Converting Imperative Programs to Formulas

Viktor Kunčak

Verifying Imperative Programs

```
import stainless.lang._
import stainless.lang.StaticChecks._
case class FirstExample(var x: BigInt, var y: BigInt) {
    def increase : Unit = {
        x = x + 2
        y = x + 10
    }.ensuring(_ => old(this).x > 0 ==> (x > 0 && y > 0))
}
```

Verification-Condition Generation for Imperative Non-Deterministic Programs

A program fragment can be represented by a formula relating initial and final state. Consider a program with variables x, y

$$\begin{array}{ll} \text{program:} & x = x + 2; \, y = x + 10 \\ \text{relation:} & \left\{ (x, y, x', y') \mid x' = x + 2 \land y' = x + 12 \right\} \\ \text{formula:} & x' = x + 2 \land y' = x + 12 \end{array}$$

Specification: $old(x) > 0 \rightarrow x > 0 \land y > 0$ Adhering to specification is relation subset:

$$\begin{array}{l} \{(x,y,x',y') \mid x' = x + 2 \land y' = x + 12\} \\ \subseteq \quad \{(x,y,x',y') \mid x > 0 \to (x' > 0 \land y' > 0)\} \end{array}$$

or validity of the following implication:

$$egin{aligned} & x' = x+2 \wedge y' = x+12 \
ightarrow & (x > 0
ightarrow (x' > 0 \wedge y' > 0)) \end{aligned}$$

Construction Formula that Describe Relations

c - imperative command

 $R(\boldsymbol{c})$ - formula describing relation between initial and final states of execution of \boldsymbol{c}

If $\rho(c)$ describes the relation, then R(c) is formula such that

 $\rho(c) = \{(\bar{v}, \bar{v}') \mid R(c)\}$

R(c) is a formula between unprimed variables \bar{v} and primed variables \bar{v}'

Formula for Assignment

$$x = t$$

Formula for Assignment

$$x = t$$

$$R(x = t)$$
:
 $x' = t \land \bigwedge_{v \in V \setminus \{x\}} v' = v$

Note that the formula must explicitly state which variables remain the same (here: all except x). Otherwise, those variables would not be constrained by the relation, so they could take arbitrary value in the state after the command.

Formula for if-else

After flattening,

if (b) c_1 else c_2

Formula for if-else

After flattening, $if(b) c_1 else c_2$ $R(if(b) c_1 else c_2)$: $(b \land R(c_1)) \lor (\neg b \land R(c_2))$

*c*₁; *c*₂

$c_1; c_2$

Reminder about relation composition and its definition:

$$r_1 \circ r_2 = \{(a,c) \mid \exists b.(a,b) \in r_1 \land (b,c) \in r_2\}$$

$c_1; c_2$

Reminder about relation composition and its definition:

$$r_1 \circ r_2 = \{(a,c) \mid \exists b.(a,b) \in r_1 \land (b,c) \in r_2\}$$

What are $R(c_1)$ and $R(c_2)$ and in terms of which variables they are expressed?

$c_1; c_2$

Reminder about relation composition and its definition:

$$r_1 \circ r_2 = \{(a,c) \mid \exists b.(a,b) \in r_1 \land (b,c) \in r_2\}$$

What are $R(c_1)$ and $R(c_2)$ and in terms of which variables they are expressed? $R(c_1; c_2) \equiv$

$$\exists \bar{z}. \ R(c_1)[\bar{x}':=\bar{z}] \land R(c_2)[\bar{x}:=\bar{z}]$$

where \bar{z} are freshly picked names of intermediate states.

 \blacktriangleright a useful convention: \bar{z} refer to position in program source code

havoc

Definition of HAVOC

wide and general destruction: devastation
 great confusion and disorder
 Example of use:

$$y = 12$$
; havoc(x); assume(x + x = y)

Translation, R(havoc(x)):

havoc

Definition of HAVOC

 $1. \ \mbox{wide}$ and general destruction: devastation

2. great confusion and disorder

Example of use:

$$y = 12$$
; havoc(x); assume(x + x = y)

Translation, R(havoc(x)):

$$\bigwedge_{v\in V\setminus\{x\}}v'=v$$

This again illustrates "politically correct" approach to describing the destruction of values of variables: just do not mention them.

Non-deterministic choice

if (*) c_1 else c_2

Non-deterministic choice

$$if(*) c_1 else c_2$$

 $R(if(*) c_1 else c_2):$
 $R(c_1) \lor R(c_2)$

- translation is simply a disjunction this is why construct is interesting
- corresponds to branching in control-flow graphs

assume(F)

R(assume(F)):

$$F \wedge \bigwedge_{v \in V} v' = v$$

assume(F)

R(assume(F)): $F \wedge \bigwedge_{v \in V} v' = v$

This command does not change any state.

assume(F)

R(assume(F)):

$$F \wedge \bigwedge_{v \in V} v' = v$$

This command does not change any state.

▶ If *F* does not hold, it stops with "instantaneous success".

Example of Translation

becomes

$$\exists \mathbf{x}_1, \mathbf{y}_1, \mathbf{x}_2, \mathbf{y}_2. \ \left((b \land \mathbf{x}_1 = \mathbf{x} + \mathbf{1} \land \mathbf{y}_1 = \mathbf{y}) \lor (\neg b \land \mathbf{x}_1 = \mathbf{x} \land \mathbf{y}_1 = \mathbf{x} + \mathbf{2}) \right) \\ \land \left(\mathbf{x}_2 = \mathbf{x}_1 + \mathbf{5} \land \mathbf{y}_2 = \mathbf{y}_1 \right) \\ \land \left((\mathbf{x}' = \mathbf{x}_2 \land \mathbf{y}' = \mathbf{y}_2 + \mathbf{1}) \lor (\mathbf{x}' = \mathbf{y}_2 \land \mathbf{y}' = \mathbf{y}_2) \right)$$

Think of execution trace $(x_0, y_0), (x_1, y_1), (x_2, y_2), (x_3, y_3)$ where

- (x_0, y_0) is denoted by (x, y)
- (x_3, y_3) is denoted by (x', y')

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

1. R(assume(F); c)

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

1.
$$R(assume(F); c) = F \land R(c)$$

2. R(c; assume(F))

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

- 1. $R(assume(F); c) = F \land R(c)$
- 2. $R(c; assume(F)) = R(c) \land F[\bar{x} := \bar{x}']$ where $F[\bar{x} := \bar{x}']$ denotes F with all variables replaced with primed versions

Expressing if through non-deterministic choice and assume

Expressing if through non-deterministic choice and assume

Indeed, apply translation to both sides and observe that generated formulas are equivalent.

x = e ||| havoc(x); assume(x == e)

Under what conditions this holds?

x = e ||| havoc(x); assume(x == e)

Under what conditions this holds? $x \notin FV(e)$

Illustration of the problem: havoc(x); assume(x = x + 1)

 $\mathbf{x} = \mathbf{e}$ havoc(x);

assume(x == e)

Under what conditions this holds? $x \notin FV(e)$

Illustration of the problem: havoc(x); assume(x = x + 1)

Luckily, we can rewrite it into $x_{fresh} = x + 1$; $x = x_{fresh}$

Loop-Free Programs as Relations: Summary

command c R(c) $\rho(c)$ (x = t) | $x' = t \land \bigwedge_{v \in V \setminus \{x\}} v' = v$ $c_1; c_2 \mid \exists \bar{z}. \ R(c_1)[\bar{x}' := \bar{z}] \land R(c_2)[\bar{x} := \bar{z}] \mid \rho(c_1) \circ \rho(c_2)$ $\rho(\mathbf{v}_i = t) = \{((v_1, \dots, v_i, \dots, v_n), (v_1, \dots, v'_i, \dots, v_n) \mid v'_i = t\}$ $S(F) = \{ \overline{v} \mid F \}, \quad \Delta_A = \{ (\overline{v}, \overline{v}) \mid \overline{v} \in A \}$ (diagonal relation on A) Δ (without subscript) is identity on entire set of states (no-op) We always have: $\rho(c) = \{(\bar{v}, \bar{v}') \mid R(c)\}$ Shorthands:

$$\frac{\mathbf{f}(*) \ c_1 \ \mathbf{else} \ c_2}{\mathbf{assume}(F)} \quad \frac{c_1 \ \sqcup \ c_2}{[F]}$$

Examples:

if (F)
$$c_1$$
 else $c_2 \equiv [F]; c_1 \ [\ [\neg F]; c_2$
if (F) $c \equiv [F]; c \ [\ [\neg F]$

Program Paths

Loop-Free Programs

c - a loop-free program whose assignments, havocs, and assumes are c_1, \ldots, c_n

The relation $\rho(c)$ is of the form $E(\rho(c_1), \ldots, \rho(c_n))$; it composes meanings of c_1, \ldots, c_n using union (U) and composition (\circ) (if (x > 0)Note: \circ binds stronger than \cup , so $r \circ s \cup t = (r \circ s) \cup t$

Normal Form for Loop-Free Programs

Composition distributes through union:

$$(r_1 \cup r_2) \circ (s_1 \cup s_2) = r_1 \circ s_1 \cup r_1 \circ s_2 \cup r_2 \circ s_1 \cup r_2 \circ s_2$$

Example corresponding to two if-else statements one after another: $(\Delta_1 \circ r_1)$ U $\Delta_2 \circ r_2$ $\equiv \qquad \begin{array}{c} \Delta_1 \circ r_1 \circ \Delta_3 \circ r_3 \cup \\ \Delta_1 \circ r_1 \circ \Delta_4 \circ r_4 \cup \\ \Delta_2 \circ r_2 \circ \Delta_3 \circ r_3 \cup \end{array}$ $)\circ$ $(\Delta_3 \circ r_3)$ $\Delta_2 \circ r_2 \circ \Delta_4 \circ r_4$ $\Delta_4 \circ r_4$ Sequential composition of basic statements is called basic path. Loop-free code describes finitely many (exponentially many) paths.

Properties of Program Contexts

Some Properties of Relations

$$(p_1 \subseteq p_2)
ightarrow (p_1 \circ p) \subseteq (p_2 \circ p)$$

$$(p_1 \subseteq p_2)
ightarrow (p \circ p_1) \subseteq (p \circ p_2)$$

$$(p_1 \subseteq p_2) \land (q_1 \subseteq q_2) \ o \ (p_1 \cup q_1) \subseteq (p_2 \cup q_2)$$

$$(p_1\cup p_2)\circ q=(p_1\circ q)\cup (p_2\circ q)$$

Monotonicity of Expressions using \cup and \circ

For a program with k integer variables, $S = \mathbb{Z}^k$ Consider relations that are subsets of $S \times S$ (i.e. S^2) The set of all such relations is

$$C = \{r \mid r \subseteq S^2\}$$

Let E(r) be given by any expression built from relation r and some additional relations b_1, \ldots, b_n , using \cup and \circ . Example: $E(r) = (b_1 \circ r) \cup (r \circ b_2)$ E(r) is function $C \to C$, maps relations to relations **Claim:** E is monotonic function on C:

$$r_1 \subseteq r_2 \to E(r_1) \subseteq E(r_2)$$

Prove of disprove.

Monotonicity of Expressions using \cup and \circ

For a program with k integer variables, $S = \mathbb{Z}^k$ Consider relations that are subsets of $S \times S$ (i.e. S^2) The set of all such relations is

$$C = \{r \mid r \subseteq S^2\}$$

Let E(r) be given by any expression built from relation r and some additional relations b_1, \ldots, b_n , using \cup and \circ . Example: $E(r) = (b_1 \circ r) \cup (r \circ b_2)$ E(r) is function $C \to C$, maps relations to relations **Claim:** E is monotonic function on C:

$$r_1 \subseteq r_2 \to E(r_1) \subseteq E(r_2)$$

Prove of disprove.

Proof: induction on the expression tree defining *E*, using monotonicity properties of \cup and \circ

Union-Distributivity of Expressions using \cup and \circ

Claim: *E* distributes over unions, that is, if $r_i, i \in I$ is a family of relations,

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

Prove or disprove.

Union-Distributivity of Expressions using \cup and \circ

Claim: *E* distributes over unions, that is, if $r_i, i \in I$ is a family of relations,

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

Prove or disprove.

False. Take $E(r) = r \circ r$ and consider relations r_1, r_2 . The claim becomes

$$(r_1 \cup r_2) \circ (r_1 \cup r_2) = r_1 \circ r_1 \cup r_2 \circ r_2$$

that is,

$$r_1 \circ r_1 \cup r_1 \circ r_2 \cup r_2 \circ r_1 \cup r_2 \circ r_2 = r_1 \circ r_1 \cup r_2 \circ r_2$$

Taking, for example, $r_1 = \{(1,2)\}, r_2 = \{(2,3)\}$ we obtain

$$\{(1,3)\} = \emptyset \quad (false)$$

Union "Distributivity" in One Direction

Lemma:

$$E(\bigcup_{i\in I}r_i)\supseteq \bigcup_{i\in I}E(r_i)$$

Union "Distributivity" in One Direction

Lemma:

$$E(\bigcup_{i\in I}r_i)\supseteq \bigcup_{i\in I}E(r_i)$$

Proof. Let $r = \bigcup_{i \in I} r_i$. Note that, for every $i, r_i \subseteq r$. We have shown that E is monotonic, so $E(r_i) \subseteq E(r)$. Since all $E(r_i)$ are included in E(r), so is their union, so

$$\bigcup E(r_i) \subseteq E(r)$$

as desired.

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

1. If E(r) is given by an expression containing r at most once?

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses rtwice.

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

- 1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses rtwice.
- If E(r) contains r any number of times, but I is a set of natural numbers and r_i is an increasing sequence: r₁ ⊆ r₂ ⊆ r₃ ⊆ ...

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

- 1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses rtwice.
- If E(r) contains r any number of times, but I is a set of natural numbers and r_i is an increasing sequence:
 r₁ ⊆ r₂ ⊆ r₃ ⊆ ... Induction. In the previous counter-example the largest relation will contain all other r_i ∘ r_i.
- 3. If E(r) contains r any number of times, but $r_i, i \in I$ is a **directed family** of relations: for each i, j there exists k such that $r_i \cup r_j \subseteq r_k$, and I is possibly uncountably infinite.

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

- 1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses rtwice.
- If E(r) contains r any number of times, but I is a set of natural numbers and r_i is an increasing sequence:
 r₁ ⊆ r₂ ⊆ r₃ ⊆ ... Induction. In the previous counter-example the largest relation will contain all other r_i ∘ r_i.
- 3. If E(r) contains r any number of times, but $r_i, i \in I$ is a **directed family** of relations: for each i, j there exists k such that $r_i \cup r_j \subseteq r_k$, and I is possibly uncountably infinite. Induction. Generalizes the previous case.

About Strength and Weakness

Putting Conditions on Sets Makes them Smaller

Let P_1 and P_2 be formulas ("conditions") whose free variables are among \bar{x} . Those variables may denote program state. When we say "condition P_1 is stronger than condition P_2 " it simply means

$$\forall \bar{x}. \ (P_1 \to P_2)$$

• if we know P_1 , we immediately get (conclude) P_2

• if we know P_2 we need not be able to conclude P_1

 $\begin{array}{l} \text{Stronger condition} = \text{smaller set: if } P_1 \text{ is stronger than } P_2 \text{ then} \\ \{ \bar{x} \mid P_1 \} \subseteq \{ \bar{x} \mid P_2 \} \end{array}$

▶ strongest possible condition: "false" \rightsquigarrow smallest set: Ø

 \blacktriangleright weakest condition: "true" \rightsquigarrow biggest set: set of all tuples

Hoare Triples

About Hoare Logic

We have seen how to translate programs into relations. We will use these relations in a proof system called Hoare logic. Hoare logic is a way of inserting annotations into code to make proofs about (imperative) program behavior simpler.

Example proof:

 $//{0 <= y}$ i = y; $//{0 \le v \& i = v}$ r = 0: $//{0 \le y \& i = y \& r = 0}$ while $//\{r = (y-i) * x \& 0 \le i\}$ (i > 0) ($//\{r = (v-i) * x \& 0 < i\}$ $\mathbf{r} = \mathbf{r} + \mathbf{x}$: $//\{r = (y-i+1) * x \& 0 < i\}$ i = i - 1 $//\{r = (y-i)*x \& 0 \le i\}$ $//\{r = x * y\}$

Hoare Triple and Friends

Sir Charles Antony Richard Hoare

 $P, Q \subseteq S$ $r \subseteq S \times S$ Hoare Triple:

Sir Charles Antony Richard Hoare giving conference at the EPFL on 20 June 201

$$\{P\} \ r \ \{Q\} \iff \forall s, s' \in S. \ (s \in P \land (s, s') \in r \rightarrow s' \in Q)$$

 $\{P\}$ does not denote a singleton set containing P but is just a notation for an "assertion" around a command. Likewise for $\{Q\}$. **Strongest postcondition:**

$$sp(P,r) = \{s' \mid \exists s. s \in P \land (s,s') \in r\}$$

Weakest precondition:

$$wp(r, Q) = \{s \mid \forall s'.(s, s') \in r \rightarrow s' \in Q\}$$

Exercise: Which Hoare triples are valid?

Assume all variables to be over integers. 1. {j = a} j :=j+1 {a = j + 1} 2. {i = j} i:=j+i {i > j}

3. $\{j = a + b\}$ i:=b; j:=a $\{j = 2 * a\}$

5. {i !=j} if i>j then m:=i-j else m:=j-i {m > 0}

6. $\{i = 3*j\}$ if i > j then m:=i-j else m:=j-i $\{m-2*j=0\}$

Postconditions and Their Strength

What is the relationship between these postconditions?

{
$$x = 5$$
} $x := x + 2$ { $x > 0$ }
{ $x = 5$ } $x := x + 2$ { $x = 7$ }

Postconditions and Their Strength

What is the relationship between these postconditions?

{
$$x = 5$$
} $x := x + 2$ { $x > 0$ }
{ $x = 5$ } $x := x + 2$ { $x = 7$ }

weakest conditions (predicates) correspond to largest sets
 strongest conditions (predicates) correspond to smallest sets
 that satisfy a given property.

(Graphically, a stronger condition $x > 0 \land y > 0$ denotes one quadrant in plane, whereas a weaker condition x > 0 denotes the entire half-plane.)

Strongest Postconditions

Strongest Postcondition

Definition: For $P \subseteq S$, $r \subseteq S \times S$,

$$sp(P,r) = \{s' \mid \exists s.s \in P \land (s,s') \in r\}$$

This is simply the relation image of a set.

Weakest Preconditions

Weakest Precondition

Definition: for $Q \subseteq S$, $r \subseteq S \times S$,

$$wp(r, Q) = \{s \mid \forall s'.(s, s') \in r \rightarrow s' \in Q\}$$

Note that this is in general not the same as $sp(Q, r^{-1})$ when then relation is non-deterministic or partial.

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $\blacktriangleright \{P\}r\{Q\}$
- $\blacktriangleright P \subseteq wp(r, Q)$
- ▶ $sp(P, r) \subseteq Q$

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $\blacktriangleright \{P\}r\{Q\}$
- ▶ $P \subseteq wp(r, Q)$
- ▶ $sp(P, r) \subseteq Q$

Proof. The three conditions expand into the following three formulas

- ► $\forall s, s'$. $[(s \in P \land (s, s') \in r) \rightarrow s' \in Q]$
- ▶ $\forall s. \ [s \in P \rightarrow (\forall s'.(s,s') \in r \rightarrow s' \in Q)]$
- ► $\forall s'. [(\exists s. s \in P \land (s, s') \in P) \rightarrow s' \in Q]$

which are easy to show equivalent using basic first-order logic properties.

Lemma: Characterization of sp

sp(P, r) is the the smallest set Q such that $\{P\}r\{Q\}$, that is:

$$\{P\}r\{sp(P,r)\}$$

$$\blacktriangleright \forall Q \subseteq S. \{P\}r\{Q\} \rightarrow sp(P,r) \subseteq Q$$

$$\{P\} \ r \ \{Q\} \Leftrightarrow \forall s, s' \in S. (s \in P \land (s, s') \in r \rightarrow s' \in Q)$$

$$sp(P, r) = \{s' \mid \exists s.s \in P \land (s, s') \in r\}$$

Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

▶
$$sp(P, r) \subseteq sp(P, r)$$

$$\blacktriangleright \forall P \subseteq S. \ sp(P, r) \subseteq Q \rightarrow sp(P, r) \subseteq Q$$

Lemma: Characterization of wp

wp(r, Q) is the largest set P such that $\{P\}r\{Q\}$, that is:

 $\blacktriangleright \{wp(r, Q)\}r\{Q\}$

$$\blacktriangleright \forall P \subseteq S. \{P\}r\{Q\} \rightarrow P \subseteq wp(r,Q)$$

$$\{P\} \ r \ \{Q\} \Leftrightarrow \forall s, s' \in S. \ (s \in P \land (s, s') \in r \to s' \in Q) \\ wp(r, Q) = \{s \mid \forall s'. (s, s') \in r \to s' \in Q\}$$

Proof of Lemma: Characterization of wp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

$$\blacktriangleright wp(r,Q) \subseteq wp(r,Q)$$

$$\blacktriangleright \forall P \subseteq S. \ P \subseteq wp(r, Q) \rightarrow P \subseteq wp(r, Q)$$

Exercise: Postcondition of inverse versus wp

Lemma:

$$S \setminus wp(r, Q) = sp(S \setminus Q, r^{-1})$$

In other words, when instead of good states we look at the completement set of "error states", then *wp* corresponds to doing *sp* backwards.

Note that $r^{-1} = \{(y, x) \mid (x, y) \in r\}$ and is always defined.

Exercise: Postcondition of inverse versus wp

Lemma:

$$S \setminus wp(r, Q) = sp(S \setminus Q, r^{-1})$$

In other words, when instead of good states we look at the completement set of "error states", then *wp* corresponds to doing *sp* backwards.

Note that $r^{-1} = \{(y, x) \mid (x, y) \in r\}$ and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order logic properties.

More Laws on Preconditions and Postconditions

Disjunctivity of sp

 $sp(P_1 \cup P_2, r) = sp(P_1, r) \cup sp(P_2, r)$ $sp(P, r_1 \cup r_2) = sp(P, r_1) \cup sp(P, r_2)$

Conjunctivity of wp

$$wp(r, Q_1 \cap Q_2) = wp(r, Q_1) \cap wp(r, Q_2)$$

 $wp(r_1 \cup r_2, Q) = wp(r_1, Q) \cap wp(r_2, Q)$

Pointwise wp

$$wp(r, Q) = \{s \mid s \in S \land sp(\{s\}, r) \subseteq Q\}$$

Pointwise sp

$$sp(P, r) = \bigcup_{s \in P} sp(\{s\}, r)$$

Hoare Logic for Loop-free Code

Expanding Paths

The condition

$$\{P\} \left(\bigcup_{i\in J} r_i\right) \{Q\}$$

is equivalent to

$$\forall i.i \in J \rightarrow \{P\}r_i\{Q\}$$

Proof: By definition, or use that the first condition is equivalent to $sp(P, \bigcup_{i \in J} r_i) \subseteq Q$ and $\{P\}r_i\{Q\}$ to $sp(P, r_i) \subseteq Q$

Transitivity

If $\{P\}s_1\{Q\}$ and $\{Q\}s_2\{R\}$ then also $\{P\}s_1 \circ s_2\{R\}$. We write this as the following inference rule:

$$\frac{\{P\}s_1\{Q\}, \{Q\}s_2\{R\}}{\{P\}s_1 \circ s_2\{R\}}$$

Hoare Logic for Loops

The following inference rule holds:

$$\frac{\{P\}s\{P\}, n \ge 0}{\{P\}s^n\{P\}}$$

Proof is by transitivity.

By Expanding Paths condition, we then have:

$$\frac{\{P\}s\{P\}}{\{P\}\bigcup_{n\geq 0} s^n\{P\}}$$

In fact, $\bigcup_{n>0} s^n = s^*$, so we have

$$\frac{\{P\}s\{P\}}{\{P\}s^*\{P\}}$$

This is the rule for non-deterministic loops.