rL =(∆1 ◦ rc)

∗ ◦∆2

and this does satisfy rL =(∆1 ◦ rc ◦ rL)∪∆2, so we define
ρ(while(F )c)= (∆F̃ ◦ρ(c))∗ ◦∆¬̃F



Why loop semantics satisfies the condition

We defined
rL =(∆1 ◦ rc)

∗ ◦∆2

Show that (∆1 ◦ rc ◦ rL)∪∆2 equals rL, as we expect from recursive definition of a while
loop.

Using property r ∗=∆∪ r ◦ r ∗ we have

rL = (∆1 ◦ rc)
∗ ◦∆2

= [∆ ∪ ∆1 ◦ rc ◦ (∆1 ◦ rc)
∗] ◦∆2

= ∆2 ∪ [∆1 ◦ rc ◦ (∆1 ◦ rc)
∗ ◦∆2]

= ∆2 ∪∆1 ◦ rc ◦ rL
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Using Loop Semantics in Example
ρ of L:
while (x > 0) {

x = x − y
}

is:

(∆ ˜x>0 ◦ρ(x = x − y))∗ ◦∆ ˜¬(x>0)

Compute each relation:

∆ ˜x>0 = {((x ,y),(x ,y)) | x > 0}
∆ ˜¬(x>0) = {((x ,y),(x ,y)) | x ≤ 0}

ρ(x = x − y) = {((x ,y),(x − y ,y)) | x ,y ∈Z}
∆ ˜x>0 ◦ρ(x = x − y) =

(∆ ˜x>0 ◦ρ(x = x − y))k =
(∆ ˜x>0 ◦ρ(x = x − y))∗ =

ρ(L) =
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Semantics of a Program with a Loop
Compute and simplify relation for this program:
x = 0
while (y > 0) {

x = x + y
y = y − 1

}

ρ(x = 0)◦
(∆ ˜y>0 ◦ρ(x = x + y ;y = y −1))∗◦
∆ ˜y≤0

R(x = 0) x ′ = 0∧y ′ = y
R([y > 0]) y ′ > 0∧x ′ = x ∧y ′ = y
R([y ≤ 0]) y ′ ≤ 0∧x ′ = x ∧y ′ = y

R( [y > 0];
x = x +y ;
y = y −1) y > 0∧x ′ = x +y ∧y ′ = y −1

R(( [y > 0];
x = x +y ;
y = y −1)k ),k > 0

y − (k −1)> 0∧
x ′ = x +(y +(y−1)+ · · ·+y − (k−1))∧y ′ = y −k
i.e.
y ≥ k ∧x ′ = x +k(y +y − (k−1))/2∧y ′ = y −k

R(( [y > 0];
x = x +y ;
y = y −1)∗)

(x ′ = x ∧y ′ = y) ∨
∃k > 0.

y ≥ k ∧x ′ = x +k(2y −k +1))/2∧y ′ = y −k
i.e. (k = y −y ′)

(x ′ = x ∧y ′ = y)∨ �y −y ′ > 0∧y ′ ≥ 0∧x ′ = x +(y −y ′)(y +y ′+1)/2
�

i.e.
R(program) (x ′ = 0∧y ′ = y ∧y ′ ≤ 0)∨ �y > 0∧y ′ = 0∧x ′ = y(y +1)/2

�



Remarks on Previous Solution

Intermediate components can be more complex than final result
▶ they must account for all possible initial states, even those never reached in actual

executions

Be careful with handling base case. This solution is “almost correct” but incorrectly
describes behavior when the initial state has, for example, y =−2:

y ′= 0∧ x ′= y(y +1)/2



Approximate Semantics of Loops
Instead of computing exact semantics, it can be sufficient to compute approximate
semantics.
Observation: r1 ⊆ r2→ r ∗1 ⊆ r ∗2
Suppose we only wish to show that the semantics satisfies y ′ ≤ y
x = 0
while (y > 0) {

x = x + y
y = y − 1

}

ρ(x = 0)◦
(∆ ˜y>0 ◦ρ(x = x + y ;y = y −1))∗◦
∆ ˜y≤0

⊑ ⊆

x = 0
while (y > 0) {

val y0 = y
havoc(y)
assume(y > y0)

}

ρ(x = 0)◦
(∆ ˜y>0 ◦ {(x ,y ,x ′,y ′) | y ′ ≤ y})∗◦
∆ ˜y≤0
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Recursion



Example of Recursion
For simplicity assume no parameters
(we can simulate them using global variables)

def f =
if (x > 0) {

if (x % 2 == 0) {
x = x / 2;
f;
y = y ∗ 2

} else {
x = x − 1;
y = y + x;
f

}
}

E(rf )=
∆ ˜x>0 ◦
�

(∆x%2=0◦
ρ(x = x/2)◦
rf ◦
ρ(y = y ∗2))
∪
(∆x%2 ̸=0◦
ρ(x = x −1)◦
ρ(y = y + x)◦
rf )�∪∆ ˜x≤0

Assume recursive function call denotes some relation rf
Need to find relation rf such that rf =E(rf )



Simpler Example of Recursion

def f =
if (x > 0) {

x = x − 1
f
y = y + 2

}

E(rf )= (∆ ˜x>0 ◦
�

ρ(x = x −1)◦
rf ◦
ρ(y = y +2))�∪∆ ˜x≤0

What is E(;)?
What is E(E(;))?
E k(;)?
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Review from Before: Expressions E on Relations

The law
E(
∪
i∈I

ri)=
∪
i∈I

E(ri)

holds, for each of these cases
1. If E(r) is given by an expression containing r at most once.
2. ⇒ If E(r) contains r any number of times, but I is a set of natural numbers and

ri is an increasing sequence: r1 ⊆ r2 ⊆ r3 ⊆ . . .

3. If E(r) contains r any number of times, but ri , i ∈ I is a directed family of
relations: for each i , j there exists k such that ri ∪ rj ⊆ rk , and I is possibly
uncountably infinite.



Sequence of Bounded Recursions

Consider the sequence of relations r0 = ;, rk =E k(;).
What is the relationship between rk and rk+1?

▶ r0 ⊆ r1 because ; ⊆ . . .. Moreover, we showed several lectures earlier that E is
monotonic
▶ from here it follows r1 ⊆ r2 and, by induction, rk ⊆ rk+1

Define
s =
∪
k≥0

rk

Then
E(s)=E(
∪
k≥0

rk)
?
=
∪
k≥0

E(rk)=
∪
k≥0

rk+1 =
∪
k≥1

rk = ;∪
∪
k≥1

rk = s

If E(s)= s we say s is a fixed point (fixpoint) of function E

Meaning of a recursive program is fixpoint of the corresponding E
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Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function f :R→R defined as

f (x)= x2− x −3

Solution of x2− x −3= x , that is, (x −1)2 = 4, i.e., |x −1|= 2, is x1 =−1 and x2 = 3
2. Compute the fixpoint that is smaller than all other fixpoints x1 =−1 is the smallest.
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1. Find all fixpoints of function f :R→R defined as

f (x)= x2− x −3

Solution of x2− x −3= x , that is, (x −1)2 = 4, i.e., |x −1|= 2, is x1 =−1 and x2 = 3
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Union of Finite Unfoldings is Least Fixpoint

C - a collection (set) of sets (e.g. sets of pairs, i.e. relations)
E :C →C such that for r0 ⊆ r1 ⊆ r2 . . .
we have

E(
∪

i
ri)=
∪

i
E(ri)

(This holds when E is given in terms of ◦ and ∪.) Then s =
∪

i E i(;) is such that
1. E(s)= s (we have shown this)
2. if r is such that E(r)⊆ r (special case: if E(r)= r), then s ⊆ r (we show this next)



Showing that the Fixpoint is Least

s =
∪

i
E i(;)

Now take any r such that E(r)⊆ r .
We will show s ⊆ r , that is ∪

i
E i(;)⊆ r (∗)

This means showing E i(;)⊆ r , for every i . For i = 0 this is just ; ⊆ r . We proceed by
induction. If E i(;)⊆ r , then by monotonicity of E

E(E i(;))⊆E(r)⊆ r

This completes the proof of (∗)



Summary: Least Fixpoint as Meaning of Recursion

A recursive program is a recursive definition of a relation E(r)= r

We define the intended meaning as s =
∪

i≥0 E(;), which satisfies E(s)= s and also is
the least among all relations r such that E(r)⊆ r (and therefore, also the least among
those r for which E(r)= r)

We picked least fixpoint, so if the execution cannot terminate on a state x , then there
is no x ′ such that (x ,x ′) ∈ s
▶ Let q be a program that never terminates, then
▶ ρ(q)= ; and ρ(c q)=ρ(c)∪;=ρ(c)
▶ also, ρ(q)=ρ(∆;) (assume(false))



Summary: Least Fixpoint as Meaning of Recursion
A recursive program is a recursive definition of a relation E(r)= r

We define the intended meaning as s =
∪

i≥0 E(;), which satisfies E(s)= s and also is
the least among all relations r such that E(r)⊆ r (therefore, also the least among r for
which E(r)= r)

We picked least fixpoint, so if the execution cannot terminate on a state x , then there
is no x ′ such that (x ,x ′) ∈ s.
This model is simple (just relations on states) though it has some limitations: let q be
a program that never terminates, then
▶ ρ(q)= ; and ρ(c q)=ρ(c)∪;=ρ(c)

(we cannot observe optional non-termination in this model)
▶ also, ρ(q)=ρ(∆;) (assume(false)), so the absence of results due to path

conditions and infinite loop are represented in the same way
Alternative: error states for non-termination (we will not pursue)



Procedure Meaning is the Least Relation

def f =
if (x > 0) {

x = x − 1
f
y = y + 2

}

E(rf )= (∆ ˜x>0 ◦
�

ρ(x = x −1)◦
rf ◦
ρ(y = y +2))�∪∆ ˜x≤0

What does it mean that E(r)⊆ r ?

Plugging r instead of the recursive call results in something that conforms to r

Justifies modular reasoning for recursive functions

To prove that recursive procedure with body E satisfies specification r , show
▶ E(r)⊆ r
▶ then because procedure meaning s is least, s ⊆ r
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Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

((x ,y),(x ′,y ′)) ∈ s→ y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2

}

E(rf )= (∆ ˜x>0 ◦
�

ρ(x = x −1)◦
rf ◦
ρ(y = y +2))�∪∆ ˜x≤0

Solution: let specification relation be q = {((x ,y),(x ′,y ′)) | y ′ ≥ y}
Prove E(q)⊆ q - given by a quantifier-free formula
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Formula for Checking Specification
def f =

if (x > 0) {
x = x − 1
f
y = y + 2

}

Specification: q = {((x ,y),(x ′,y ′)) | y ′ ≥ y}
Formula to prove, generated by representing E(q)⊆ q:�

(x > 0∧ x1 = x −1∧ y1 = y ∧ y2 ≥ y1 ∧ y ′= y2 +2)
∨(¬(x > 0)∧ x ′= x ∧ y ′= y)

� → y ′ ≥ y

▶ Because q appears as E(q) and q, the condition appears twice.
▶ Proving f ⊆ q by E(q)⊆ q is always sound, whether or not function f terminates;

the meaning of f talks only about properties of terminating executions (relations
can be partial)



Multiple Procedures: Functions on Pairs of Relations
Two mutually recursive procedures r1 =E1(r1, r2), r2 =E2(r1, r2)
We extend the approach to work on pairs of relations:

(r1, r2)= (E1(r1, r2),E2(r1, r2))

Define Ē(r1, r2)= (E1(r1, r2),E2(r1, r2)), let r̄ =(r1, r2). We define semantics of
procedures as the least solution of

Ē(r̄)= r̄

where (r1, r2)⊑ (r ′1, r ′2) means r1 ⊆ r ′1 and r2 ⊆ r ′2
Even though pairs of relations are not sets but pairs of sets, we can define set-like
operations on them, e.g.

(r1, r2)⊔ (r ′1, r ′2)= (r1 ∪ r ′1, r2 ∪ r ′2)

The entire theory works when we have a partial order ⊑ with some “good properties”.
(Lattice elements are a generalization of sets.)



Multiple Procedures: Least Fixedpoint and Consequences

Two mutually recursive procedures r1 =E1(r1, r2), r2 =E2(r1, r2)
For E(r1, r2)= (E1(r1, r2),E2(r1, r2)), semantics is

(s1,s2)=
⊔
i≥0

Ē i(;,;)

It follows that for any c1,c2 if

E1(c1,c2)⊆ c1 and E2(c1,c2)⊆ c2

then s1 ⊆ c1 and s2 ⊆ c2.

Induction-like principle: To prove that mutually recursive relations satisfy two
contracts, prove those contracts for the relation body definitions in which recursive
calls are replaced by those contracts.



Replacing Calls by Contracts: Example
def r1 = {

if (x % 2 == 1) {
x = x − 1

}
y = y + 2
r2

} ensuring(y > old(y))

def r2 = {
if (x != 0) {

x = x / 2
r1

}
} ensuring(y >= old(y))

Reduces to checking these two non-recursive procedures:
def r1 = {

if (x % 2 == 1) {
x = x − 1

}
y = y + 2
{ val x0 = x; y0 = y

havoc(x,y)
assume(y >= y0) }

} ensuring(y > old(y))

def r2 = {
if (x != 0) {

x = x / 2
val x0 = x; y0 = y
havoc(x,y)
assume(y > y0)

}
} ensuring(y >= old(y))
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