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Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.
L {j=a}j=j+1{a=j+1}
2. {i=j}i=j+i{i > j}
3. {j=a+b}i=b;j=a {j =2xa}

4. {i > j} j=i+1; i=j+1 {i > j}

(&;]

. {i '=j} if i>j then m=i—j else m=j—i {m > 0}

6. {i = 3%j} if i>j then m=i—j else m=j—i {m—2%j=0}



Review: Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:
> {P}r{Q}
> Pcwp(r,Q)
> sp(P,r)<Q



Review: Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

> {P}r{Q}

> PCwp(r,Q)

> sp(P,r)<Q
Proof. The three conditions expand into the following three formulas

> Vs, s’. [(sePA(s,s')er)—s €Q)]

> Vs. [seP—(Vs'.(s,s)er—s Q)]

> Vs [(3s. se PA(s,s')er)— s €Q)]
which are easy to show equivalent using basic first-order logic properties, such as
(PAQ— R)— (P— (Q@—R)), (Vu.(A— B)) — (A— Yu.B) when
u¢ FV(A), and (Yu.(A— B)) — ((3u.A) — B) when u ¢ FV(B).



Lemma: Characterization of sp
sp(P,r) is the the smallest set Q such that {P}r{Q}, that is:
> {P}r{sp(P,r)}
> VQCS. {PIr{Q}—sp(P,r)C@

{P} r{Q}=Vs,s’€S.(sePA(s,s)er—s€Q)



Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then reduce to:
> sp(P,r)Ssp(P,r)
> VPCS.sp(P,r)SQ—sp(P,r)CQ



Lemma: Characterization of wp
wp(r, Q) is the largest set P such that {P}r{Q}, that is:
> {wp(r, Q)}r{Q}
> YPCS. {P}{Q}— PCwp(r,Q)

{P} r {Q} =Vs,s’eS.(sePA(s,s')er—s€Q)
wp(r,Q) ={s|Vs'.(s,s")er—s' €Q}



Proof of Lemma: Characterization of wp

Apply Three Forms of Hoare triple. The two conditions then reduce to:
> wp(r,Q) S wp(r,Q)
> VPCS. PCwp(r,Q)— P<Cwp(r,Q)



Exercise: Postcondition of inverse versus wp

Lemma:

S\wp(r,Q)=sp(S\Q,r ™)

In other words, when instead of good states we look at the completement set of “error
states”, then wp corresponds to doing sp backwards.

Note that r=t ={(y,x)|(x,y) €r} and is always defined.



Exercise: Postcondition of inverse versus wp

Lemma:

S\wp(r,Q)=sp(S\Q,r ™)

In other words, when instead of good states we look at the completement set of “error
states”, then wp corresponds to doing sp backwards.

Note that r=t ={(y,x)|(x,y) €r} and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order logic properties.



More Laws on Preconditions and Postconditions

Disjunctivity of sp
sp(PLU Py, r)=sp(Py,r)usp(Ps,r)
sp(P,riUr)=sp(P,ri)Usp(P,r)
Conjunctivity of wp
wp(r, QN Q2) = wp(r, Q) Nwp(r, Q2)
wp(rLUr, Q) =wp(r, Q)Nwp(r, Q)
Pointwise wp

wp(r,Q)={s|seSAsp({s},r) C Q}

Pointwise sp

sp(P,r) = U sp({s}, r)

seP



Hoare Logic for Loop-free Code

Expanding Paths
The condition

{P}(Jn) (@}
ieJ
is equivalent to

Vi.ie J—{P}ri{Q}

Proof: By definition, or use that the first condition is equivalent to sp(P,| J,c, 1) € Q
and {P}r{Q} to sp(P,r;) € Q

Transitivity
If {P}s;{Q} and {Q}s>,{R} then also {P}s; os,{R}.
We write this as the following inference rule:

{P}si{Q}, {Q}s:{R}
{P}si105{R}




Hoare Logic for Loops

The following inference rule holds:

{P}s{P}, n=0
{P}sn{P}
Proof is by transitivity.
By Expanding Paths condition, we then have:
{P}s{P}
{P}Unz05"{P}
In fact, 505" = s*, so we have
{P}s{P}
{P}s*{P}

This is the rule for non-deterministic loops.



Loops with Conditions

Note that {P} assume(b) {P N bs}
Define p(while(b)c) = (Ap, or)*oA(-p), where r=p(c).
From the rule for non-deterministic loops we have:
{P}Ap, o r{P}
{P}(Ap, or)*{P}

We can thus show:
{Pnb} r {P}

{P} Ap, {PNbs} r {P}
{P} (Ap,or)* {P} A(-p), {PN(=b)s}

i.e.
! if we use formulas and commands instead
{PNbs} r {P} of sets and relations:
{P} (Absor)*oA(—'b)S {Pm(_‘b)s} {PAb}c{P}

p(while(b)c) {P}while(b)c{P A—b}



Exercise

We call a relation r € S x S functional if Yx,y,z€ S.(x,y)€rA(x,z) er—y=z. For each of the
following statements either give a counterexample or prove it. In the following, QC S.

(i) for any r, wp(r,S\ Q)= S\wp(r,Q)

) if ris functional, wp(r,S\ Q)= S\ wp(r, Q)

) for any r, wp(r, Q) = sp(Q.r)

) if r is functional, wp(r, Q) =sp(Q,r1)

(v) for any r, wp(r, QU Q) = wp(r, Q) Uwp(r, Q)
) if ris functional, wp(r, @ UQ,) = wp(r, Q) Uwp(r, Q)
) forany r, wp(rUr, Q) =wp(r, Q)Uwp(r,, Q)
)

Alice has a conjecture: For all sets S and relations r £S5 x S it holds:
(S#QAdom(r):SAAsﬂr:(Z))—r(rorﬂ((SxS)\r)#@)
where As ={(x,x)|x €S}, dom(r)={x|3y.(x,y) €r}. She tried many sets and relations and did

not find any counterexample. Is her conjecture true? If so, prove it; if false, provide a
counterexample for which S is as small as possible.



Properties of Program Contexts



Some Properties of Relations

(PrEp2)— (pProp) S (p2op)

(pLEp2)— (pPop1) S(pops)

(PLCP2)A(G1Sq2) — (P1UG)S(P2Ugr)

(PrUp2)og=(p1oq)U(p20q)



Monotonicity of Expressions using U and o

For a program with k integer variables, S = Z*
Consider relations that are subsets of Sx S (i.e. S?)
The set of all such relations is
C={r|rcs?
Let E(r) be given by any expression built from relation r and some additional relations
by,...,b,, using U and o.
Example: E(r)=(byor)U(rob,)
E(r) is function C — C, maps relations to relations
Claim: E is monotonic function on C:

r E I’2—>E(I’1) Q E(rg)

Prove of disprove.



Monotonicity of Expressions using U and o

For a program with k integer variables, S = Z*
Consider relations that are subsets of Sx S (i.e. S?)

The set of all such relations is
C={r|rcS?

Let E(r) be given by any expression built from relation r and some additional relations
by,...,b,, using U and o.

Example: E(r)=(byor)U(rob,)

E(r) is function C — C, maps relations to relations

Claim: E is monotonic function on C:

r E I’2—>E(I’1) Q E(rg)

Prove of disprove.
Proof: induction on the expression tree defining E, using monotonicity properties of U
and o



Union-Distributivity of Expressions using U and o

Claim: E distributes over unions, that is, if r;,i €/ is a family of relations,
E(Ufi):UE(fi)
i€l i€l

Prove or disprove.



Union-Distributivity of Expressions using U and o

Claim: E distributes over unions, that is, if r;,i €/ is a family of relations,

E(Ufi):UE(ri)

i€l i€l

Prove or disprove.
False. Take E(r)=ror and consider relations ry,r,. The claim becomes

(nun)o(nUn)=rornUnon

that is,
rnorpUrorUrorUrmnor = rorpUnorn

Taking, for example, rn ={(1,2)}, n» ={(2,3)} we obtain

{(1,3)}=0 (false)



Union “Distributivity” in One Direction

Lemma:

E(Ufi) 2UE(fi)

i€l iel



Union “Distributivity” in One Direction

Lemma:

E(Ufi) 2UE(fi)

iel iel
Proof. Let r=|J,, ri. Note that, for every i, r; C r. We have shown that E is
monotonic, so E(r;) € E(r). Since all E(r;) are included in E(r), so is their union, so

(JE(n) SE(r)

as desired.



Union-Distributivity - Refined

Does distributivity

E(Ufi):UE(fi)

iel iel
hold, for each of these cases

1. If E(r) is given by an expression containing r at most once?
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expression for E(r). Only one branch of the tree may contain r. Note previous
counter-example uses r twice.
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Union-Distributivity - Refined

Does distributivity
E(Ufi) :UE(fi)
iel iel
hold, for each of these cases

1. If E(r) is given by an expression containing r at most once? Proof: Induction on
expression for E(r). Only one branch of the tree may contain r. Note previous
counter-example uses r twice.

2. If E(r) contains r any number of times, but / is a set of natural numbers and r; is
an increasing sequence: r; € Cr3C... Induction. In the previous
counter-example the largest relation will contain all other r;or;.

3. If E(r) contains r any number of times, but r;,i €/ is a directed family of

relations: for each i,/ there exists k such that r;ur; Cry, and / is possibly
uncountably infinite.



Union-Distributivity - Refined

Does distributivity
E(Ufi) = UE(fi)
iel i€l
hold, for each of these cases
1. If E(r) is given by an expression containing r at most once? Proof: Induction on

expression for E(r). Only one branch of the tree may contain r. Note previous
counter-example uses r twice.

2. If E(r) contains r any number of times, but / is a set of natural numbers and r; is
an increasing sequence: r; € Cr3C... Induction. In the previous
counter-example the largest relation will contain all other r;or;.

3. If E(r) contains r any number of times, but r;,i €/ is a directed family of
relations: for each i,/ there exists k such that r;ur; Cry, and / is possibly
uncountably infinite. Induction. Generalizes the previous case.



Local Mutable Variables

Assume our global variables are V = {x, z}
Program P introduces a local variable y inside a nested block:

x=x+1{var y;y=x+3;z=x+y+z},x=x+z

R(P) should be a relation between (x,z) and (x/,2’).

Each statement should be relation between variables in scope. Inside the block we
have variables V; = {x, y,z}. For assignment statement c: z=x4+y+z,

R(c) is a relation between x,y,z and x’,y’,2’.

Convention: consider the initial values of variables to be arbitrary
Rly=x+3z=x+y+2z)=
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Local Mutable Variables

Assume our global variables are V = {x, z}
Program P introduces a local variable y inside a nested block:

x=x+1{var y;y=x+3;z=x+y+z},x=x+z

R(P) should be a relation between (x,z) and (x/,2’).

Each statement should be relation between variables in scope. Inside the block we
have variables V; = {x, y,z}. For assignment statement c: z=x4+y+z,

R(c) is a relation between x,y,z and x’,y’,2’.

Convention: consider the initial values of variables to be arbitrary
Rly=x+3;z=x+y+z)=y =x+3A2 =2x+3+zAx' =x

R({var y;y =x+3;z=x+y+z})= zZ/=2x+3+zAx' =x



Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables V
For example,
Ry(x=t) = xX'=tA /\ vVi=v
veV\{x}
Then define
Ry ({var y;P}) =
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Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables V
For example,
Ry(x=t) = xX'=tA /\ vVi=v
veV\{x}
Then define
Ry (tvar y; P}) = 3y,y".Rvuiy(P)

Exercise: express havoc(x) using var.



Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables V

For example,
Ry(x=t) = xX'=tA /\ vVi=v
veV\{x}

Then define
Ry({var y;P}) = 3y,y".Rvuiy(P)

Exercise: express havoc(x) using var.

Ry (havoc(x)) < Ry({var y; x=y})



Expressing Specifications as Commands



Shorthand: Havoc Multiple Variables at Once

Variables V ={xy,...,x,}
Translation of R(havoc(y1,...,Ym)):



Shorthand: Havoc Multiple Variables at Once

Variables V ={xy,...,x,}
Translation of R(havoc(y1,...,Ym)):

VEV\{yl vvvvv Ym}

Exercise: the resulting formula is the same as for:
havoc(yy);...; havoc(ym)

Thus, the order of distinct havoc-s does not matter.



Programs and Specs are Relations

program: x=x+2;y=x+10
relation: {(x,y,z,x,y,Z)) | X' =x+2Ay' =x+12A2' =z}
formula: X' =x4+2ANy =x+12A2' =z

Specification:
Z=zA(x>0—-(x'>0Ay >0)

Adhering to specification is relation subset:

{(x,y,2,xX,y,Z) | X' =x+2Ay =x+12AZ' =z}
C {(xy,z,x,y,2)|Z=2zA(x>0—(x'>0Ay'>0))}

Non-deterministic programs are a way of writing specifications



Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX">0Ay'>0

Corresponding program:
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Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX">0Ay'>0
Corresponding program:
havoc(x,y); assume(x >0Ay > 0)
Formula for relation:
z’zz/\x’>x/\y’>y
Corresponding program?
Use local variables to store initial values.

{ var x0; var y0;
x0 = x; y0 =y;
havoc(x,y);
assume(x > x0 && y > y0)

}



Writing Specs Using Havoc and Assume

Global variables V ={xg,...,x,}
Specification

/
F(X1)eeor Xy X{5

Becomes

X

/
n

)



Writing Specs Using Havoc and Assume

Global variables V ={xg,...,x,}
Specification

F(X15ee s X X5 er X))

Becomes

{ var y1i,...,¥n;
Yi=Xu--i¥n=Xm
havoc(xq,...,xp);
assume(F (Y1, ) ¥Ym X1r--1Xn)) }



Program Refinement and Equivalence
For two programs, define refinement P; C P, iff

R(P1) — R(P2)

is a valid formula.
(Some books use the opposite meaning of C.)
As usual, P, 3 Py iff P C Ps.
> PLE P, iff p(P1) S p(P2)
Define equivalence P =P, iff PLEP,AP,C P;
> Pi=P, iff p(P1)=p(P2)
Example for V ={x, y}

{var x0;x0 = x; havoc(x); assume(x >x0)} 3 (x =x+1)

Proof: Use R to compute formulas for both sides and simplify.



Program Refinement and Equivalence
For two programs, define refinement P; C P, iff

R(P1) — R(P2)

is a valid formula.
(Some books use the opposite meaning of C.)
As usual, P, 3 Py iff P C Ps.
> PLE P, iff p(P1) S p(P2)
Define equivalence P =P, iff PLEP,AP,C P;
> Pi=P, iff p(P1)=p(P2)
Example for V ={x, y}

{var x0;x0 = x; havoc(x); assume(x >x0)} 3 (x =x+1)
Proof: Use R to compute formulas for both sides and simplify.

X'=x+1Ay' =y - X'>xAy' =y



Stepwise Refinement Methodology

Start form a possibly non-deterministic specification Py
Refine the program until it becomes deterministic and efficiently executable.

Po3P3a...3P,

Example:
havoc(x); assume(x > 0); havoc(y); assume(x < y)

havoc(x); assume(x>0);y =x+1
x=42;y=x+1
x=42;y =43

([ |

In the last step program equivalence holds as well
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Theorem: if P, E P, then (Py; P)E (P,; P)
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Monotonicity with Respect to Refinement

Theorem: if P, E P, then (Py; P)E (P,; P)
Version for relations: (p; € p2) — (p1op) S (p2op)

Theorem: if P, E P, then (P;Py) C (P; P,)
Version for relations: (p; € p2) — (pop1) C(pop2)

Theorem: if P{E P> and @1 C @5 then

(if (x)Py else Q1) E (if (x)P, else Q)



Monotonicity with Respect to Refinement

Theorem: if P, E P, then (Py; P)E (P,; P)
Version for relations: (p; € p2) — (p1op) S (p2op)

Theorem: if P, E P, then (P;Py) C (P; P,)
Version for relations: (p; € p2) — (pop1) C(pop2)

Theorem: if P{E P> and @1 C @5 then
(if (x)Py else Q1) E (if (x)P, else Q)

Version for relations: (p1 Sp2)A(q1Sq2) — (p1Uqr) S (p2Ua2)



