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Verifying Imperative Programs

import stainless.lang.
import stainless.lang.StaticChecks.
case class FirstExample(var x: BigInt, var y: BigInt) {
def increase : Unit = {

x = x + 2
y = x + 10
}.ensuring( => old(this).x > 0 ==> (x > 0 && y > 0))
}



Verification-Condition Generation for Imperative
Non-Deterministic Programs

A program fragment can be represented by a formula relating
initial and final state. Consider a program with variables x , y

program: x = x + 2; y = x + 10
relation: {(x , y , x ′, y ′) | x ′ = x + 2 ∧ y ′ = x + 12}
formula: x ′ = x + 2 ∧ y ′ = x + 12

Specification: old(x) > 0→ x > 0 ∧ y > 0
Adhering to specification is relation subset:

{(x , y , x ′, y ′) | x ′ = x + 2 ∧ y ′ = x + 12}
⊆ {(x , y , x ′, y ′) | x > 0→ (x ′ > 0 ∧ y ′ > 0)}

or validity of the following implication:

x ′ = x + 2 ∧ y ′ = x + 12
→ (x > 0→ (x ′ > 0 ∧ y ′ > 0))



Construction Formula that Describe Relations

c - imperative command

R(c) - formula describing relation between initial and final states
of execution of c

If ρ(c) describes the relation, then R(c) is formula such that

ρ(c) = {(v̄ , v̄ ′) | R(c)}

R(c) is a formula between unprimed variables v̄ and primed
variables v̄ ′



Formula for Assignment

x = t

R(x = t):

x ′ = t ∧
∧

v∈V \{x}
v ′ = v

Note that the formula must explicitly state which variables remain
the same (here: all except x). Otherwise, those variables would
not be constrained by the relation, so they could take arbitrary
value in the state after the command.
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Formula for if-else

After flattening,
if (b) c1 else c2

R(if (b) c1 else c2):

(b ∧ R(c1)) ∨ (¬b ∧ R(c2))
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Command semicolon

c1; c2

Reminder about relation composition and its definition:

r1 ◦ r2 = {(a, c) | ∃b.(a, b) ∈ r1 ∧ (b, c) ∈ r2}

What are R(c1) and R(c2) and in terms of which variables they are
expressed?
R(c1; c2) ≡

∃z̄ . R(c1)[x̄ ′ := z̄ ] ∧ R(c2)[x̄ := z̄ ]

where z̄ are freshly picked names of intermediate states.

I a useful convention: z̄ refer to position in program source code
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havoc

Definition of HAVOC

1. wide and general destruction: devastation

2. great confusion and disorder

Example of use:

y = 12; havoc(x); assume(x + x = y)

Translation, R(havoc(x)):

∧

v∈V \{x}
v ′ = v

This again illustrates “politically correct” approach to describing
the destruction of values of variables: just do not mention them.
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Non-deterministic choice

if (∗) c1 else c2

R(if (∗) c1 else c2):
R(c1) ∨ R(c2)

I translation is simply a disjunction – this is why construct is
interesting

I corresponds to branching in control-flow graphs
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assume

assume(F )

R(assume(F )):

F ∧
∧

v∈V
v ′ = v

I This command does not change any state.

I If F does not hold, it stops with “instantaneous success”.
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Example of Translation

0

(if (b) x = x + 1 else y = x + 2);
1

x = x + 5;
2

(if (∗) y = y + 1 else x = y)
3

becomes

∃x1, y1, x2, y2. ((b ∧ x1 = x + 1 ∧ y1 = y) ∨ (¬b ∧ x1 = x ∧ y1 = x + 2))
∧ (x2 = x1 + 5 ∧ y2 = y1)
∧ ((x ′ = x2 ∧ y′ = y2 + 1) ∨ (x′ = y2 ∧ y ′ = y2))

Think of execution trace (x0, y0), (x1, y1), (x2, y2), (x3, y3) where

I (x0, y0) is denoted by (x , y)

I (x3, y3) is denoted by (x ′, y ′)



Justifying the name for assume(F)

Compute and simplify as much as possible each of the following
expressions:

1. R(assume(F ); c)

= F ∧ R(c)

2. R(c ; assume(F )) = R(c) ∧ F [x̄ := x̄ ′]
where F [x̄ := x̄ ′] denotes F with all variables replaced with
primed versions
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Expressing if through non-deterministic choice and assume

if (b) c1 else c2

|||

if (∗) {
assume(b);
c1
} else {
assume(!b);
c2
}

Indeed, apply translation to both sides and observe that generated
formulas are equivalent.
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Expressing assignment through havoc and assume

x = e

|||

havoc(x);
assume(x == e)

Under what conditions this holds?
x /∈ FV (e)

Illustration of the problem: havoc(x); assume(x == x + 1)

Luckily, we can rewrite it into xfresh = x + 1; x = xfresh
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Loop-Free Programs as Relations: Summary

command c R(c) ρ(c)

(x = t) x ′ = t ∧∧v∈V \{x} v
′ = v

c1 ; c2 ∃z̄ . R(c1)[x̄ ′ := z̄ ] ∧ R(c2)[x̄ := z̄ ] ρ(c1) ◦ ρ(c2)
if(∗) c1 else c2 R(c1) ∨ R(c2) ρ(c1) ∪ ρ(c2)

assume(F) F ∧∧v∈V v ′ = v ∆S(F )

ρ(vi = t) = {((v1, . . . , vi , . . . , vn), (v1, . . . , v
′
i , . . . , vn) | v ′i = t}

S(F ) = {v̄ | F}, ∆A = {(~v , ~v) | ~v ∈ A} (diagonal relation on A)
∆ (without subscript) is identity on entire set of states (no-op)
We always have: ρ(c) = {(v̄ , v̄ ′) | R(c)}
Shorthands:

if(∗) c1 else c2 c1 c2
assume(F ) [F ]

Examples:

if (F ) c1 else c2 ≡ [F ]; c1 [¬F ]; c2
if (F ) c ≡ [F ]; c [¬F ]



Program Paths



Loop-Free Programs

c - a loop-free program whose assignments, havocs, and assumes
are c1, . . . , cn

The relation ρ(c) is of the form E (ρ(c1), . . . , ρ(cn)); it composes
meanings of c1, . . . , cn using union (∪) and composition (◦)

(if (x > 0)
x = x − 1

else
x = 0

);
(if (y > 0)

y = y − 1
else

y = x + 1
)

([x > 0]; x = x − 1

([¬(x>0)]; x = 0)
);
([y > 0]; y = y − 1

[¬(y>0)]; y = x+1
)

(
∆S(x>0) ◦ ρ(x = x − 1)
∪

∆S(¬(x>0)) ◦ ρ(x = 0))
◦(
∆S(y>0) ◦ ρ(y = y − 1)
∪

∆S(¬(y>0)) ◦ ρ(y = x + 1))

Note: ◦ binds stronger than ∪, so r ◦ s ∪ t = (r ◦ s) ∪ t



Normal Form for Loop-Free Programs

Composition distributes through union:

(r1 ∪ r2) ◦ (s1 ∪ s2) = r1 ◦ s1 ∪ r1 ◦ s2 ∪ r2 ◦ s1 ∪ r2 ◦ s2

Example corresponding to two if-else statements one after another:(
∆1 ◦ r1
∪

∆2 ◦ r2)
◦(
∆3 ◦ r3
∪

∆4 ◦ r4)

≡

∆1 ◦ r1 ◦∆3 ◦ r3 ∪
∆1 ◦ r1 ◦∆4 ◦ r4 ∪
∆2 ◦ r2 ◦∆3 ◦ r3 ∪
∆2 ◦ r2 ◦∆4 ◦ r4

Sequential composition of basic statements is called basic path.
Loop-free code describes finitely many (exponentially many) paths.



Properties of Program Contexts



Some Properties of Relations

(p1 ⊆ p2)→ (p1 ◦ p) ⊆ (p2 ◦ p)

(p1 ⊆ p2)→ (p ◦ p1) ⊆ (p ◦ p2)

(p1 ⊆ p2) ∧ (q1 ⊆ q2) → (p1 ∪ q1) ⊆ (p2 ∪ q2)

(p1 ∪ p2) ◦ q = (p1 ◦ q) ∪ (p2 ◦ q)



Monotonicity of Expressions using ∪ and ◦
For a program with k integer variables, S = Zk

Consider relations that are subsets of S × S (i.e. S2)
The set of all such relations is

C = {r | r ⊆ S2}

Let E (r) be given by any expression built from relation r and some
additional relations b1, . . . , bn, using ∪ and ◦.
Example: E (r) = (b1 ◦ r) ∪ (r ◦ b2)
E (r) is function C → C , maps relations to relations
Claim: E is monotonic function on C :

r1 ⊆ r2 → E (r1) ⊆ E (r2)

Prove of disprove.

Proof: induction on the expression tree defining E , using
monotonicity properties of ∪ and ◦
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Union-Distributivity of Expressions using ∪ and ◦

Claim: E distributes over unions, that is, if ri , i ∈ I is a family of
relations,

E (
⋃

i∈I
ri ) =

⋃

i∈I
E (ri )

Prove or disprove.

False. Take E (r) = r ◦ r and consider relations r1, r2. The claim
becomes

(r1 ∪ r2) ◦ (r1 ∪ r2) = r1 ◦ r1 ∪ r2 ◦ r2
that is,

r1◦r1 ∪ r1◦r2 ∪ r2◦r1 ∪ r2◦r2 = r1◦r1 ∪ r2◦r2
Taking, for example, r1 = {(1, 2)}, r2 = {(2, 3)} we obtain

{(1, 3)} = ∅ (false)
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Union “Distributivity” in One Direction

Lemma:
E (
⋃

i∈I
ri ) ⊇

⋃

i∈I
E (ri )

Proof. Let r =
⋃

i∈I ri . Note that, for every i , ri ⊆ r . We have
shown that E is monotonic, so E (ri ) ⊆ E (r). Since all E (ri ) are
included in E (r), so is their union, so

⋃
E (ri ) ⊆ E (r)

as desired.
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Union-Distributivity - Refined

Does distributivity

E (
⋃

i∈I
ri ) =

⋃

i∈I
E (ri )

hold, for each of these cases

1. If E (r) is given by an expression containing r at most once?

Proof: Induction on expression for E (r). Only one branch of
the tree may contain r . Note previous counter-example uses r
twice.

2. If E (r) contains r any number of times, but I is a set of
natural numbers and ri is an increasing sequence:
r1 ⊆ r2 ⊆ r3 ⊆ . . . Induction. In the previous counter-example
the largest relation will contain all other ri ◦ rj .

3. If E (r) contains r any number of times, but ri , i ∈ I is a
directed family of relations: for each i , j there exists k such
that ri ∪ rj ⊆ rk , and I is possibly uncountably infinite.
Induction. Generalizes the previous case.
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About Strength and Weakness



Putting Conditions on Sets Makes them Smaller

Let P1 and P2 be formulas (“conditions”) whose free variables are
among x̄ . Those variables may denote program state.
When we say “condition P1 is stronger than condition P2” it
simply means

∀x̄ . (P1 → P2)

I if we know P1, we immediately get (conclude) P2

I if we know P2 we need not be able to conclude P1

Stronger condition = smaller set: if P1 is stronger than P2 then
{x̄ | P1} ⊆ {x̄ | P2}

I strongest possible condition: “false” ; smallest set: ∅
I weakest condition: “true” ; biggest set: set of all tuples



Hoare Triples



About Hoare Logic

We have seen how to translate programs into relations. We will use these

relations in a proof system called Hoare logic. Hoare logic is a way of

inserting annotations into code to make proofs about (imperative)

program behavior simpler.

Example proof:

//{0 <= y}
i = y;
//{0 <= y & i = y}
r = 0;
//{0 <= y & i = y & r = 0}
while //{r = (y−i)∗x & 0 <= i}
(i > 0) (
//{r = (y−i)∗x & 0 < i}
r = r + x;
//{r = (y−i+1)∗x & 0 < i}
i = i − 1
//{r = (y−i)∗x & 0 <= i}

)
//{r = x ∗ y}



Hoare Triple and Friends

P,Q ⊆ S r ⊆ S × S
Hoare Triple:

{P} r {Q} ⇐⇒ ∀s, s ′ ∈ S .
(
s ∈ P ∧ (s, s ′) ∈ r → s ′ ∈ Q

)

{P} does not denote a singleton set containing P but is just a
notation for an “assertion” around a command. Likewise for {Q}.
Strongest postcondition:

sp(P, r) = {s ′ | ∃s. s ∈ P ∧ (s, s ′) ∈ r}

Weakest precondition:

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}



Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.

1. {j = a} j :=j+1 {a = j + 1}

2. {i = j} i:=j+i {i > j}

3. {j = a + b} i:=b; j:=a {j = 2 ∗ a}

4. {i > j} j:=i+1; i:=j+1 {i > j}

5. {i != j} if i>j then m:=i−j else m:=j−i {m > 0}

6. {i = 3∗j} if i>j then m:=i−j else m:=j−i {m−2∗j=0}



Postconditions and Their Strength

What is the relationship between these postconditions?

{x = 5} x := x + 2 {x > 0}
{x = 5} x := x + 2 {x = 7}

I weakest conditions (predicates) correspond to largest sets

I strongest conditions (predicates) correspond to smallest sets

that satisfy a given property.

(Graphically, a stronger condition x > 0 ∧ y > 0 denotes one
quadrant in plane, whereas a weaker condition x > 0 denotes the
entire half-plane.)
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Strongest Postconditions



Strongest Postcondition

Definition: For P ⊆ S , r ⊆ S × S ,

sp(P, r) = {s ′ | ∃s.s ∈ P ∧ (s, s ′) ∈ r}

This is simply the relation image of a set.



Weakest Preconditions



Weakest Precondition

Definition: for Q ⊆ S , r ⊆ S × S ,

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}

Note that this is in general not the same as sp(Q, r−1) when then
relation is non-deterministic or partial.



Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

I {P}r{Q}
I P ⊆ wp(r ,Q)

I sp(P, r) ⊆ Q

Proof. The three conditions expand into the following three
formulas

I ∀s, s ′. [(s ∈ P ∧ (s, s ′) ∈ r)→ s ′ ∈ Q]

I ∀s. [s ∈ P → (∀s ′.(s, s ′) ∈ r → s ′ ∈ Q)]

I ∀s ′. [(∃s. s ∈ P ∧ (s, s ′) ∈ P)→ s ′ ∈ Q]

which are easy to show equivalent using basic first-order logic
properties.
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Lemma: Characterization of sp
sp(P, r) is the the smallest set Q such that {P}r{Q}, that is:

I {P}r{sp(P, r)}
I ∀Q ⊆ S . {P}r{Q} → sp(P, r) ⊆ Q

{P} r {Q} ⇔∀s, s ′ ∈ S . (s ∈ P ∧ (s, s ′) ∈ r → s ′ ∈ Q)

sp(P, r) ={s ′ | ∃s.s ∈ P ∧ (s, s ′) ∈ r}



Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then
reduce to:

I sp(P, r) ⊆ sp(P, r)

I ∀P ⊆ S . sp(P, r) ⊆ Q → sp(P, r) ⊆ Q



Lemma: Characterization of wp

wp(r ,Q) is the largest set P such that {P}r{Q}, that is:

I {wp(r ,Q)}r{Q}
I ∀P ⊆ S . {P}r{Q} → P ⊆ wp(r ,Q)

{P} r {Q} ⇔∀s, s ′ ∈ S .
(
s ∈ P ∧ (s, s ′) ∈ r → s ′ ∈ Q

)

wp(r ,Q) ={s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}



Proof of Lemma: Characterization of wp

Apply Three Forms of Hoare triple. The two conditions then
reduce to:

I wp(r ,Q) ⊆ wp(r ,Q)

I ∀P ⊆ S . P ⊆ wp(r ,Q)→ P ⊆ wp(r ,Q)



Exercise: Postcondition of inverse versus wp

Lemma:
S \ wp(r ,Q) = sp(S \ Q, r−1)

In other words, when instead of good states we look at the
completement set of “error states”, then wp corresponds to doing
sp backwards.

Note that r−1 = {(y , x) | (x , y) ∈ r} and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order
logic properties.
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More Laws on Preconditions and Postconditions

Disjunctivity of sp

sp(P1 ∪ P2, r) = sp(P1, r) ∪ sp(P2, r)

sp(P, r1 ∪ r2) = sp(P, r1) ∪ sp(P, r2)

Conjunctivity of wp

wp(r ,Q1 ∩ Q2) = wp(r ,Q1) ∩ wp(r ,Q2)

wp(r1 ∪ r2,Q) = wp(r1,Q) ∩ wp(r2,Q)

Pointwise wp

wp(r ,Q) = {s | s ∈ S ∧ sp({s}, r) ⊆ Q}

Pointwise sp

sp(P, r) =
⋃

s∈P

sp({s}, r)



Hoare Logic for Loop-free Code

Expanding Paths
The condition

{P}
( ⋃

i∈J
ri
)
{Q}

is equivalent to
∀i .i ∈ J → {P}ri{Q}

Proof: By definition, or use that the first condition is equivalent to
sp(P,

⋃
i∈J ri ) ⊆ Q and {P}ri{Q} to sp(P, ri ) ⊆ Q

Transitivity
If {P}s1{Q} and {Q}s2{R} then also {P}s1 ◦ s2{R}.
We write this as the following inference rule:

{P}s1{Q}, {Q}s2{R}
{P}s1 ◦ s2{R}



Hoare Logic for Loops

The following inference rule holds:

{P}s{P}, n ≥ 0

{P}sn{P}

Proof is by transitivity.
By Expanding Paths condition, we then have:

{P}s{P}
{P}⋃n≥0 s

n{P}

In fact,
⋃

n≥0 s
n = s∗, so we have

{P}s{P}
{P}s∗{P}

This is the rule for non-deterministic loops.


