More on Relations Hoare Logic

Viktor Kunčak

November 8, 2019

Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.

1.
$$\{j = a\} \ j = j+1 \ \{a = j+1\}$$

- $2. \ \{i=j\} \ i{=}j{+}i \ \{i>j\}$
- 3. $\{j = a + b\} i=b; j=a \{j = 2 * a\}$

$${\rm 4.} \ \{i>j\} \ j{=}i{+}1; \ i{=}j{+}1 \ \{i>j\}$$

5. {i !=j if $i\!>\!j$ then $m\!=\!i\!-\!j$ else $m\!=\!j\!-\!i$ $\{m>0\}$

6.
$$\{i = 3*j\}$$
 if $i > j$ then $m=i-j$ else $m=j-i$ $\{m-2*j=0\}$

Review: Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $\blacktriangleright \{P\}r\{Q\}$
- ▶ $P \subseteq wp(r, Q)$
- ▶ $sp(P,r) \subseteq Q$

Review: Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- ► {*P*}*r*{*Q*}
- $\blacktriangleright P \subseteq wp(r,Q)$

▶
$$sp(P,r) \subseteq Q$$

Proof. The three conditions expand into the following three formulas

$$\flat \quad \forall s, s'. \ \left[\left(s \in P \land \left(s, s' \right) \in r \right) \rightarrow s' \in Q \right]$$

►
$$\forall s. [s \in P \rightarrow (\forall s'.(s,s') \in r \rightarrow s' \in Q)]$$

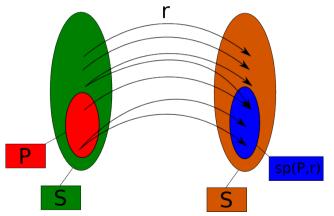
 $\blacktriangleright \quad \forall s'. \ \left[\left(\exists s. \ s \in P \land \left(s, s' \right) \in r \right) \rightarrow s' \in Q \right]$

which are easy to show equivalent using basic first-order logic properties, such as $(P \land Q \longrightarrow R) \longleftrightarrow (P \longrightarrow (Q \longrightarrow R)), (\forall u.(A \longrightarrow B)) \longleftrightarrow (A \longrightarrow \forall u.B)$ when $u \notin FV(A)$, and $(\forall u.(A \longrightarrow B)) \longleftrightarrow ((\exists u.A) \longrightarrow B)$ when $u \notin FV(B)$.

Lemma: Characterization of sp

sp(P,r) is the the smallest set Q such that $\{P\}r\{Q\}$, that is:

- ▶ $\{P\}r\{sp(P,r)\}$
- $\blacktriangleright \forall Q \subseteq S. \{P\}r\{Q\} \rightarrow sp(P,r) \subseteq Q$



 $\{P\} \ r \ \{Q\} \Leftrightarrow \forall s, s' \in S. \left(s \in P \land \left(s, s'\right) \in r \rightarrow s' \in Q\right)$

Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

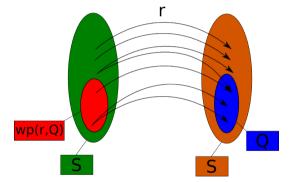
▶
$$sp(P,r) \subseteq sp(P,r)$$

$$\blacktriangleright \forall P \subseteq S. \ sp(P,r) \subseteq Q \rightarrow sp(P,r) \subseteq Q$$

Lemma: Characterization of wp

wp(r, Q) is the largest set P such that $\{P\}r\{Q\}$, that is:

- $\blacktriangleright \{wp(r,Q)\}r\{Q\}$
- $\blacktriangleright \forall P \subseteq S. \{P\}r\{Q\} \rightarrow P \subseteq wp(r,Q)$



 $\{P\} \ r \ \{Q\} \Leftrightarrow \forall s, s' \in S. (s \in P \land (s, s') \in r \to s' \in Q)$ $wp(r, Q) = \{s \mid \forall s'. (s, s') \in r \to s' \in Q\}$

Proof of Lemma: Characterization of wp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

$$\blacktriangleright wp(r,Q) \subseteq wp(r,Q)$$

$$\blacktriangleright \forall P \subseteq S. P \subseteq wp(r, Q) \rightarrow P \subseteq wp(r, Q)$$

Exercise: Postcondition of inverse versus wp

Lemma:

$$S \setminus wp(r, Q) = sp(S \setminus Q, r^{-1})$$

In other words, when instead of good states we look at the completement set of "error states", then wp corresponds to doing sp backwards.

Note that $r^{-1} = \{(y, x) | (x, y) \in r\}$ and is always defined.

Exercise: Postcondition of inverse versus wp

Lemma:

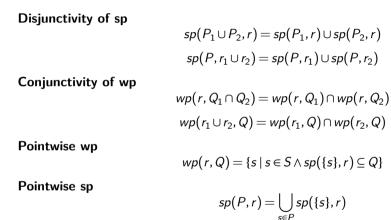
$$S \setminus wp(r, Q) = sp(S \setminus Q, r^{-1})$$

In other words, when instead of good states we look at the completement set of "error states", then wp corresponds to doing sp backwards.

Note that $r^{-1} = \{(y, x) | (x, y) \in r\}$ and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order logic properties.

More Laws on Preconditions and Postconditions



Hoare Logic for Loop-free Code

Expanding Paths

The condition

 $\{P\} \left(\bigcup_{i \in J} r_i\right) \{Q\}$

is equivalent to

 $\forall i.i \in J \to \{P\}r_i\{Q\}$

Proof: By definition, or use that the first condition is equivalent to $sp(P, \bigcup_{i \in J} r_i) \subseteq Q$ and $\{P\}r_i\{Q\}$ to $sp(P, r_i) \subseteq Q$

Transitivity If $\{P\}s_1\{Q\}$ and $\{Q\}s_2\{R\}$ then also $\{P\}s_1 \circ s_2\{R\}$. We write this as the following inference rule:

 $\frac{\{P\}s_1\{Q\}, \{Q\}s_2\{R\}}{\{P\}s_1 \circ s_2\{R\}}$

Hoare Logic for Loops

The following inference rule holds:

$$\frac{\{P\}s\{P\}, n \ge 0}{\{P\}s^n\{P\}}$$

Proof is by transitivity.

By Expanding Paths condition, we then have:

$$\frac{\{P\}s\{P\}}{\{P\}\bigcup_{n\geq 0}s^n\{P\}}$$

In fact, $\bigcup_{n\geq 0} s^n = s^*$, so we have $\frac{\{P\}s\{P\}}{\{P\}s\{P\}}$

This is the rule for non-deterministic loops.

Loops with Conditions

Note that $\{P\}$ assume(b) $\{P \cap b_s\}$ **Define** $\rho(while(b)c) = (\Delta_{b_s} \circ r)^* \circ \Delta_{(\neg b)_s}$ where $r = \rho(c)$. From the rule for non-deterministic loops we have:

 $\frac{\{P\}\Delta_{b_s}\circ r\{P\}}{\{P\}(\Delta_{b_s}\circ r)*\{P\}}$

We can thus show:

$$\begin{array}{c} \{P \cap b_s\} \ r \ \{P\} \\ \hline \{P\} \ \Delta_{b_s} \ \{P \cap b_s\} \ r \ \{P\} \\ \hline \{P\} \ (\Delta_{b_s} \circ r)^* \ \{P\} \ \Delta_{(\neg b)_s} \ \{P \cap (\neg b)_s\} \end{array}$$

i.e.

$$\frac{\{P \cap b_s\} \ r \ \{P\}}{\{P\}} \underbrace{\{\Delta_{b_s} \circ r\}^* \circ \Delta_{(\neg b)_s}}_{\rho(while(b)c)} \{P \cap (\neg b)_s\}}$$

if we use formulas and commands instead of sets and relations:

 $\frac{\{P \land b\}c\{P\}}{\{P\}while(b)c\{P \land \neg b\}}$

Exercise

We call a relation $r \subseteq S \times S$ functional if $\forall x, y, z \in S.(x, y) \in r \land (x, z) \in r \rightarrow y = z$. For each of the following statements either give a counterexample or prove it. In the following, $Q \subseteq S$.

(i) for any
$$r$$
, $wp(r, S \setminus Q) = S \setminus wp(r, Q)$

(ii) if r is functional,
$$wp(r, S \setminus Q) = S \setminus wp(r, Q)$$

- (iii) for any r, $wp(r, Q) = sp(Q, r^{-1})$
- (iv) if r is functional, $wp(r, Q) = sp(Q, r^{-1})$

(v) for any r,
$$wp(r, Q_1 \cup Q_2) = wp(r, Q_1) \cup wp(r, Q_2)$$

(vi) if r is functional, $wp(r, Q_1 \cup Q_2) = wp(r, Q_1) \cup wp(r, Q_2)$

(vii) for any
$$r$$
, $wp(r_1 \cup r_2, Q) = wp(r_1, Q) \cup wp(r_2, Q)$

(viii) Alice has a conjecture: For all sets S and relations $r \subseteq S \times S$ it holds:

$$(S \neq \emptyset \land dom(r) = S \land \triangle_S \cap r = \emptyset) \rightarrow (r \circ r \cap ((S \times S) \setminus r) \neq \emptyset)$$

where $\Delta_S = \{(x,x) | x \in S\}$, $dom(r) = \{x | \exists y.(x,y) \in r\}$. She tried many sets and relations and did not find any counterexample. Is her conjecture true? If so, prove it; if false, provide a counterexample for which S is as small as possible.

Properties of Program Contexts

Some Properties of Relations

$$(p_1 \subseteq p_2) \rightarrow (p_1 \circ p) \subseteq (p_2 \circ p)$$

$$(p_1 \subseteq p_2) \to (p \circ p_1) \subseteq (p \circ p_2)$$

$$(p_1 \subseteq p_2) \land (q_1 \subseteq q_2) \rightarrow (p_1 \cup q_1) \subseteq (p_2 \cup q_2)$$

 $(p_1\cup p_2)\circ q=(p_1\circ q)\cup (p_2\circ q)$

Monotonicity of Expressions using \cup and \circ

For a program with k integer variables, $S = \mathbb{Z}^k$ Consider relations that are subsets of $S \times S$ (i.e. S^2) The set of all such relations is

$$C = \{r \mid r \subseteq S^2\}$$

Let E(r) be given by any expression built from relation r and some additional relations b_1, \ldots, b_n , using \cup and \circ . Example: $E(r) = (b_1 \circ r) \cup (r \circ b_2)$ E(r) is function $C \to C$, maps relations to relations **Claim:** E is monotonic function on C:

$$r_1 \subseteq r_2 \to E(r_1) \subseteq E(r_2)$$

Prove of disprove.

Monotonicity of Expressions using \cup and \circ

For a program with k integer variables, $S = \mathbb{Z}^k$ Consider relations that are subsets of $S \times S$ (i.e. S^2) The set of all such relations is

$$C = \{r \mid r \subseteq S^2\}$$

Let E(r) be given by any expression built from relation r and some additional relations b_1, \ldots, b_n , using \cup and \circ . Example: $E(r) = (b_1 \circ r) \cup (r \circ b_2)$ E(r) is function $C \to C$, maps relations to relations **Claim:** E is monotonic function on C:

$$r_1 \subseteq r_2 \to E(r_1) \subseteq E(r_2)$$

Prove of disprove.

Proof: induction on the expression tree defining E, using monotonicity properties of \cup and \circ

Union-Distributivity of Expressions using \cup and \circ

Claim: *E* distributes over unions, that is, if $r_i, i \in I$ is a family of relations,

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

Prove or disprove.

Union-Distributivity of Expressions using \cup and \circ

Claim: *E* distributes over unions, that is, if $r_i, i \in I$ is a family of relations,

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

Prove or disprove.

False. Take $E(r) = r \circ r$ and consider relations r_1, r_2 . The claim becomes

$$(r_1 \cup r_2) \circ (r_1 \cup r_2) = r_1 \circ r_1 \cup r_2 \circ r_2$$

that is,

 $r_1 \circ r_1 \cup r_1 \circ r_2 \cup r_2 \circ r_1 \cup r_2 \circ r_2 = r_1 \circ r_1 \cup r_2 \circ r_2$ Taking, for example, $r_1 = \{(1,2)\}, r_2 = \{(2,3)\}$ we obtain

 $\{(1,3)\} = \emptyset$ (false)

Union "Distributivity" in One Direction

Lemma:

 $E(\bigcup_{i\in I}r_i)\supseteq \bigcup_{i\in I}E(r_i)$

Union "Distributivity" in One Direction

Lemma:

$$E(\bigcup_{i\in I}r_i)\supseteq\bigcup_{i\in I}E(r_i)$$

Proof. Let $r = \bigcup_{i \in I} r_i$. Note that, for every $i, r_i \subseteq r$. We have shown that E is monotonic, so $E(r_i) \subseteq E(r)$. Since all $E(r_i)$ are included in E(r), so is their union, so $\bigcup E(r_i) \subseteq E(r)$

as desired.

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

1. If E(r) is given by an expression containing r at most once?

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses r twice.

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

- 1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses r twice.
- 2. If E(r) contains r any number of times, but I is a set of natural numbers and r_i is an increasing sequence: $r_1 \subseteq r_2 \subseteq r_3 \subseteq ...$

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

- 1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses r twice.
- 2. If E(r) contains r any number of times, but I is a set of natural numbers and r_i is an increasing sequence: $r_1 \subseteq r_2 \subseteq r_3 \subseteq ...$ Induction. In the previous counter-example the largest relation will contain all other $r_i \circ r_i$.
- 3. If E(r) contains r any number of times, but $r_i, i \in I$ is a **directed family** of relations: for each i, j there exists k such that $r_i \cup r_j \subseteq r_k$, and I is possibly uncountably infinite.

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

- 1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses r twice.
- 2. If E(r) contains r any number of times, but I is a set of natural numbers and r_i is an increasing sequence: $r_1 \subseteq r_2 \subseteq r_3 \subseteq ...$ Induction. In the previous counter-example the largest relation will contain all other $r_i \circ r_i$.
- 3. If E(r) contains r any number of times, but $r_i, i \in I$ is a **directed family** of relations: for each i, j there exists k such that $r_i \cup r_j \subseteq r_k$, and I is possibly uncountably infinite. Induction. Generalizes the previous case.

Assume our global variables are $V = \{x, z\}$

Program P introduces a local variable y inside a nested block:

$$x = x + 1$$
; {var y; $y = x + 3$; $z = x + y + z$ }; $x = x + z$

R(P) should be a relation between (x, z) and (x', z').

Each statement should be relation between variables in scope. Inside the block we have variables $V_1 = \{x, y, z\}$. For assignment statement c: z = x + y + z, R(c) is a relation between x, y, z and x', y', z'. Convention: consider the initial values of variables to be arbitrary R(y = x + 3; z = x + y + z) =

Assume our global variables are $V = \{x, z\}$

Program P introduces a local variable y inside a nested block:

$$x = x + 1$$
; {var y; $y = x + 3$; $z = x + y + z$ }; $x = x + z$

R(P) should be a relation between (x, z) and (x', z').

Each statement should be relation between variables in scope. Inside the block we have variables $V_1 = \{x, y, z\}$. For assignment statement c: z = x + y + z, R(c) is a relation between x, y, z and x', y', z'. Convention: consider the initial values of variables to be arbitrary $R(y = x + 3; z = x + y + z) = y' = x + 3 \land z' = 2x + 3 + z \land x' = x$

Assume our global variables are $V = \{x, z\}$

Program P introduces a local variable y inside a nested block:

$$x = x + 1$$
; {var y; $y = x + 3$; $z = x + y + z$ }; $x = x + z$

R(P) should be a relation between (x, z) and (x', z').

Each statement should be relation between variables in scope. Inside the block we have variables $V_1 = \{x, y, z\}$. For assignment statement c: z = x + y + z, R(c) is a relation between x, y, z and x', y', z'. Convention: consider the initial values of variables to be arbitrary $R(y = x + 3; z = x + y + z) = y' = x + 3 \land z' = 2x + 3 + z \land x' = x$

 $R(\{var \ y; y = x + 3; z = x + y + z\}) =$

Assume our global variables are $V = \{x, z\}$

Program P introduces a local variable y inside a nested block:

$$x = x + 1$$
; {var y; $y = x + 3$; $z = x + y + z$ }; $x = x + z$

R(P) should be a relation between (x, z) and (x', z').

Each statement should be relation between variables in scope. Inside the block we have variables $V_1 = \{x, y, z\}$. For assignment statement c: z = x + y + z, R(c) is a relation between x, y, z and x', y', z'. Convention: consider the initial values of variables to be arbitrary $R(y = x + 3; z = x + y + z) = y' = x + 3 \land z' = 2x + 3 + z \land x' = x$

$$R(\{var \ y; y = x + 3; z = x + y + z\}) = z' = 2x + 3 + z \land x' = x$$

 $R_V(P)$ is formula for P in the scope that has the set of variables V For example,

$$R_V(x=t) = x' = t \wedge \bigwedge_{v \in V \setminus \{x\}} v' = v$$

Then define $R_V(\{var \ y; P\}) =$

 $R_V(P)$ is formula for P in the scope that has the set of variables V For example,

$$R_V(x=t) = x' = t \wedge \bigwedge_{v \in V \setminus \{x\}} v' = v$$

Then define $R_V(\{var \ y; P\}) = \exists y, y'. R_{V \cup \{y\}}(P)$

 $R_V(P)$ is formula for P in the scope that has the set of variables V For example,

$$R_V(x=t) = x' = t \wedge \bigwedge_{v \in V \setminus \{x\}} v' = v$$

Then define $R_V(\{var \ y; P\}) = \exists y, y'. R_{V \cup \{y\}}(P)$

Exercise: express havoc(x) using var.

 $R_V(P)$ is formula for P in the scope that has the set of variables V For example,

$$R_V(x=t) = x' = t \wedge \bigwedge_{v \in V \setminus \{x\}} v' = v$$

Then define $R_V(\{var \ y; P\}) = \exists y, y'. R_{V \cup \{y\}}(P)$

Exercise: express havoc(x) using var.

$$R_V(havoc(x)) \iff R_V(\{var \ y; \ x=y\})$$

Expressing Specifications as Commands

Shorthand: Havoc Multiple Variables at Once

Variables $V = \{x_1, ..., x_n\}$ Translation of $R(havoc(y_1, ..., y_m))$:

Shorthand: Havoc Multiple Variables at Once

Variables $V = \{x_1, ..., x_n\}$ Translation of $R(havoc(y_1, ..., y_m))$:

$$\bigwedge_{v \in V \setminus \{y_1, \dots, y_m\}} v' = v$$

Exercise: the resulting formula is the same as for:

```
havoc(y_1); \ldots; havoc(y_m)
```

Thus, the order of distinct havoc-s does not matter.

Programs and Specs are Relations

program:
$$x = x + 2; y = x + 10$$

relation: $\{(x, y, z, x', y', z') | x' = x + 2 \land y' = x + 12 \land z' = z\}$
formula: $x' = x + 2 \land y' = x + 12 \land z' = z$

Specification:

$$z' = z \land (x > 0 \rightarrow (x' > 0 \land y' > 0)$$

Adhering to specification is relation subset:

$$\{(x, y, z, x', y', z') \mid x' = x + 2 \land y' = x + 12 \land z' = z\} \\ \subseteq \{(x, y, z, x', y', z') \mid z' = z \land (x > 0 \to (x' > 0 \land y' > 0))\}$$

Non-deterministic programs are a way of writing specifications

Program variables $V = \{x, y, z\}$

Formula for relation (talks only about resulting state):

$$z' = z \wedge x' > 0 \wedge y' > 0$$

Corresponding program:

Program variables $V = \{x, y, z\}$

Formula for relation (talks only about resulting state):

$$z' = z \wedge x' > 0 \wedge y' > 0$$

Corresponding program:

havoc(x, y); $assume(x > 0 \land y > 0)$

Program variables $V = \{x, y, z\}$

Formula for relation (talks only about resulting state):

 $z' = z \wedge x' > 0 \wedge y' > 0$

Corresponding program:

havoc(x, y); $assume(x > 0 \land y > 0)$

Formula for relation:

$$z' = z \land x' > x \land y' > y$$

Corresponding program?

Program variables $V = \{x, y, z\}$

Formula for relation (talks only about resulting state):

 $z' = z \wedge x' > 0 \wedge y' > 0$

Corresponding program:

havoc(x, y); $assume(x > 0 \land y > 0)$

Formula for relation:

$$z' = z \land x' > x \land y' > y$$

Corresponding program? Use local variables to store initial values.

Program variables $V = \{x, y, z\}$

Formula for relation (talks only about resulting state):

 $z' = z \wedge x' > 0 \wedge y' > 0$

Corresponding program:

havoc(x, y); $assume(x > 0 \land y > 0)$

Formula for relation:

$$z' = z \land x' > x \land y' > y$$

Corresponding program? Use local variables to store initial values.

```
{ var x0; var y0;
x0 = x; y0 = y;
havoc(x,y);
assume(x > x0 && y > y0)
```

Writing Specs Using Havoc and Assume

Global variables $V = \{x_1, \dots, x_n\}$ Specification

 $F(x_1,\ldots,x_n,x_1',\ldots,x_n')$

Becomes

Writing Specs Using Havoc and Assume

Global variables $V = \{x_1, \dots, x_n\}$ Specification

$$F(x_1,\ldots,x_n,x_1',\ldots,x_n')$$

Becomes

{ var
$$y_1, ..., y_n$$
;
 $y_1 = x_1; ...; y_n = x_n$;
 $havoc(x_1, ..., x_n)$;
 $assume(F(y_1, ..., y_n, x_1, ..., x_n))$ }

Program Refinement and Equivalence

For two programs, define **refinement** $P_1 \sqsubseteq P_2$ iff

 $R(P_1) \to R(P_2)$

is a valid formula.

(Some books use the opposite meaning of \sqsubseteq .) As usual, $P_2 \supseteq P_1$ iff $P_1 \sqsubseteq P_2$.

$$\blacktriangleright P_1 \sqsubseteq P_2 \text{ iff } \rho(P_1) \subseteq \rho(P_2)$$

Define **equivalence** $P_1 \equiv P_2$ iff $P_1 \sqsubseteq P_2 \land P_2 \sqsubseteq P_1$

$$P_1 \equiv P_2 \text{ iff } \rho(P_1) = \rho(P_2)$$

Example for $V = \{x, y\}$

{var
$$x0; x0 = x; havoc(x); assume(x > x0)} \supseteq (x = x + 1)$$

Proof: Use R to compute formulas for both sides and simplify.

Program Refinement and Equivalence

For two programs, define **refinement** $P_1 \sqsubseteq P_2$ iff

 $R(P_1) \to R(P_2)$

is a valid formula.

(Some books use the opposite meaning of \sqsubseteq .) As usual, $P_2 \supseteq P_1$ iff $P_1 \sqsubseteq P_2$.

$$\blacktriangleright P_1 \sqsubseteq P_2 \text{ iff } \rho(P_1) \subseteq \rho(P_2)$$

Define **equivalence** $P_1 \equiv P_2$ iff $P_1 \sqsubseteq P_2 \land P_2 \sqsubseteq P_1$

$$\blacktriangleright P_1 \equiv P_2 \text{ iff } \rho(P_1) = \rho(P_2)$$

Example for $V = \{x, y\}$

{*var*
$$x0; x0 = x; havoc(x); assume(x > x0)} \supseteq (x = x + 1)$$

Proof: Use R to compute formulas for both sides and simplify.

$$x' = x + 1 \land y' = y \rightarrow x' > x \land y' = y$$

Stepwise Refinement Methodology

Start form a possibly non-deterministic specification P_0 Refine the program until it becomes deterministic and efficiently executable.

$$P_0 \sqsupseteq P_1 \sqsupseteq \ldots \sqsupseteq P_n$$

Example:

In the last step program equivalence holds as well

Theorem: if $P_1 \sqsubseteq P_2$ then $(P_1; P) \sqsubseteq (P_2; P)$

Theorem: if $P_1 \sqsubseteq P_2$ then $(P_1; P) \sqsubseteq (P_2; P)$ Version for relations: $(p_1 \subseteq p_2) \rightarrow (p_1 \circ p) \subseteq (p_2 \circ p)$

Theorem: if $P_1 \sqsubseteq P_2$ then $(P_1; P) \sqsubseteq (P_2; P)$ Version for relations: $(p_1 \subseteq p_2) \rightarrow (p_1 \circ p) \subseteq (p_2 \circ p)$

Theorem: if $P_1 \sqsubseteq P_2$ then $(P; P_1) \sqsubseteq (P; P_2)$

Theorem: if $P_1 \sqsubseteq P_2$ then $(P_1; P) \sqsubseteq (P_2; P)$ Version for relations: $(p_1 \subseteq p_2) \rightarrow (p_1 \circ p) \subseteq (p_2 \circ p)$

Theorem: if $P_1 \sqsubseteq P_2$ then $(P; P_1) \sqsubseteq (P; P_2)$ Version for relations: $(p_1 \subseteq p_2) \rightarrow (p \circ p_1) \subseteq (p \circ p_2)$

Theorem: if $P_1 \sqsubseteq P_2$ and $Q_1 \sqsubseteq Q_2$ then

 $(if (*)P_1 else Q_1) \sqsubseteq (if (*)P_2 else Q_2)$

Theorem: if $P_1 \sqsubseteq P_2$ then $(P_1; P) \sqsubseteq (P_2; P)$ Version for relations: $(p_1 \subseteq p_2) \rightarrow (p_1 \circ p) \subseteq (p_2 \circ p)$

Theorem: if $P_1 \sqsubseteq P_2$ then $(P; P_1) \sqsubseteq (P; P_2)$ Version for relations: $(p_1 \subseteq p_2) \rightarrow (p \circ p_1) \subseteq (p \circ p_2)$

Theorem: if $P_1 \sqsubseteq P_2$ and $Q_1 \sqsubseteq Q_2$ then

$$(if (*)P_1 else Q_1) \sqsubseteq (if (*)P_2 else Q_2)$$

Version for relations: $(p_1 \subseteq p_2) \land (q_1 \subseteq q_2) \rightarrow (p_1 \cup q_1) \subseteq (p_2 \cup q_2)$