
More on Relations and Hoare Logic

Viktor Kunčak

November 8, 2019

Syntactic vs Semantic Hoare Triples
We defined Hoare triple for sets and relations: {P}r{Q} where P ⊆ S, r ⊆ S ×S, Q ⊆ S:

∀x̄ , x̄ ′.(x̄ ∈P ∧ (x̄ , x̄ ′) ∈ r −→ x̄ ′ ∈Q)

We also extend this notation when A,B are formulas and c is a program fragment
(command). In such case, let
▶ P =As
▶ r =ρ(c) (relation associated with the command)
▶ Q =Bs

here, if F is a formula (e.g. A or B) over x , then Fs denotes {x̄ | F } i.e. the set of
states where formula holds.
Then we define {A}c{B} to mean

{As} ρ(c) {Bs}
which reduces it to the case of sets and relations.

Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.
1. {j = a} j =j+1 {a = j + 1}

2. {i = j} i=j+i {i > j}

3. {j = a + b} i=b; j=a {j = 2 ∗ a}

4. {i > j} j=i+1; i=j+1 {i > j}

5. {i != j} if i>j then m=i−j else m=j−i {m > 0}

6. {i = 3∗j} if i>j then m=i−j else m=j−i {m−2∗j=0}

Review: Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:
▶ {P}r{Q}
▶ P ⊆wp(r ,Q)

▶ sp(P , r)⊆Q
Proof. The three conditions expand into the following three formulas
▶ ∀s ,s ′. [(s ∈P ∧ (s ,s ′) ∈ r)→ s ′ ∈Q]

▶ ∀s . [s ∈P→ (∀s ′.(s ,s ′) ∈ r → s ′ ∈Q)]

▶ ∀s ′. [(∃s . s ∈P ∧ (s ,s ′) ∈ r)→ s ′ ∈Q]

which are easy to show equivalent using basic first-order logic properties, such as
(P ∧Q −→R)←→ (P −→ (Q −→R)), (∀u.(A−→B))←→ (A−→∀u.B) when
u /∈ FV (A), and (∀u.(A−→B))←→ ((∃u.A)−→B) when u /∈ FV (B).

Lemma: Characterization of sp
sp(P , r) is the the smallest set Q such that {P}r{Q}, that is:
▶ {P}r{sp(P , r)}
▶ ∀Q ⊆ S . {P}r{Q}→ sp(P , r)⊆Q

{P} r {Q}⇔∀s ,s ′ ∈ S .(s ∈P ∧ (s ,s ′) ∈ r → s ′ ∈Q)

sp(P , r)={s ′ | ∃s .s ∈P ∧ (s ,s ′) ∈ r}

Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then reduce to:
▶ sp(P , r)⊆ sp(P , r)
▶ ∀P ⊆ S . sp(P , r)⊆Q→ sp(P , r)⊆Q

Lemma: Characterization of wp
wp(r ,Q) is the largest set P such that {P}r{Q}, that is:
▶ {wp(r ,Q)}r{Q}
▶ ∀P ⊆ S . {P}r{Q}→P ⊆wp(r ,Q)

{P} r {Q}⇔∀s ,s ′ ∈ S .(s ∈P ∧ (s ,s ′) ∈ r → s ′ ∈Q)

wp(r ,Q)={s | ∀s ′.(s ,s ′) ∈ r → s ′ ∈Q}

Proof of Lemma: Characterization of wp

Apply Three Forms of Hoare triple. The two conditions then reduce to:
▶ wp(r ,Q)⊆wp(r ,Q)

▶ ∀P ⊆ S . P ⊆wp(r ,Q)→P ⊆wp(r ,Q)

Exercise: Postcondition of inverse versus wp

Lemma:
S \wp(r ,Q)= sp(S \Q, r−1)

In other words, when instead of good states we look at the completement set of “error
states”, then wp corresponds to doing sp backwards.

Note that r−1 = {(y ,x) | (x ,y) ∈ r} and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order logic properties.

Left side:
x ∈ S \wp(r ,Q)
x /∈wp(r ,Q)
¬(∀x ′.(x ,x ′) ∈ r −→ x ′ ∈Q)
∃x ′.(x ,x ′) ∈ r ∧ x ′ /∈Q

Right side:
x ∈ sp(S \Q, r−1)
∃x ′.x ′ /∈Q ∧ (x ′,x) ∈ r−1

∃x ′.x ′ /∈Q ∧ (x ,x ′) ∈ r

Exercise: Postcondition of inverse versus wp

Lemma:
S \wp(r ,Q)= sp(S \Q, r−1)

In other words, when instead of good states we look at the completement set of “error
states”, then wp corresponds to doing sp backwards.

Note that r−1 = {(y ,x) | (x ,y) ∈ r} and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order logic properties.

Left side:
x ∈ S \wp(r ,Q)
x /∈wp(r ,Q)
¬(∀x ′.(x ,x ′) ∈ r −→ x ′ ∈Q)
∃x ′.(x ,x ′) ∈ r ∧ x ′ /∈Q

Right side:
x ∈ sp(S \Q, r−1)
∃x ′.x ′ /∈Q ∧ (x ′,x) ∈ r−1

∃x ′.x ′ /∈Q ∧ (x ,x ′) ∈ r

More Laws on Preconditions and Postconditions

Disjunctivity of sp
sp(P1 ∪P2, r)= sp(P1, r)∪ sp(P2, r)

sp(P , r1 ∪ r2)= sp(P , r1)∪ sp(P , r2)

Conjunctivity of wp
wp(r ,Q1 ∩Q2)=wp(r ,Q1)∩wp(r ,Q2)

wp(r1 ∪ r2,Q)=wp(r1,Q)∩wp(r2,Q)

Pointwise wp
wp(r ,Q)= {s | s ∈ S ∧ sp({s}, r)⊆Q}

Pointwise sp
sp(P , r)=
∪
s∈P

sp({s}, r)

Proof of wp with respect to relation union

wp(r1 ∪ r2,Q)=wp(r1,Q)∩wp(r2,Q)

Left side:
x ∈wp(r1 ∪ r2,Q)
∀x ′.((x ,x ′) ∈ r1 ∪ r2 −→ x ′ ∈Q)
∀x ′.(((x ,x ′) ∈ r1)∨ ((x ,x ′) ∈ r2))−→ x ′ ∈Q)
∀x ′.
�
((x ,x ′) ∈ r1 −→ x ′ ∈Q) ∧
((x ,x ′) ∈ r2 −→ x ′ ∈Q)

�
Right side:
x ∈wp(r1,Q)∩wp(r2,Q)
x ∈wp(r1,Q) and x ∈wp(r2,Q)
(∀x ′.(x ,x ′) ∈ r1 −→ x ′ ∈Q) ∧
(∀x ′.(x ,x ′) ∈ r2 −→ x ′ ∈Q)

where we used the fact that (A∨B)−→C is equivalent to (A−→C)∧ (B −→C)

Hoare Logic for Loop-free Code
Expanding Paths
The condition

{P} � ∪
i∈J

ri
� {Q}

is equivalent to
∀i .i ∈ J→{P}ri{Q}

Proof: By definition, or use that the first condition is equivalent to sp(P ,
∪

i∈J ri)⊆Q
and {P}ri{Q} to sp(P , ri)⊆Q

Transitivity
If {P}s1{Q} and {Q}s2{R} then also {P}s1 ◦ s2{R}.
We write this as the following inference rule:

{P}s1{Q}, {Q}s2{R}
{P}s1 ◦ s2{R}

Hoare Logic for Loops

The following inference rule holds:

{P}s{P}, n≥ 0
{P}sn{P}

Proof is by transitivity.
By Expanding Paths condition, we then have:

{P}s{P}
{P}∪n≥0 sn{P}

In fact,
∪

n≥0 sn = s∗, so we have
{P}s{P}
{P}s∗{P}

This is the rule for non-deterministic loops.

Loops with Conditions
Note that {P} assume(b) {P ∩bs}
Define ρ(while(b)c) = (∆bs ◦ r)∗ ◦∆(¬b)s where r =ρ(c).
From the rule for non-deterministic loops we have:

{P}∆bs ◦ r{P}
{P}(∆bs ◦ r)∗{P}

We can thus show: {P ∩bs} r {P}
{P} ∆bs {P ∩bs} r {P}

{P} (∆bs ◦ r)∗ {P} ∆(¬b)s {P ∩ (¬b)s}
i.e.

{P ∩bs} r {P}
{P} (∆bs ◦ r)∗ ◦∆(¬b)s︸ ︷︷ ︸

ρ(while(b)c)

{P ∩ (¬b)s}
if we use formulas and commands instead
of sets and relations:

{P ∧b}c{P}
{P}while(b)c{P ∧¬b}

Exercise
We call a relation r ⊆ S ×S functional if ∀x ,y ,z ∈ S .(x ,y) ∈ r ∧ (x ,z) ∈ r → y = z. For each of the
following statements either give a counterexample or prove it. In the following, Q ⊆ S.

(i) for any r , wp(r ,S \Q)= S \wp(r ,Q)

(ii) if r is functional, wp(r ,S \Q)= S \wp(r ,Q)

(iii) for any r , wp(r ,Q)= sp(Q, r−1)

(iv) if r is functional, wp(r ,Q)= sp(Q, r−1)

(v) for any r , wp(r ,Q1 ∪Q2)=wp(r ,Q1)∪wp(r ,Q2)

(vi) if r is functional, wp(r ,Q1 ∪Q2)=wp(r ,Q1)∪wp(r ,Q2)

(vii) for any r , wp(r1 ∪ r2,Q)=wp(r1,Q)∪wp(r2,Q)

(viii) Alice has a conjecture: For all sets S and relations r ⊆ S ×S it holds:�
S ̸= ;∧dom(r)= S ∧△S ∩ r = ;

�
→
�
r ◦ r ∩ ((S ×S) \ r) ̸= ;

�
where ∆S = {(x ,x) | x ∈ S}, dom(r)= {x | ∃y .(x ,y) ∈ r}. She tried many sets and relations and did
not find any counterexample. Is her conjecture true? If so, prove it; if false, provide a
counterexample for which S is as small as possible.

Properties of Program Contexts

Some Properties of Relations

(p1 ⊆ p2)→ (p1 ◦p)⊆ (p2 ◦p)

(p1 ⊆ p2)→ (p ◦p1)⊆ (p ◦p2)

(p1 ⊆ p2)∧ (q1 ⊆ q2) → (p1 ∪q1)⊆ (p2 ∪q2)

(p1 ∪p2) ◦q =(p1 ◦q)∪ (p2 ◦q)

Monotonicity of Expressions using ∪ and ◦
Consider relations that are subsets of S ×S (i.e. S2)
The set of all such relations is

C = {r | r ⊆ S2}
Let E(r) be given by any expression built from relation r and some additional relations
b1, . . . ,bn, using ∪ and ◦.
Example: E(r)= (b1 ◦ r)∪ (r ◦b2)
E(r) is function C →C , maps relations to relations
Claim: E is monotonic function on C :

r1 ⊆ r2→E(r1)⊆E(r2)

Prove of disprove.

Proof: induction on the expression tree defining E , using monotonicity properties of ∪
and ◦

Monotonicity of Expressions using ∪ and ◦
Consider relations that are subsets of S ×S (i.e. S2)
The set of all such relations is

C = {r | r ⊆ S2}
Let E(r) be given by any expression built from relation r and some additional relations
b1, . . . ,bn, using ∪ and ◦.
Example: E(r)= (b1 ◦ r)∪ (r ◦b2)
E(r) is function C →C , maps relations to relations
Claim: E is monotonic function on C :

r1 ⊆ r2→E(r1)⊆E(r2)

Prove of disprove.
Proof: induction on the expression tree defining E , using monotonicity properties of ∪
and ◦

