More on Relations and Hoare Logic

Viktor Kunčak

November 8, 2019

Syntactic vs Semantic Hoare Triples

We defined Hoare triple for sets and relations: $\{P\}r\{Q\}$ where $P \subseteq S$, $r \subseteq S \times S$, $Q \subseteq S$:

$$\forall \bar{x}, \bar{x}'. (\bar{x} \in P \land (\bar{x}, \bar{x}') \in r \longrightarrow \bar{x}' \in Q)$$

We also extend this notation when A, B are formulas and c is a program fragment (command). In such case, let

$$\triangleright P = A_s$$

•
$$r = \rho(c)$$
 (relation associated with the command)

$$\triangleright Q = B_s$$

here, if F is a formula (e.g. A or B) over x, then F_s denotes $\{\bar{x} \mid F\}$ i.e. the set of states where formula holds.

Then we define $\{A\}c\{B\}$ to mean

$$\{A_s\} \rho(c) \{B_s\}$$

which reduces it to the case of sets and relations.

Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.

1.
$$\{j = a\} \ j = j+1 \ \{a = j+1\}$$

- $2. \ \{i=j\} \ i{=}j{+}i \ \{i>j\}$
- 3. $\{j = a + b\} i=b; j=a \{j = 2 * a\}$

$${\rm 4.} \ \{i>j\} \ j{=}i{+}1; \ i{=}j{+}1 \ \{i>j\}$$

5. {i !=j if $i\!>\!j$ then $m\!=\!i\!-\!j$ else $m\!=\!j\!-\!i$ $\{m>0\}$

6.
$$\{i = 3*j\}$$
 if $i > j$ then $m=i-j$ else $m=j-i$ $\{m-2*j=0\}$

Review: Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $\blacktriangleright \{P\}r\{Q\}$
- $\blacktriangleright P \subseteq wp(r, Q)$

▶
$$sp(P,r) \subseteq Q$$

Proof. The three conditions expand into the following three formulas

$$\flat \quad \forall s, s'. \ [(s \in P \land (s, s') \in r) \rightarrow s' \in Q]$$

►
$$\forall s. [s \in P \rightarrow (\forall s'.(s,s') \in r \rightarrow s' \in Q)]$$

► $\forall s'. [(\exists s. s \in P \land (s, s') \in r) \rightarrow s' \in Q]$

which are easy to show equivalent using basic first-order logic properties, such as $(P \land Q \longrightarrow R) \longleftrightarrow (P \longrightarrow (Q \longrightarrow R)), (\forall u.(A \longrightarrow B)) \longleftrightarrow (A \longrightarrow \forall u.B)$ when $u \notin FV(A)$, and $(\forall u.(A \longrightarrow B)) \longleftrightarrow ((\exists u.A) \longrightarrow B)$ when $u \notin FV(B)$.

Lemma: Characterization of sp

sp(P,r) is the the smallest set Q such that $\{P\}r\{Q\}$, that is:

- ▶ $\{P\}r\{sp(P,r)\}$
- $\blacktriangleright \forall Q \subseteq S. \{P\}r\{Q\} \rightarrow sp(P,r) \subseteq Q$

 $\{P\} \ r \ \{Q\} \Leftrightarrow \forall s, s' \in S. \left(s \in P \land \left(s, s'\right) \in r \rightarrow s' \in Q\right)$

Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

▶
$$sp(P,r) \subseteq sp(P,r)$$

$$\blacktriangleright \forall P \subseteq S. \ sp(P,r) \subseteq Q \rightarrow sp(P,r) \subseteq Q$$

Lemma: Characterization of wp

wp(r, Q) is the largest set P such that $\{P\}r\{Q\}$, that is:

- $\blacktriangleright \{wp(r,Q)\}r\{Q\}$
- $\blacktriangleright \forall P \subseteq S. \{P\}r\{Q\} \rightarrow P \subseteq wp(r, Q)$

 $\{P\} \ r \ \{Q\} \Leftrightarrow \forall s, s' \in S. (s \in P \land (s, s') \in r \to s' \in Q)$ $wp(r, Q) = \{s \mid \forall s'. (s, s') \in r \to s' \in Q\}$

Proof of Lemma: Characterization of wp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

$$\blacktriangleright wp(r,Q) \subseteq wp(r,Q)$$

$$\blacktriangleright \forall P \subseteq S. P \subseteq wp(r, Q) \rightarrow P \subseteq wp(r, Q)$$

Exercise: Postcondition of inverse versus wp

Lemma:

$$S \setminus wp(r, Q) = sp(S \setminus Q, r^{-1})$$

In other words, when instead of good states we look at the completement set of "error states", then wp corresponds to doing sp backwards.

Note that $r^{-1} = \{(y, x) | (x, y) \in r\}$ and is always defined.

Exercise: Postcondition of inverse versus wp

Lemma:

$$S \setminus wp(r, Q) = sp(S \setminus Q, r^{-1})$$

In other words, when instead of good states we look at the completement set of "error states", then *wp* corresponds to doing *sp* backwards.

Note that $r^{-1} = \{(y, x) | (x, y) \in r\}$ and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order logic properties.

Left side: $x \in S \setminus wp(r, Q)$ $x \notin wp(r, Q)$ $\neg(\forall x'.(x, x') \in r \longrightarrow x' \in Q)$ $\exists x'.(x, x') \in r \land x' \notin Q$

Right side:

$$x \in sp(S \setminus Q, r^{-1})$$

 $\exists x'.x' \notin Q \land (x', x) \in r^{-1}$
 $\exists x'.x' \notin Q \land (x, x') \in r$

More Laws on Preconditions and Postconditions

Proof of wp with respect to relation union

$$wp(r_1 \cup r_2, Q) = wp(r_1, Q) \cap wp(r_2, Q)$$

Left side:

$$x \in wp(r_1 \cup r_2, Q) \forall x'.((x, x') \in r_1 \cup r_2 \longrightarrow x' \in Q) \forall x'.(((x, x') \in r_1) \lor ((x, x') \in r_2)) \longrightarrow x' \in Q) \forall x'.(((x, x') \in r_1 \longrightarrow x' \in Q) \land ((x, x') \in r_2 \longrightarrow x' \in Q))$$

Right side: $x \in wp(r_1, Q) \cap wp(r_2, Q)$ $x \in wp(r_1, Q)$ and $x \in wp(r_2, Q)$ $(\forall x'.(x, x') \in r_1 \longrightarrow x' \in Q) \land$ $(\forall x'.(x, x') \in r_2 \longrightarrow x' \in Q)$

where we used the fact that $(A \lor B) \longrightarrow C$ is equivalent to $(A \longrightarrow C) \land (B \longrightarrow C)$

Hoare Logic for Loop-free Code

Expanding Paths

The condition

 $\{P\} \left(\bigcup_{i \in J} r_i\right) \{Q\}$

is equivalent to

 $\forall i.i \in J \to \{P\}r_i\{Q\}$

Proof: By definition, or use that the first condition is equivalent to $sp(P, \bigcup_{i \in J} r_i) \subseteq Q$ and $\{P\}r_i\{Q\}$ to $sp(P, r_i) \subseteq Q$

Transitivity If $\{P\}s_1\{Q\}$ and $\{Q\}s_2\{R\}$ then also $\{P\}s_1 \circ s_2\{R\}$. We write this as the following inference rule:

 $\frac{\{P\}s_1\{Q\}, \{Q\}s_2\{R\}}{\{P\}s_1 \circ s_2\{R\}}$

Hoare Logic for Loops

The following inference rule holds:

$$\frac{\{P\}s\{P\}, n \ge 0}{\{P\}s^n\{P\}}$$

Proof is by transitivity.

By Expanding Paths condition, we then have:

$$\frac{\{P\}s\{P\}}{\{P\}\bigcup_{n\geq 0}s^n\{P\}}$$

In fact, $\bigcup_{n\geq 0} s^n = s^*$, so we have $\frac{\{P\}s\{P\}}{\{P\}s\{P\}}$

This is the rule for non-deterministic loops.

Loops with Conditions

Note that $\{P\}$ assume(b) $\{P \cap b_s\}$ **Define** $\rho(while(b)c) = (\Delta_{b_s} \circ r)^* \circ \Delta_{(\neg b)_s}$ where $r = \rho(c)$. From the rule for non-deterministic loops we have:

 $\frac{\{P\}\Delta_{b_s}\circ r\{P\}}{\{P\}(\Delta_{b_s}\circ r)*\{P\}}$

We can thus show:

$$\begin{array}{c} \{P \cap b_s\} \ r \ \{P\} \\ \hline \{P\} \ \Delta_{b_s} \ \{P \cap b_s\} \ r \ \{P\} \\ \hline \{P\} \ (\Delta_{b_s} \circ r)^* \ \{P\} \ \Delta_{(\neg b)_s} \ \{P \cap (\neg b)_s\} \end{array}$$

i.e.

$$\frac{\{P \cap b_s\} \ r \ \{P\}}{\{P\}} \underbrace{\{\Delta_{b_s} \circ r\}^* \circ \Delta_{(\neg b)_s}}_{\rho(\textit{while}(b)c)} \{P \cap (\neg b)_s\}}$$

if we use formulas and commands instead of sets and relations:

 $\frac{\{P \land b\}c\{P\}}{\{P\}while(b)c\{P \land \neg b\}}$

Exercise

We call a relation $r \subseteq S \times S$ functional if $\forall x, y, z \in S.(x, y) \in r \land (x, z) \in r \rightarrow y = z$. For each of the following statements either give a counterexample or prove it. In the following, $Q \subseteq S$.

(i) for any
$$r$$
, $wp(r, S \setminus Q) = S \setminus wp(r, Q)$

(ii) if r is functional,
$$wp(r, S \setminus Q) = S \setminus wp(r, Q)$$

- (iii) for any r, $wp(r, Q) = sp(Q, r^{-1})$
- (iv) if r is functional, $wp(r, Q) = sp(Q, r^{-1})$

(v) for any r,
$$wp(r, Q_1 \cup Q_2) = wp(r, Q_1) \cup wp(r, Q_2)$$

(vi) if r is functional, $wp(r, Q_1 \cup Q_2) = wp(r, Q_1) \cup wp(r, Q_2)$

(vii) for any
$$r$$
, $wp(r_1 \cup r_2, Q) = wp(r_1, Q) \cup wp(r_2, Q)$

(viii) Alice has a conjecture: For all sets S and relations $r \subseteq S \times S$ it holds:

$$(S \neq \emptyset \land dom(r) = S \land \triangle_S \cap r = \emptyset) \rightarrow (r \circ r \cap ((S \times S) \setminus r) \neq \emptyset)$$

where $\Delta_S = \{(x,x) | x \in S\}$, $dom(r) = \{x | \exists y.(x,y) \in r\}$. She tried many sets and relations and did not find any counterexample. Is her conjecture true? If so, prove it; if false, provide a counterexample for which S is as small as possible.

Properties of Program Contexts

Some Properties of Relations

$$(p_1 \subseteq p_2) \rightarrow (p_1 \circ p) \subseteq (p_2 \circ p)$$

$$(p_1 \subseteq p_2) \to (p \circ p_1) \subseteq (p \circ p_2)$$

$$(p_1 \subseteq p_2) \land (q_1 \subseteq q_2) \rightarrow (p_1 \cup q_1) \subseteq (p_2 \cup q_2)$$

 $(p_1\cup p_2)\circ q=(p_1\circ q)\cup (p_2\circ q)$

Monotonicity of Expressions using \cup and \circ

Consider relations that are subsets of $S \times S$ (i.e. S^2) The set of all such relations is

$$C = \{r \mid r \subseteq S^2\}$$

Let E(r) be given by any expression built from relation r and some additional relations b_1, \ldots, b_n , using \cup and \circ . Example: $E(r) = (b_1 \circ r) \cup (r \circ b_2)$ E(r) is function $C \to C$, maps relations to relations **Claim:** E is monotonic function on C:

$$r_1 \subseteq r_2 \to E(r_1) \subseteq E(r_2)$$

Prove of disprove.

Monotonicity of Expressions using \cup and \circ

Consider relations that are subsets of $S \times S$ (i.e. S^2) The set of all such relations is

 $C = \{r \mid r \subseteq S^2\}$

Let E(r) be given by any expression built from relation r and some additional relations b_1, \ldots, b_n , using \cup and \circ . Example: $E(r) = (b_1 \circ r) \cup (r \circ b_2)$ E(r) is function $C \to C$, maps relations to relations **Claim:** E is monotonic function on C:

$$r_1 \subseteq r_2 \to E(r_1) \subseteq E(r_2)$$

Prove of disprove.

Proof: induction on the expression tree defining E, using monotonicity properties of \cup and \circ