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Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.
1. {j = a} j =j+1 {a = j + 1}

2. {i = j} i=j+i {i > j}

3. {j = a + b} i=b; j=a {j = 2 ∗ a}

4. {i > j} j=i+1; i=j+1 {i > j}

5. {i != j} if i>j then m=i−j else m=j−i {m > 0}

6. {i = 3∗j} if i>j then m=i−j else m=j−i {m−2∗j=0}



Review: Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:
▶ {P}r{Q}
▶ P ⊆wp(r ,Q)

▶ sp(P , r)⊆Q

Proof. The three conditions expand into the following three formulas
▶ ∀s ,s ′. [(s ∈P ∧ (s ,s ′) ∈ r)→ s ′ ∈Q]

▶ ∀s . [s ∈P→ (∀s ′.(s ,s ′) ∈ r → s ′ ∈Q)]

▶ ∀s ′. [(∃s . s ∈P ∧ (s ,s ′) ∈ r)→ s ′ ∈Q]

which are easy to show equivalent using basic first-order logic properties, such as
(P ∧Q −→R)←→ (P −→ (Q −→R)), (∀u.(A−→B))←→ (A−→∀u.B) when
u /∈ FV (A), and (∀u.(A−→B))←→ ((∃u.A)−→B) when u /∈ FV (B).



Review: Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:
▶ {P}r{Q}
▶ P ⊆wp(r ,Q)

▶ sp(P , r)⊆Q
Proof. The three conditions expand into the following three formulas
▶ ∀s ,s ′. [(s ∈P ∧ (s ,s ′) ∈ r)→ s ′ ∈Q]

▶ ∀s . [s ∈P→ (∀s ′.(s ,s ′) ∈ r → s ′ ∈Q)]

▶ ∀s ′. [(∃s . s ∈P ∧ (s ,s ′) ∈ r)→ s ′ ∈Q]

which are easy to show equivalent using basic first-order logic properties, such as
(P ∧Q −→R)←→ (P −→ (Q −→R)), (∀u.(A−→B))←→ (A−→∀u.B) when
u /∈ FV (A), and (∀u.(A−→B))←→ ((∃u.A)−→B) when u /∈ FV (B).



Lemma: Characterization of sp
sp(P , r) is the the smallest set Q such that {P}r{Q}, that is:
▶ {P}r{sp(P , r)}
▶ ∀Q ⊆ S . {P}r{Q}→ sp(P , r)⊆Q

{P} r {Q}⇔∀s ,s ′ ∈ S .(s ∈P ∧ (s ,s ′) ∈ r → s ′ ∈Q)

sp(P , r)={s ′ | ∃s .s ∈P ∧ (s ,s ′) ∈ r}



Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then reduce to:
▶ sp(P , r)⊆ sp(P , r)
▶ ∀P ⊆ S . sp(P , r)⊆Q→ sp(P , r)⊆Q
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Exercise: Postcondition of inverse versus wp

Lemma:
S \wp(r ,Q)= sp(S \Q, r−1)

In other words, when instead of good states we look at the completement set of “error
states”, then wp corresponds to doing sp backwards.

Note that r−1 = {(y ,x) | (x ,y) ∈ r} and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order logic properties.
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More Laws on Preconditions and Postconditions

Disjunctivity of sp
sp(P1 ∪P2, r)= sp(P1, r)∪ sp(P2, r)

sp(P , r1 ∪ r2)= sp(P , r1)∪ sp(P , r2)

Conjunctivity of wp
wp(r ,Q1 ∩Q2)=wp(r ,Q1)∩wp(r ,Q2)

wp(r1 ∪ r2,Q)=wp(r1,Q)∩wp(r2,Q)

Pointwise wp
wp(r ,Q)= {s | s ∈ S ∧ sp({s}, r)⊆Q}

Pointwise sp
sp(P , r)=
∪
s∈P

sp({s}, r)



Hoare Logic for Loop-free Code
Expanding Paths
The condition

{P} � ∪
i∈J

ri
� {Q}

is equivalent to
∀i .i ∈ J→{P}ri{Q}

Proof: By definition, or use that the first condition is equivalent to sp(P ,
∪

i∈J ri)⊆Q
and {P}ri{Q} to sp(P , ri)⊆Q

Transitivity
If {P}s1{Q} and {Q}s2{R} then also {P}s1 ◦ s2{R}.
We write this as the following inference rule:

{P}s1{Q}, {Q}s2{R}
{P}s1 ◦ s2{R}



Hoare Logic for Loops

The following inference rule holds:

{P}s{P}, n≥ 0
{P}sn{P}

Proof is by transitivity.
By Expanding Paths condition, we then have:

{P}s{P}
{P}∪n≥0 sn{P}

In fact,
∪

n≥0 sn = s∗, so we have
{P}s{P}
{P}s∗{P}

This is the rule for non-deterministic loops.



Loops with Conditions
Note that {P} assume(b) {P ∩bs}
Define ρ(while(b)c) = (∆bs ◦ r)∗ ◦∆(¬b)s where r =ρ(c).
From the rule for non-deterministic loops we have:

{P}∆bs ◦ r{P}
{P}(∆bs ◦ r)∗{P}

We can thus show: {P ∩bs} r {P}
{P} ∆bs {P ∩bs} r {P}

{P} (∆bs ◦ r)∗ {P} ∆(¬b)s {P ∩ (¬b)s}
i.e.

{P ∩bs} r {P}
{P} (∆bs ◦ r)∗ ◦∆(¬b)s︸ ︷︷ ︸

ρ(while(b)c)

{P ∩ (¬b)s}
if we use formulas and commands instead
of sets and relations:

{P ∧b}c{P}
{P}while(b)c{P ∧¬b}



Exercise
We call a relation r ⊆ S ×S functional if ∀x ,y ,z ∈ S .(x ,y) ∈ r ∧ (x ,z) ∈ r → y = z. For each of the
following statements either give a counterexample or prove it. In the following, Q ⊆ S.

(i) for any r , wp(r ,S \Q)= S \wp(r ,Q)

(ii) if r is functional, wp(r ,S \Q)= S \wp(r ,Q)

(iii) for any r , wp(r ,Q)= sp(Q, r−1)

(iv) if r is functional, wp(r ,Q)= sp(Q, r−1)

(v) for any r , wp(r ,Q1 ∪Q2)=wp(r ,Q1)∪wp(r ,Q2)

(vi) if r is functional, wp(r ,Q1 ∪Q2)=wp(r ,Q1)∪wp(r ,Q2)

(vii) for any r , wp(r1 ∪ r2,Q)=wp(r1,Q)∪wp(r2,Q)

(viii) Alice has a conjecture: For all sets S and relations r ⊆ S ×S it holds:�
S ̸= ;∧dom(r)= S ∧△S ∩ r = ;

�
→
�
r ◦ r ∩ ((S ×S) \ r) ̸= ;

�
where ∆S = {(x ,x) | x ∈ S}, dom(r)= {x | ∃y .(x ,y) ∈ r}. She tried many sets and relations and did
not find any counterexample. Is her conjecture true? If so, prove it; if false, provide a
counterexample for which S is as small as possible.



Properties of Program Contexts



Some Properties of Relations

(p1 ⊆ p2)→ (p1 ◦p)⊆ (p2 ◦p)

(p1 ⊆ p2)→ (p ◦p1)⊆ (p ◦p2)

(p1 ⊆ p2)∧ (q1 ⊆ q2) → (p1 ∪q1)⊆ (p2 ∪q2)

(p1 ∪p2) ◦q =(p1 ◦q)∪ (p2 ◦q)



Monotonicity of Expressions using ∪ and ◦
For a program with k integer variables, S =Zk

Consider relations that are subsets of S ×S (i.e. S2)
The set of all such relations is

C = {r | r ⊆ S2}
Let E(r) be given by any expression built from relation r and some additional relations
b1, . . . ,bn, using ∪ and ◦.
Example: E(r)= (b1 ◦ r)∪ (r ◦b2)
E(r) is function C →C , maps relations to relations
Claim: E is monotonic function on C :

r1 ⊆ r2→E(r1)⊆E(r2)

Prove of disprove.

Proof: induction on the expression tree defining E , using monotonicity properties of ∪
and ◦
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Union-Distributivity of Expressions using ∪ and ◦
Claim: E distributes over unions, that is, if ri , i ∈ I is a family of relations,

E(
∪
i∈I

ri)=
∪
i∈I

E(ri)

Prove or disprove.

False. Take E(r)= r ◦ r and consider relations r1, r2. The claim becomes

(r1 ∪ r2) ◦ (r1 ∪ r2)= r1 ◦ r1 ∪ r2 ◦ r2

that is,
r1◦r1 ∪ r1◦r2 ∪ r2◦r1 ∪ r2◦r2 = r1◦r1 ∪ r2◦r2

Taking, for example, r1 = {(1,2)}, r2 = {(2,3)} we obtain

{(1,3)}= ; (false)
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Union “Distributivity” in One Direction

Lemma:
E(
∪
i∈I

ri)⊇
∪
i∈I

E(ri)

Proof. Let r =
∪

i∈I ri . Note that, for every i , ri ⊆ r . We have shown that E is
monotonic, so E(ri)⊆E(r). Since all E(ri) are included in E(r), so is their union, so∪

E(ri)⊆E(r)

as desired.
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Union-Distributivity - Refined

Does distributivity
E(
∪
i∈I

ri)=
∪
i∈I

E(ri)

hold, for each of these cases
1. If E(r) is given by an expression containing r at most once?

Proof: Induction on
expression for E(r). Only one branch of the tree may contain r . Note previous
counter-example uses r twice.

2. If E(r) contains r any number of times, but I is a set of natural numbers and ri is
an increasing sequence: r1 ⊆ r2 ⊆ r3 ⊆ . . . Induction. In the previous
counter-example the largest relation will contain all other ri ◦ rj .

3. If E(r) contains r any number of times, but ri , i ∈ I is a directed family of
relations: for each i , j there exists k such that ri ∪ rj ⊆ rk , and I is possibly
uncountably infinite. Induction. Generalizes the previous case.
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Local Mutable Variables

Assume our global variables are V = {x ,z}
Program P introduces a local variable y inside a nested block:

x = x +1;{var y ;y = x +3;z = x + y + z};x = x + z

R(P) should be a relation between (x ,z) and (x ′,z ′).
Each statement should be relation between variables in scope. Inside the block we
have variables V1 = {x ,y ,z}. For assignment statement c: z = x + y + z ,
R(c) is a relation between x ,y ,z and x ′,y ′,z ′.
Convention: consider the initial values of variables to be arbitrary
R(y = x +3;z = x + y + z)=

y ′= x +3∧ z ′= 2x +3+ z ∧ x ′= x

R({var y ;y = x +3;z = x + y + z})= z ′= 2x +3+ z ∧ x ′= x
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Local Variable Translation

RV (P) is formula for P in the scope that has the set of variables V
For example,

RV (x = t) = x ′= t ∧ ∧
v∈V \{x}

v ′= v

Then define
RV ({var y ;P}) =

∃y ,y ′.RV∪{y}(P)

Exercise: express havoc(x) using var.

RV (havoc(x)) ⇐⇒ RV ({var y ; x = y})
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Expressing Specifications as Commands



Shorthand: Havoc Multiple Variables at Once

Variables V = {x1, . . . ,xn}
Translation of R(havoc(y1, . . . ,ym)):

∧
v∈V \{y1,...,ym}

v ′= v

Exercise: the resulting formula is the same as for:

havoc(y1); . . . ;havoc(ym)

Thus, the order of distinct havoc-s does not matter.
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Programs and Specs are Relations

program: x = x +2;y = x +10
relation: {(x ,y ,z ,x ′,y ′,z ′) | x ′= x +2∧ y ′= x +12∧ z ′= z}
formula: x ′= x +2∧ y ′= x +12∧ z ′= z

Specification:
z ′= z ∧ (x > 0→ (x ′ > 0∧ y ′ > 0)

Adhering to specification is relation subset:

{(x ,y ,z ,x ′,y ′,z ′) | x ′= x +2∧ y ′= x +12∧ z ′= z}
⊆ {(x ,y ,z ,x ′,y ′,z ′) | z ′= z ∧ (x > 0→ (x ′ > 0∧ y ′ > 0))}

Non-deterministic programs are a way of writing specifications



Writing Specs Using Havoc and Assume: Examples
Program variables V = {x ,y ,z}
Formula for relation (talks only about resulting state):

z ′= z ∧ x ′ > 0∧ y ′ > 0

Corresponding program:

havoc(x ,y);assume(x > 0∧ y > 0)

Formula for relation:
z ′= z ∧ x ′ > x ∧ y ′ > y

Corresponding program?
Use local variables to store initial values.
{ var x0; var y0;

x0 = x; y0 = y;
havoc(x,y);
assume(x > x0 && y > y0)

}
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Formula for relation (talks only about resulting state):

z ′= z ∧ x ′ > 0∧ y ′ > 0

Corresponding program:

havoc(x ,y);assume(x > 0∧ y > 0)

Formula for relation:
z ′= z ∧ x ′ > x ∧ y ′ > y

Corresponding program?
Use local variables to store initial values.
{ var x0; var y0;

x0 = x; y0 = y;
havoc(x,y);
assume(x > x0 && y > y0)

}



Writing Specs Using Havoc and Assume

Global variables V = {x1, . . . ,xn}
Specification

F (x1, . . . ,xn,x ′1, . . . ,x ′n)
Becomes

{ var y1, . . . ,yn;
y1 = x1; . . . ;yn = xn;
havoc(x1, . . . ,xn);
assume(F (y1, . . . ,yn,x1, . . . ,xn)) }
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F (x1, . . . ,xn,x ′1, . . . ,x ′n)
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Program Refinement and Equivalence
For two programs, define refinement P1 ⊑P2 iff

R(P1)→R(P2)

is a valid formula.
(Some books use the opposite meaning of ⊑.)
As usual, P2 ⊒P1 iff P1 ⊑P2.
▶ P1 ⊑P2 iff ρ(P1)⊆ρ(P2)

Define equivalence P1 ≡P2 iff P1 ⊑P2 ∧P2 ⊑P1
▶ P1 ≡P2 iff ρ(P1)=ρ(P2)

Example for V = {x ,y}
{var x0;x0= x ;havoc(x);assume(x > x0)} ⊒ (x = x +1)

Proof: Use R to compute formulas for both sides and simplify.

x ′= x +1∧ y ′= y → x ′ > x ∧ y ′= y
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Stepwise Refinement Methodology

Start form a possibly non-deterministic specification P0
Refine the program until it becomes deterministic and efficiently executable.

P0 ⊒P1 ⊒ . . .⊒Pn

Example:
havoc(x);assume(x > 0);havoc(y);assume(x < y)

⊒ havoc(x);assume(x > 0);y = x +1
⊒ x = 42;y = x +1
⊒ x = 42;y = 43

In the last step program equivalence holds as well



Monotonicity with Respect to Refinement

Theorem: if P1 ⊑P2 then (P1;P)⊑ (P2;P)

Version for relations: (p1 ⊆ p2)→ (p1 ◦p)⊆ (p2 ◦p)

Theorem: if P1 ⊑P2 then (P;P1)⊑ (P;P2)
Version for relations: (p1 ⊆ p2)→ (p ◦p1)⊆ (p ◦p2)

Theorem: if P1 ⊑P2 and Q1 ⊑Q2 then

(if (∗)P1 else Q1)⊑ (if (∗)P2 else Q2)

Version for relations: (p1 ⊆ p2)∧ (q1 ⊆ q2) → (p1 ∪q1)⊆ (p2 ∪q2)
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