More on Relations and Hoare Logic

Viktor Kunčak

November 8, 2019

Syntactic vs Semantic Hoare Triples

We defined Hoare triple for sets and relations: $\{P\} r\{Q\}$ where $P \subseteq S, r \subseteq S \times S, Q \subseteq S$:

$$
\forall \bar{x}, \bar{x}^{\prime} .\left(\bar{x} \in P \wedge\left(\bar{x}, \bar{x}^{\prime}\right) \in r \longrightarrow \bar{x}^{\prime} \in Q\right)
$$

We also extend this notation when A, B are formulas and c is a program fragment (command). In such case, let

- $P=A_{s}$
- $r=\rho(c)$ (relation associated with the command)
- $Q=B_{s}$
here, if F is a formula (e.g. A or B) over x, then F_{s} denotes $\{\bar{x} \mid F\}$ i.e. the set of states where formula holds.
Then we define $\{A\} c\{B\}$ to mean

$$
\left\{A_{s}\right\} \rho(c)\left\{B_{s}\right\}
$$

which reduces it to the case of sets and relations.

Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.

1. $\{j=a\} j=j+1\{a=j+1\}$
2. $\{i=j\} i=j+i\{i>j\}$
3. $\{j=a+b\} i=b ; j=a\{j=2 * a\}$
4. $\{i>j\} j=i+1 ; i=j+1\{i>j\}$
5. $\{i!=j\}$ if $i>j$ then $m=i-j$ else $m=j-i\{m>0\}$
6. $\{i=3 * j\}$ if $i>j$ then $m=i-j$ else $m=j-i\{m-2 * j=0\}$

Review: Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $\{P\} r\{Q\}$
- $P \subseteq w p(r, Q)$
- $s p(P, r) \subseteq Q$

Proof. The three conditions expand into the following three formulas

- $\forall s, s^{\prime} .\left[\left(s \in P \wedge\left(s, s^{\prime}\right) \in r\right) \rightarrow s^{\prime} \in Q\right]$
- $\forall s .\left[s \in P \rightarrow\left(\forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right)\right]$
- $\forall s^{\prime} .\left[\left(\exists s . s \in P \wedge\left(s, s^{\prime}\right) \in r\right) \rightarrow s^{\prime} \in Q\right]$
which are easy to show equivalent using basic first-order logic properties, such as $(P \wedge Q \longrightarrow R) \longleftrightarrow(P \longrightarrow(Q \longrightarrow R)),(\forall u .(A \longrightarrow B)) \longleftrightarrow(A \longrightarrow \forall u \cdot B)$ when $u \notin F V(A)$, and $(\forall u .(A \longrightarrow B)) \longleftrightarrow((\exists u \cdot A) \longrightarrow B)$ when $u \notin F V(B)$.

Lemma: Characterization of sp

$s p(P, r)$ is the the smallest set Q such that $\{P\} r\{Q\}$, that is:

- $\{P\} r\{s p(P, r)\}$
- $\forall Q \subseteq S .\{P\} r\{Q\} \rightarrow s p(P, r) \subseteq Q$

$$
\{P\} r\{Q\} \Leftrightarrow \forall s, s^{\prime} \in S .\left(s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right)
$$

Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

- $s p(P, r) \subseteq s p(P, r)$
- $\forall P \subseteq S . s p(P, r) \subseteq Q \rightarrow s p(P, r) \subseteq Q$

Lemma: Characterization of wp

$w p(r, Q)$ is the largest set P such that $\{P\} r\{Q\}$, that is:

- $\{w p(r, Q)\} r\{Q\}$
- $\forall P \subseteq S .\{P\} r\{Q\} \rightarrow P \subseteq w p(r, Q)$

$$
\begin{aligned}
\{P\} r\{Q\} & \Leftrightarrow \forall s, s^{\prime} \in S .\left(s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right) \\
w p(r, Q) & =\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
\end{aligned}
$$

Proof of Lemma: Characterization of wp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

- $w p(r, Q) \subseteq w p(r, Q)$
- $\forall P \subseteq S . P \subseteq w p(r, Q) \rightarrow P \subseteq w p(r, Q)$

Exercise: Postcondition of inverse versus wp

Lemma:

$$
S \backslash w p(r, Q)=s p\left(S \backslash Q, r^{-1}\right)
$$

In other words, when instead of good states we look at the completement set of "error states", then wp corresponds to doing $s p$ backwards.

Note that $r^{-1}=\{(y, x) \mid(x, y) \in r\}$ and is always defined.

Exercise: Postcondition of inverse versus wp

Lemma:

$$
S \backslash w p(r, Q)=s p\left(S \backslash Q, r^{-1}\right)
$$

In other words, when instead of good states we look at the completement set of "error states", then wp corresponds to doing $s p$ backwards.

Note that $r^{-1}=\{(y, x) \mid(x, y) \in r\}$ and is always defined.
Proof of the lemma: Expand both sides and apply basic first-order logic properties.
Left side:

$$
\begin{aligned}
& x \in S \backslash w p(r, Q) \\
& x \notin w p(r, Q) \\
& \neg\left(\forall x^{\prime} .\left(x, x^{\prime}\right) \in r \longrightarrow x^{\prime} \in Q\right) \\
& \exists x^{\prime} .\left(x, x^{\prime}\right) \in r \wedge x^{\prime} \notin Q
\end{aligned}
$$

Right side:
$x \in \operatorname{sp}\left(S \backslash Q, r^{-1}\right)$
$\exists x^{\prime} \cdot x^{\prime} \notin Q \wedge\left(x^{\prime}, x\right) \in r^{-1}$
$\exists x^{\prime} \cdot x^{\prime} \notin Q \wedge\left(x, x^{\prime}\right) \in r$

More Laws on Preconditions and Postconditions

Disjunctivity of sp

$$
\begin{aligned}
s p\left(P_{1} \cup P_{2}, r\right) & =s p\left(P_{1}, r\right) \cup s p\left(P_{2}, r\right) \\
s p\left(P, r_{1} \cup r_{2}\right) & =s p\left(P, r_{1}\right) \cup s p\left(P, r_{2}\right)
\end{aligned}
$$

Conjunctivity of wp

$$
\begin{gathered}
w p\left(r, Q_{1} \cap Q_{2}\right)=w p\left(r, Q_{1}\right) \cap w p\left(r, Q_{2}\right) \\
w p\left(r_{1} \cup r_{2}, Q\right)=w p\left(r_{1}, Q\right) \cap w p\left(r_{2}, Q\right)
\end{gathered}
$$

Pointwise wp

$$
w p(r, Q)=\{s \mid s \in S \wedge s p(\{s\}, r) \subseteq Q\}
$$

Pointwise sp

$$
s p(P, r)=\bigcup_{s \in P} s p(\{s\}, r)
$$

Proof of wp with respect to relation union

$$
w p\left(r_{1} \cup r_{2}, Q\right)=w p\left(r_{1}, Q\right) \cap w p\left(r_{2}, Q\right)
$$

Left side:

$$
\begin{aligned}
& x \in w p\left(r_{1} \cup r_{2}, Q\right) \\
& \forall x^{\prime} .\left(\left(\left(x, x^{\prime}\right) \in r_{1} \cup r_{2} \longrightarrow x^{\prime} \in Q\right)\right. \\
& \left.\forall x^{\prime} .\left(\left(\left(x, x^{\prime}\right) \in r_{1}\right) \vee\left(\left(x, x^{\prime}\right) \in r_{2}\right)\right) \longrightarrow x^{\prime} \in Q\right) \\
& \forall x^{\prime} .\left(\left(\left(x, x^{\prime}\right) \in r_{1} \longrightarrow x^{\prime} \in Q\right) \wedge\right. \\
& \left.\quad\left(\left(x, x^{\prime}\right) \in r_{2} \longrightarrow x^{\prime} \in Q\right)\right)
\end{aligned}
$$

Right side:

$$
\begin{aligned}
& x \in w p\left(r_{1}, Q\right) \cap w p\left(r_{2}, Q\right) \\
& x \in w p\left(r_{1}, Q\right) \text { and } x \in w p\left(r_{2}, Q\right) \\
& \left(\forall x^{\prime} .\left(x, x^{\prime}\right) \in r_{1} \longrightarrow x^{\prime} \in Q\right) \wedge \\
& \left(\forall x^{\prime} .\left(x, x^{\prime}\right) \in r_{2} \longrightarrow x^{\prime} \in Q\right)
\end{aligned}
$$

where we used the fact that $(A \vee B) \longrightarrow C$ is equivalent to $(A \longrightarrow C) \wedge(B \longrightarrow C)$

Hoare Logic for Loop-free Code

Expanding Paths

The condition

$$
\{P\}\left(\bigcup_{i \in J} r_{i}\right)\{Q\}
$$

is equivalent to

$$
\forall i . i \in J \rightarrow\{P\} r_{i}\{Q\}
$$

Proof: By definition, or use that the first condition is equivalent to $\operatorname{sp}\left(P, \bigcup_{i \in J} r_{i}\right) \subseteq Q$ and $\{P\} r_{i}\{Q\}$ to $s p\left(P, r_{i}\right) \subseteq Q$

Transitivity

If $\{P\} s_{1}\{Q\}$ and $\{Q\} s_{2}\{R\}$ then also $\{P\} s_{1} \circ s_{2}\{R\}$.
We write this as the following inference rule:

$$
\frac{\{P\} s_{1}\{Q\}, \quad\{Q\} s_{2}\{R\}}{\{P\} s_{1} \circ s_{2}\{R\}}
$$

Hoare Logic for Loops

The following inference rule holds:

$$
\frac{\{P\} s\{P\}, \quad n \geq 0}{\{P\} s^{n}\{P\}}
$$

Proof is by transitivity.
By Expanding Paths condition, we then have:

$$
\frac{\{P\} s\{P\}}{\{P\} \bigcup_{n \geq 0} s^{n}\{P\}}
$$

In fact, $\bigcup_{n \geq 0} s^{n}=s^{*}$, so we have

$$
\frac{\{P\} s\{P\}}{\{P\}_{s}\{P\}}
$$

This is the rule for non-deterministic loops.

Loops with Conditions

Note that $\{P\}$ assume $(b)\left\{P \cap b_{s}\right\}$
Define $\rho($ while $(b) c)=\left(\Delta_{b_{s}} \circ r\right)^{*} \circ \Delta_{(\neg b)_{s}}$ where $r=\rho(c)$.
From the rule for non-deterministic loops we have:

$$
\frac{\{P\} \Delta_{b_{s}} \circ r\{P\}}{\{P\}\left(\Delta_{b_{s}} \circ r\right) *\{P\}}
$$

We can thus show:

$$
\frac{\left\{P \cap b_{s}\right\} r\{P\}}{\frac{\{P\} \Delta_{b_{s}}\left\{P \cap b_{s}\right\} r\{P\}}{\{P\}\left(\Delta_{b_{s}} \circ r\right)^{*}\{P\} \Delta_{(\neg b)_{s}}\left\{P \cap(\neg b)_{s}\right\}}}
$$

i.e.

$$
\frac{\left\{P \cap b_{s}\right\} r\{P\}}{\{P\} \underbrace{\left(\Delta_{b_{s}} \circ r\right)^{*} \circ \Delta_{(\neg b)_{s}}}_{\rho(\text { while }(b) c)}\left\{P \cap(\neg b)_{s}\right\}}
$$

if we use formulas and commands instead of sets and relations:

$$
\frac{\{P \wedge b\} c\{P\}}{\{P\} \text { while }(b) c\{P \wedge \neg b\}}
$$

Exercise

We call a relation $r \subseteq S \times S$ functional if $\forall x, y, z \in S .(x, y) \in r \wedge(x, z) \in r \rightarrow y=z$. For each of the following statements either give a counterexample or prove it. In the following, $Q \subseteq S$.
(i) for any $r, w p(r, S \backslash Q)=S \backslash w p(r, Q)$
(ii) if r is functional, $w p(r, S \backslash Q)=S \backslash w p(r, Q)$
(iii) for any $r, w p(r, Q)=s p\left(Q, r^{-1}\right)$
(iv) if r is functional, $w p(r, Q)=s p\left(Q, r^{-1}\right)$
(v) for any $r, w p\left(r, Q_{1} \cup Q_{2}\right)=w p\left(r, Q_{1}\right) \cup w p\left(r, Q_{2}\right)$
(vi) if r is functional, $w p\left(r, Q_{1} \cup Q_{2}\right)=w p\left(r, Q_{1}\right) \cup w p\left(r, Q_{2}\right)$
(vii) for any $r, w p\left(r_{1} \cup r_{2}, Q\right)=w p\left(r_{1}, Q\right) \cup w p\left(r_{2}, Q\right)$
(viii) Alice has a conjecture: For all sets S and relations $r \subseteq S \times S$ it holds:

$$
\left(S \neq \emptyset \wedge \operatorname{dom}(r)=S \wedge \triangle_{S} \cap r=\emptyset\right) \rightarrow(r \circ r \cap((S \times S) \backslash r) \neq \emptyset)
$$

where $\Delta_{S}=\{(x, x) \mid x \in S\}, \operatorname{dom}(r)=\{x \mid \exists y .(x, y) \in r\}$. She tried many sets and relations and did not find any counterexample. Is her conjecture true? If so, prove it; if false, provide a counterexample for which S is as small as possible.

Properties of Program Contexts

Some Properties of Relations

$$
\begin{aligned}
& \left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p_{1} \circ p\right) \subseteq\left(p_{2} \circ p\right) \\
& \left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p \circ p_{1}\right) \subseteq\left(p \circ p_{2}\right) \\
& \left(p_{1} \subseteq p_{2}\right) \wedge\left(q_{1} \subseteq q_{2}\right) \rightarrow\left(p_{1} \cup q_{1}\right) \subseteq\left(p_{2} \cup q_{2}\right) \\
& \left(p_{1} \cup p_{2}\right) \circ q=\left(p_{1} \circ q\right) \cup\left(p_{2} \circ q\right)
\end{aligned}
$$

Monotonicity of Expressions using \cup and \circ

Consider relations that are subsets of $S \times S$ (i.e. S^{2})
The set of all such relations is

$$
C=\left\{r \mid r \subseteq S^{2}\right\}
$$

Let $E(r)$ be given by any expression built from relation r and some additional relations b_{1}, \ldots, b_{n}, using \cup and \circ.
Example: $E(r)=\left(b_{1} \circ r\right) \cup\left(r \circ b_{2}\right)$
$E(r)$ is function $C \rightarrow C$, maps relations to relations
Claim: E is monotonic function on C :

$$
r_{1} \subseteq r_{2} \rightarrow E\left(r_{1}\right) \subseteq E\left(r_{2}\right)
$$

Prove of disprove.

Monotonicity of Expressions using \cup and \circ

Consider relations that are subsets of $S \times S$ (i.e. S^{2})
The set of all such relations is

$$
C=\left\{r \mid r \subseteq S^{2}\right\}
$$

Let $E(r)$ be given by any expression built from relation r and some additional relations b_{1}, \ldots, b_{n}, using \cup and \circ.
Example: $E(r)=\left(b_{1} \circ r\right) \cup\left(r \circ b_{2}\right)$
$E(r)$ is function $C \rightarrow C$, maps relations to relations
Claim: E is monotonic function on C :

$$
r_{1} \subseteq r_{2} \rightarrow E\left(r_{1}\right) \subseteq E\left(r_{2}\right)
$$

Prove of disprove.
Proof: induction on the expression tree defining E, using monotonicity properties of u and \circ

