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Syntactic vs Semantic Hoare Triples
We defined Hoare triple for sets and relations: {P}r{Q} where PCS, rc5xS, QCS:

Vx,X'(xe PA(x,X)er— % €Q)

We also extend this notation when A, B are formulas and c is a program fragment
(command). In such case, let

> P=A,
» r=p(c) (relation associated with the command)
> Q=B

here, if F is a formula (e.g. A or B) over x, then F, denotes {x | F} i.e. the set of
states where formula holds.
Then we define {A}c{B} to mean

{As} p(c) {Bs}

which reduces it to the case of sets and relations.



Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.
L {j=a}j=j+1{a=j+1}
2. {i=j}i=j+i{i > j}
3. {j=a+b}i=b;j=a {j =2xa}

4. {i > j} j=i+1; i=j+1 {i > j}

(&;]

. {i '=j} if i>j then m=i—j else m=j—i {m > 0}

6. {i = 3%j} if i>j then m=i—j else m=j—i {m—2%j=0}



Review: Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

> {P}r{Q}

> PCwp(r,Q)

> sp(P,r)<Q
Proof. The three conditions expand into the following three formulas

> Vs, s’. [(sePA(s,s')er)—s €Q)]

> Vs. [seP—(Vs'.(s,s)er—s Q)]

> Vs [(3s. se PA(s,s')er)— s €Q)]
which are easy to show equivalent using basic first-order logic properties, such as
(PAQ— R)— (P— (Q@—R)), (Vu.(A— B)) — (A—> Yu.B) when
u¢ FV(A), and (Yu.(A— B)) — ((3u.A) — B) when u ¢ FV/(B).



Lemma: Characterization of sp
sp(P,r) is the the smallest set Q such that {P}r{Q}, that is:
> {P}r{sp(P,r)}
> VQCS. {PIr{Q}—sp(P,r)C@

{P} r{Q}=Vs,s’€S.(sePA(s,s)er—s€Q)



Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then reduce to:
> sp(P,r)Ssp(P,r)
> VPCS.sp(P,r)SQ—sp(P,r)CQ



Lemma: Characterization of wp
wp(r, Q) is the largest set P such that {P}r{Q}, that is:
> {wp(r, Q)}r{Q}
> YPCS. {P}{Q}— PCwp(r,Q)

{P} r {Q} =Vs,s’eS.(sePA(s,s')er—s€Q)
wp(r,Q) ={s|Vs'.(s,s")er—s' €Q}



Proof of Lemma: Characterization of wp

Apply Three Forms of Hoare triple. The two conditions then reduce to:
> wp(r,Q) S wp(r,Q)
> VPCS. PCwp(r,Q)— P<Cwp(r,Q)



Exercise: Postcondition of inverse versus wp

Lemma:

S\wp(r,Q)=sp(S\Qr 1)

In other words, when instead of good states we look at the completement set of “error
states”, then wp corresponds to doing sp backwards.

Note that r™t ={(y,x)|(x,y) €r} and is always defined.



Exercise: Postcondition of inverse versus wp

Lemma:

S\wp(r,Q)=sp(S\Qr 1)

In other words, when instead of good states we look at the completement set of “error
states”, then wp corresponds to doing sp backwards.

Note that r™t ={(y,x)|(x,y) €r} and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order logic properties.

)lzeelCtSS{dme/;)(r Q) Right side:
' -1
x¢wp(r,Q) xesp(S\Q,r )

X' X' ¢ QA (X, x)er

~(Vx.(x,x")er—x"€Q) I X EQA(x,x")er

IX.(x,x")ernx' ¢ Q



More Laws on Preconditions and Postconditions

Disjunctivity of sp
sp(PLU Py, r)=sp(Py,r)usp(Ps,r)
sp(P,riUr)=sp(P,ri)Usp(P,r)
Conjunctivity of wp
wp(r, QN Q2) = wp(r, Q) Nwp(r, Q2)
wp(rLUr, Q) =wp(r, Q)Nwp(r, Q)
Pointwise wp

wp(r,Q)={s|seSAsp({s},r) C Q}

Pointwise sp

sp(P,r) = U sp({s}, r)

seP



Proof of wp with respect to relation union

wp(riUr, Q) =wp(r, Q)Nwp(r, Q)

Left side: ——

xewp(rLUn, Q) ight side:

VX/-((X,X/)GHUI’Q—)X’GQ) XGWp(rl,Q)me(Q,Q)

W ((Gox) ) (o) ) —x'e @) XS Wp(1,@) and x e wp(rz, Q)

Vx'(((x.x)en—x'€Q) A (Vx'.(xx')€n—x"€Q) A
(x,x)en—x€Q)) (Vx'.(x,x") € ,— x" € Q)

where we used the fact that (AV B)— C is equivalent to (A— C)A(B— C)



Hoare Logic for Loop-free Code

Expanding Paths
The condition

{P}(Jn) (@}
ieJ
is equivalent to

Vi.ie J—{P}ri{Q}

Proof: By definition, or use that the first condition is equivalent to sp(P,| J,c, 1) € Q
and {P}r{Q} to sp(P,r;) € Q

Transitivity
If {P}s;{Q} and {Q}s>,{R} then also {P}s; os,{R}.
We write this as the following inference rule:

{P}si{Q}, {Q}s:{R}
{P}si105{R}




Hoare Logic for Loops

The following inference rule holds:

{P}s{P}, n=0
{P}sn{P}
Proof is by transitivity.
By Expanding Paths condition, we then have:
{P}s{P}
{P}Unz05"{P}
In fact, 505" = s*, so we have
{P}s{P}
{P}s*{P}

This is the rule for non-deterministic loops.



Loops with Conditions

Note that {P} assume(b) {P N bs}
Define p(while(b)c) = (Ap, or)*oA(-p), where r=p(c).
From the rule for non-deterministic loops we have:
{P}Ap, o r{P}
{P}(Ap, or)*{P}

We can thus show:
{Pnb} r {P}

{P} Ap, {PNbs} r {P}
{P} (Ap,or)* {P} A(-p), {PN(=b)s}

i.e.
! if we use formulas and commands instead
{PNbs} r {P} of sets and relations:
{P} (Absor)*oA(—'b)S {Pm(_‘b)s} {PAb}c{P}

p(while(b)c) {P}while(b)c{P A—b}



Exercise

We call a relation r € S x S functional if Yx,y,z€ S.(x,y)€rA(x,z) er—y=z. For each of the
following statements either give a counterexample or prove it. In the following, QC S.

(i) for any r, wp(r,S\ Q)= S\wp(r,Q)

) if ris functional, wp(r,S\ Q)= S\ wp(r, Q)

) for any r, wp(r, Q) = sp(Q.r)

) if r is functional, wp(r, Q) =sp(Q,r1)

(v) for any r, wp(r, QU Q) = wp(r, Q) Uwp(r, Q)
) if ris functional, wp(r, @ UQ,) = wp(r, Q) Uwp(r, Q)
) forany r, wp(rUr, Q) =wp(r, Q)Uwp(r,, Q)
)

Alice has a conjecture: For all sets S and relations r £S5 x S it holds:
(S#QAdom(r):SAAsﬂr:(Z))—r(rorﬂ((SxS)\r)#@)
where As ={(x,x)|x €S}, dom(r)={x|3y.(x,y) €r}. She tried many sets and relations and did

not find any counterexample. Is her conjecture true? If so, prove it; if false, provide a
counterexample for which S is as small as possible.



Properties of Program Contexts



Some Properties of Relations

(PrEp2)— (pProp) S (p2op)

(pLEp2)— (pPop1) S(pops)

(PLCP2)A(G1Sq2) — (P1UG)S(P2Ugr)

(PrUp2)og=(p1oq)U(p20q)



Monotonicity of Expressions using U and o

Consider relations that are subsets of Sx S (i.e. S?)
The set of all such relations is

C={r|rcS5?

Let E(r) be given by any expression built from relation r and some additional relations
bi,...,b,, using U and o.

Example: E(r) = (byor)U(rob,)

E(r) is function C — C, maps relations to relations

Claim: E is monotonic function on C:

rncnrn—E(rn)CE(n)

Prove of disprove.



Monotonicity of Expressions using U and o

Consider relations that are subsets of Sx S (i.e. S?)

The set of all such relations is
C={r|rcSs?

Let E(r) be given by any expression built from relation r and some additional relations
bi,...,b,, using U and o.

Example: E(r) = (byor)U(rob,)

E(r) is function C — C, maps relations to relations

Claim: E is monotonic function on C:

rncnrn—E(rn)CE(n)

Prove of disprove.
Proof: induction on the expression tree defining E, using monotonicity properties of U
and o



