Converting Imperative Programs to Formulas

Viktor Kunčak

Verifying Imperative Programs

```
import stainless.lang.
import stainless.lang.StaticChecks._
case class FirstExample(var x: BigInt, var y: BigInt) {
    def increase: Unit = {
        x=x+2
        y=x+10
    }.ensuring(_ => old(this).x>0==> (x>0 && y > 0))
}
```


Verification-Condition Generation for Imperative

 Non-Deterministic ProgramsA program fragment can be represented by a formula relating initial and final state. Consider a program with variables x, y

$$
\begin{array}{rc}
\text { program: } & x=x+2 ; y=x+10 \\
\text { relation: } & \left\{\left(x, y, x^{\prime}, y^{\prime}\right) \mid x^{\prime}=x+2 \wedge y^{\prime}=x+12\right\} \\
\text { formula: } & x^{\prime}=x+2 \wedge y^{\prime}=x+12
\end{array}
$$

Specification: old $(x)>0 \rightarrow x>0 \wedge y>0$
Adhering to specification is relation subset:

$$
\begin{aligned}
& \left\{\left(x, y, x^{\prime}, y^{\prime}\right) \mid x^{\prime}=x+2 \wedge y^{\prime}=x+12\right\} \\
\subseteq & \left\{\left(x, y, x^{\prime}, y^{\prime}\right) \mid x>0 \rightarrow\left(x^{\prime}>0 \wedge y^{\prime}>0\right)\right\}
\end{aligned}
$$

or validity of the following implication:

$$
\begin{array}{ll}
& x^{\prime}=x+2 \wedge y^{\prime}=x+12 \\
\rightarrow \quad & \left(x>0 \rightarrow\left(x^{\prime}>0 \wedge y^{\prime}>0\right)\right)
\end{array}
$$

Construction Formula that Describe Relations

c-imperative command
$R(c)$ - formula describing relation between initial and final states of execution of c

If $\rho(c)$ describes the relation, then $R(c)$ is formula such that

$$
\rho(c)=\left\{\left(\bar{v}, \bar{v}^{\prime}\right) \mid R(c)\right\}
$$

$R(c)$ is a formula between unprimed variables \bar{v} and primed variables \bar{v}^{\prime}

Formula for Assignment

$$
x=t
$$

Formula for Assignment

$$
x=t
$$

$$
R(x=t):
$$

$$
x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Note that the formula must explicitly state which variables remain the same (here: all except x). Otherwise, those variables would not be constrained by the relation, so they could take arbitrary value in the state after the command.

Formula for if-else

After flattening,

$$
\text { if }(b) c_{1} \text { else } c_{2}
$$

Formula for if-else

After flattening,

$$
\text { if }(b) c_{1} \text { else } c_{2}
$$

$R\left(\right.$ if $(b) c_{1}$ else $\left.c_{2}\right):$

$$
\left(b \wedge R\left(c_{1}\right)\right) \vee\left(\neg b \wedge R\left(c_{2}\right)\right)
$$

Command semicolon

$$
c_{1} ; c_{2}
$$

Command semicolon

$$
c_{1} ; c_{2}
$$

Reminder about relation composition and its definition:

$$
r_{1} \circ r_{2}=\left\{(a, c) \mid \exists b .(a, b) \in r_{1} \wedge(b, c) \in r_{2}\right\}
$$

Command semicolon

$$
c_{1} ; c_{2}
$$

Reminder about relation composition and its definition:

$$
r_{1} \circ r_{2}=\left\{(a, c) \mid \exists b \cdot(a, b) \in r_{1} \wedge(b, c) \in r_{2}\right\}
$$

What are $R\left(c_{1}\right)$ and $R\left(c_{2}\right)$ and in terms of which variables they are expressed?

Command semicolon

$$
c_{1} ; c_{2}
$$

Reminder about relation composition and its definition:

$$
r_{1} \circ r_{2}=\left\{(a, c) \mid \exists b .(a, b) \in r_{1} \wedge(b, c) \in r_{2}\right\}
$$

What are $R\left(c_{1}\right)$ and $R\left(c_{2}\right)$ and in terms of which variables they are expressed?
$R\left(c_{1} ; c_{2}\right) \equiv$

$$
\exists \bar{z} . \quad R\left(c_{1}\right)\left[\bar{x}^{\prime}:=\bar{z}\right] \wedge R\left(c_{2}\right)[\bar{x}:=\bar{z}]
$$

where \bar{z} are freshly picked names of intermediate states.

- a useful convention: \bar{z} refer to position in program source code
havoc

Definition of HAVOC

1. wide and general destruction: devastation
2. great confusion and disorder

Example of use:
$y=12 ; \operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)$
Translation, $R(\operatorname{havoc}(x))$:
havoc

Definition of HAVOC

1. wide and general destruction: devastation
2. great confusion and disorder

Example of use:
$y=12 ; \operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)$
Translation, $R(\operatorname{havoc}(x))$:

$$
\bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

This again illustrates "politically correct" approach to describing the destruction of values of variables: just do not mention them.

Non-deterministic choice

$$
\text { if }(*) c_{1} \text { else } c_{2}
$$

Non-deterministic choice

$$
\text { if }(*) c_{1} \text { else } c_{2}
$$

$R\left(\right.$ if $(*) c_{1}$ else $\left.c_{2}\right)$:

$$
R\left(c_{1}\right) \vee R\left(c_{2}\right)
$$

- translation is simply a disjunction - this is why construct is interesting
- corresponds to branching in control-flow graphs
assume
assume (F)

$$
\text { assume }(F)
$$

$R(\operatorname{assume}(F))$:

$$
F \wedge \bigwedge_{v \in V} v^{\prime}=v
$$

```
assume(F)
```

$R($ assume (F)):

$$
F \wedge \bigwedge_{v \in V} v^{\prime}=v
$$

- This command does not change any state.

$$
\operatorname{assume}(F)
$$

R (assume(F)):

$$
F \wedge \bigwedge_{v \in V} v^{\prime}=v
$$

- This command does not change any state.
- If F does not hold, it stops with "instantaneous success".

Example of Translation

$$
\begin{aligned}
& (\text { if }(b) x=x+1 \text { else } y=x+2) \text {; } \\
& 1 \\
& x=x+5 \\
& 2 \\
& (\text { if }(*) y=y+1 \text { else } x=y)
\end{aligned}
$$

becomes
$\exists x_{1}, y_{1}, x_{2}, y_{2} .\left(\left(b \wedge \mathbf{x}_{1}=\mathbf{x}+\mathbf{1} \wedge y_{1}=y\right) \vee\left(\neg b \wedge x_{1}=x \wedge \mathbf{y}_{1}=\mathbf{x}+\mathbf{2}\right)\right)$

$$
\wedge\left(\mathbf{x}_{2}=\mathbf{x}_{1}+\mathbf{5} \wedge y_{2}=y_{1}\right)
$$

$$
\wedge\left(\left(x^{\prime}=x_{2} \wedge \mathbf{y}^{\prime}=\mathbf{y}_{2}+\mathbf{1}\right) \vee\left(\mathbf{x}^{\prime}=\mathbf{y}_{2} \wedge y^{\prime}=y_{2}\right)\right)
$$

Think of execution trace $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ where
$\rightarrow\left(x_{0}, y_{0}\right)$ is denoted by (x, y)
$\rightarrow\left(x_{3}, y_{3}\right)$ is denoted by $\left(x^{\prime}, y^{\prime}\right)$

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

1. $R(\operatorname{assume}(F) ; c)$

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

1. $R(\operatorname{assume}(F) ; c)=F \wedge R(c)$
2. $R(c ; \operatorname{assume}(F))$

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

1. $R(\operatorname{assume}(F) ; c)=F \wedge R(c)$
2. $R(c$;assume $(F))=R(c) \wedge F\left[\bar{x}:=\bar{x}^{\prime}\right]$
where $F\left[\bar{x}:=\bar{x}^{\prime}\right]$ denotes F with all variables replaced with primed versions

Expressing if through non-deterministic choice and assume

Expressing if through non-deterministic choice and assume

```
if (b) c1 else c2
    ||
if (*) {
    assume(b);
    c1
} else {
    assume(!b);
    c2
}
```

Indeed, apply translation to both sides and observe that generated formulas are equivalent.

Expressing assignment through havoc and assume

Expressing assignment through havoc and assume

```
x = e
||
havoc(x);
assume(x == e)
```

Under what conditions this holds?

Expressing assignment through havoc and assume

```
x = e
||
havoc(x);
assume(x == e)
```

Under what conditions this holds?
$x \notin F V(e)$
Illustration of the problem: havoc (x); assume $(x==x+1)$

Expressing assignment through havoc and assume

```
x = e
||
havoc(x);
assume(x == e)
```

Under what conditions this holds?
$x \notin F V(e)$
Illustration of the problem: havoc (x); assume $(x==x+1)$
Luckily, we can rewrite it into $x_{\text {fresh }}=x+1 ; x=x_{\text {fresh }}$

Loop-Free Programs as Relations: Summary

command c	$R(c)$	$\rho(c)$
$(x=t)$	$x^{\prime}=t \wedge \bigwedge_{v \in V \backslash x\}} v^{\prime}=v$	
$c_{1} ; c_{2}$	$\exists \bar{z} . \quad R\left(c_{1}\right)\left[\bar{x}^{\prime}:=\bar{z}\right] \wedge R\left(c_{2}\right)[\bar{x}:=\bar{z}]$	$\rho\left(c_{1}\right) \circ \rho\left(c_{2}\right)$
if $(*) c_{1}$ else c_{2}	$R\left(c_{1}\right) \vee R\left(c_{2}\right)$	$\rho\left(c_{1}\right) \cup \rho\left(c_{2}\right)$
assume (\mathbf{F})	$F \wedge \bigwedge_{v \in V} v^{\prime}=v$	$\Delta_{S(F)}$

$\rho\left(v_{i}=t\right)=\left\{\left(\left(v_{1}, \ldots, v_{i}, \ldots, v_{n}\right),\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots, v_{n}\right) \mid v_{i}^{\prime}=t\right\}\right.$
$S(F)=\{\bar{v} \mid F\}, \quad \Delta_{A}=\{(\vec{v}, \vec{v}) \mid \vec{v} \in A\}$ (diagonal relation on A)
Δ (without subscript) is identity on entire set of states (no-op)
We always have: $\rho(c)=\left\{\left(\bar{v}, \bar{v}^{\prime}\right) \mid R(c)\right\}$
Shorthands:

$$
\begin{array}{c|c}
\text { if }(*) c_{1} \text { else } c_{2} & c_{1} \square c_{2} \\
\hline \text { assume }(F) & {[F]}
\end{array}
$$

Examples:

$$
\begin{aligned}
& \text { if }(F) c_{1} \text { else } c_{2} \equiv[F] ; c_{1} \square[\neg F] ; c_{2} \\
& \text { if }(F) c \equiv[F] ; c \square[\neg F]
\end{aligned}
$$

Program Paths

Loop-Free Programs

c - a loop-free program whose assignments, havocs, and assumes are c_{1}, \ldots, c_{n}

The relation $\rho(c)$ is of the form $E\left(\rho\left(c_{1}\right), \ldots, \rho\left(c_{n}\right)\right)$; it composes meanings of c_{1}, \ldots, c_{n} using union (\cup) and composition (○)

$\begin{aligned} & \text { (if }(x>0) \\ & \quad x=x-1 \end{aligned}$	$([x>0] ; x=x-1$
else	
$x=0$	$([\neg(x>0)] ; x=0)$
(if ($\mathrm{y}>0$)	([y>0]; $y=y-1$
$y=y-1$	
else	$[\neg(\mathrm{y}>0)] ; \mathrm{y}=\mathrm{x}+1$
$y=x+1$)
)	

$$
\begin{aligned}
& \left(\Delta_{S(x>0)} \circ \rho(x=x-1)\right. \\
& \cup \\
& \Delta_{S(\neg(x>0))} \circ \rho(x=0) \\
&) \circ \\
& \left(\Delta_{S(y>0)} \circ \rho(y=y-1)\right. \\
& \cup \\
& \Delta_{S(\neg(y>0))} \circ \rho(y=x+1) \\
& \cup^{\cup}
\end{aligned}
$$

Note: ○ binds stronger than \cup, so $r \circ s \cup t=(r \circ s) \cup t$

Normal Form for Loop-Free Programs

Composition distributes through union:

$$
\left(r_{1} \cup r_{2}\right) \circ\left(s_{1} \cup s_{2}\right)=r_{1} \circ s_{1} \cup r_{1} \circ s_{2} \cup r_{2} \circ s_{1} \cup r_{2} \circ s_{2}
$$

Example corresponding to two if-else statements one after another:

$$
\begin{gathered}
\left(\Delta_{1} \circ r_{1}\right. \\
\cup \\
\Delta_{2} \circ r_{2} \\
) \circ \\
\left(\Delta_{3} \circ r_{3}\right. \\
\cup
\end{gathered}
$$

$$
\equiv
$$

$$
\begin{aligned}
& \Delta_{1} \circ r_{1} \circ \Delta_{3} \circ r_{3} \cup \\
& \Delta_{1} \circ r_{1} \circ \Delta_{4} \circ r_{4} \cup \\
& \Delta_{2} \circ r_{2} \circ \Delta_{3} \circ r_{3} \cup \\
& \Delta_{2} \circ r_{2} \circ \Delta_{4} \circ r_{4}
\end{aligned}
$$

Sequential composition of basic statements is called basic path.
Loop-free code describes finitely many (exponentially many) paths.

Properties of Program Contexts

Some Properties of Relations

$$
\begin{aligned}
& \left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p_{1} \circ p\right) \subseteq\left(p_{2} \circ p\right) \\
& \left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p \circ p_{1}\right) \subseteq\left(p \circ p_{2}\right) \\
& \left(p_{1} \subseteq p_{2}\right) \wedge\left(q_{1} \subseteq q_{2}\right) \rightarrow\left(p_{1} \cup q_{1}\right) \subseteq\left(p_{2} \cup q_{2}\right) \\
& \left(p_{1} \cup p_{2}\right) \circ q=\left(p_{1} \circ q\right) \cup\left(p_{2} \circ q\right)
\end{aligned}
$$

Monotonicity of Expressions using \cup and \circ

For a program with k integer variables, $S=\mathbb{Z}^{k}$
Consider relations that are subsets of $S \times S$ (i.e. S^{2})
The set of all such relations is

$$
C=\left\{r \mid r \subseteq S^{2}\right\}
$$

Let $E(r)$ be given by any expression built from relation r and some additional relations b_{1}, \ldots, b_{n}, using \cup and \circ.
Example: $E(r)=\left(b_{1} \circ r\right) \cup\left(r \circ b_{2}\right)$
$E(r)$ is function $C \rightarrow C$, maps relations to relations
Claim: E is monotonic function on C :

$$
r_{1} \subseteq r_{2} \rightarrow E\left(r_{1}\right) \subseteq E\left(r_{2}\right)
$$

Prove of disprove.

Monotonicity of Expressions using \cup and \circ

For a program with k integer variables, $S=\mathbb{Z}^{k}$
Consider relations that are subsets of $S \times S$ (i.e. S^{2})
The set of all such relations is

$$
C=\left\{r \mid r \subseteq S^{2}\right\}
$$

Let $E(r)$ be given by any expression built from relation r and some additional relations b_{1}, \ldots, b_{n}, using \cup and \circ.
Example: $E(r)=\left(b_{1} \circ r\right) \cup\left(r \circ b_{2}\right)$
$E(r)$ is function $C \rightarrow C$, maps relations to relations
Claim: E is monotonic function on C :

$$
r_{1} \subseteq r_{2} \rightarrow E\left(r_{1}\right) \subseteq E\left(r_{2}\right)
$$

Prove of disprove.
Proof: induction on the expression tree defining E, using monotonicity properties of \cup and \circ

Union-Distributivity of Expressions using \cup and \circ

Claim: E distributes over unions, that is, if $r_{i}, i \in I$ is a family of relations,

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

Prove or disprove.

Union-Distributivity of Expressions using \cup and \circ

Claim: E distributes over unions, that is, if $r_{i}, i \in I$ is a family of relations,

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

Prove or disprove.
False. Take $E(r)=r \circ r$ and consider relations r_{1}, r_{2}. The claim becomes

$$
\left(r_{1} \cup r_{2}\right) \circ\left(r_{1} \cup r_{2}\right)=r_{1} \circ r_{1} \cup r_{2} \circ r_{2}
$$

that is,

$$
r_{1} \circ r_{1} \cup r_{1} \circ r_{2} \cup r_{2} \circ r_{1} \cup r_{2} \circ r_{2}=r_{1} \circ r_{1} \cup r_{2} \circ r_{2}
$$

Taking, for example, $r_{1}=\{(1,2)\}, r_{2}=\{(2,3)\}$ we obtain

$$
\{(1,3)\}=\emptyset \quad(\text { false })
$$

Union "Distributivity" in One Direction

Lemma:

$$
E\left(\bigcup_{i \in I} r_{i}\right) \supseteq \bigcup_{i \in I} E\left(r_{i}\right)
$$

Union "Distributivity" in One Direction

Lemma:

$$
E\left(\bigcup_{i \in I} r_{i}\right) \supseteq \bigcup_{i \in I} E\left(r_{i}\right)
$$

Proof. Let $r=\bigcup_{i \in I} r_{i}$. Note that, for every $i, r_{i} \subseteq r$. We have shown that E is monotonic, so $E\left(r_{i}\right) \subseteq E(r)$. Since all $E\left(r_{i}\right)$ are included in $E(r)$, so is their union, so

$$
\bigcup E\left(r_{i}\right) \subseteq E(r)
$$

as desired.

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once?

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once? Proof: Induction on expression for $E(r)$. Only one branch of the tree may contain r. Note previous counter-example uses r twice.

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once? Proof: Induction on expression for $E(r)$. Only one branch of the tree may contain r. Note previous counter-example uses r twice.
2. If $E(r)$ contains r any number of times, but l is a set of natural numbers and r_{i} is an increasing sequence:

$$
r_{1} \subseteq r_{2} \subseteq r_{3} \subseteq \ldots
$$

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once? Proof: Induction on expression for $E(r)$. Only one branch of the tree may contain r. Note previous counter-example uses r twice.
2. If $E(r)$ contains r any number of times, but l is a set of natural numbers and r_{i} is an increasing sequence: $r_{1} \subseteq r_{2} \subseteq r_{3} \subseteq \ldots$ Induction. In the previous counter-example the largest relation will contain all other $r_{i} \circ r_{j}$.
3. If $E(r)$ contains r any number of times, but $r_{i}, i \in I$ is a directed family of relations: for each i, j there exists k such that $r_{i} \cup r_{j} \subseteq r_{k}$, and I is possibly uncountably infinite.

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once? Proof: Induction on expression for $E(r)$. Only one branch of the tree may contain r. Note previous counter-example uses r twice.
2. If $E(r)$ contains r any number of times, but I is a set of natural numbers and r_{i} is an increasing sequence:
$r_{1} \subseteq r_{2} \subseteq r_{3} \subseteq \ldots$ Induction. In the previous counter-example the largest relation will contain all other $r_{i} \circ r_{j}$.
3. If $E(r)$ contains r any number of times, but $r_{i}, i \in I$ is a directed family of relations: for each i, j there exists k such that $r_{i} \cup r_{j} \subseteq r_{k}$, and I is possibly uncountably infinite. Induction. Generalizes the previous case.

About Strength and Weakness

Putting Conditions on Sets Makes them Smaller

Let P_{1} and P_{2} be formulas ("conditions") whose free variables are among \bar{x}. Those variables may denote program state.
When we say "condition P_{1} is stronger than condition P_{2} " it simply means

$$
\forall \bar{x} .\left(P_{1} \rightarrow P_{2}\right)
$$

- if we know P_{1}, we immediately get (conclude) P_{2}
- if we know P_{2} we need not be able to conclude P_{1}

Stronger condition $=$ smaller set: if P_{1} is stronger than P_{2} then

$$
\left\{\bar{x} \mid P_{1}\right\} \subseteq\left\{\bar{x} \mid P_{2}\right\}
$$

- strongest possible condition: "false" \sim smallest set: \emptyset
- weakest condition: "true" \sim biggest set: set of all tuples

Hoare Triples

About Hoare Logic

We have seen how to translate programs into relations. We will use these relations in a proof system called Hoare logic. Hoare logic is a way of inserting annotations into code to make proofs about (imperative) program behavior simpler.

Example proof:

$$
\begin{aligned}
& / /\{0<=y\} \\
& i=y ; \\
& / /\{0<=y \& i=y\} \\
& r=0 ; \\
& / /\{0<=y \& i=y \& r=0\} \\
& \text { while } / /\{r=(y-i) * x \& 0<=i\} \\
& (i>0)(\\
& / /\{r=(y-i) * x \& 0<i\} \\
& r=r+x ; \\
& / /\{r=(y-i+1) * x \& 0<i\} \\
& i=i-1 \\
& / /\{r=(y-i) * x \& 0<=i\} \\
&) \\
& / /\{r=x * y\}
\end{aligned}
$$

Hoare Triple and Friends

$$
P, Q \subseteq S \quad r \subseteq S \times S
$$

Hoare Triple:

$$
\{P\} r\{Q\} \Longleftrightarrow \forall s, s^{\prime} \in S .\left(s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right)
$$

$\{P\}$ does not denote a singleton set containing P but is just a notation for an "assertion" around a command. Likewise for $\{Q\}$. Strongest postcondition:

$$
s p(P, r)=\left\{s^{\prime} \mid \exists s . s \in P \wedge\left(s, s^{\prime}\right) \in r\right\}
$$

Weakest precondition:

$$
w p(r, Q)=\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
$$

Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.

1. $\{j=a\} j:=j+1\{a=j+1\}$
2. $\{i=j\} i:=j+i\{i>j\}$
3. $\{j=a+b\} i:=b ; j:=a\{j=2 * a\}$
4. $\{\mathrm{i}>\mathrm{j}\} \mathrm{j}:=\mathrm{i}+1 ; \mathrm{i}:=\mathrm{j}+1\{\mathrm{i}>\mathrm{j}\}$
5. $\{i!=j\}$ if $i>j$ then $m:=i-j$ else $m:=j-i\{m>0\}$
6. $\{i=3 * j\}$ if $i>j$ then $m:=i-j$ else $m:=j-i\{m-2 * j=0\}$

Postconditions and Their Strength

What is the relationship between these postconditions?

$$
\begin{array}{lll}
\{x=5\} & x:=x+2 & \{\mathbf{x}>\mathbf{0}\} \\
\{x=5\} & x:=x+2 & \{\mathbf{x}=\mathbf{7}\}
\end{array}
$$

Postconditions and Their Strength

What is the relationship between these postconditions?

$$
\begin{array}{lll}
\{x=5\} & x:=x+2 & \{\mathbf{x}>\mathbf{0}\} \\
\{x=5\} & x:=x+2 & \{\mathbf{x}=\mathbf{7}\}
\end{array}
$$

- weakest conditions (predicates) correspond to largest sets
- strongest conditions (predicates) correspond to smallest sets that satisfy a given property.
(Graphically, a stronger condition $x>0 \wedge y>0$ denotes one quadrant in plane, whereas a weaker condition $x>0$ denotes the entire half-plane.)

Strongest Postconditions

Strongest Postcondition

Definition: For $P \subseteq S, r \subseteq S \times S$,

$$
s p(P, r)=\left\{s^{\prime} \mid \exists s . s \in P \wedge\left(s, s^{\prime}\right) \in r\right\}
$$

This is simply the relation image of a set.

Weakest Preconditions

Weakest Precondition

Definition: for $Q \subseteq S, r \subseteq S \times S$,

$$
w p(r, Q)=\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
$$

Note that this is in general not the same as $\operatorname{sp}\left(Q, r^{-1}\right)$ when then relation is non-deterministic or partial.

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $\{P\} r\{Q\}$
- $P \subseteq w p(r, Q)$
- $s p(P, r) \subseteq Q$

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $\{P\} r\{Q\}$
- $P \subseteq w p(r, Q)$
- $s p(P, r) \subseteq Q$

Proof. The three conditions expand into the following three formulas

- $\forall s, s^{\prime} .\left[\left(s \in P \wedge\left(s, s^{\prime}\right) \in r\right) \rightarrow s^{\prime} \in Q\right]$
- $\forall s .\left[s \in P \rightarrow\left(\forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right)\right]$
- $\forall s^{\prime} .\left[\left(\exists s . s \in P \wedge\left(s, s^{\prime}\right) \in P\right) \rightarrow s^{\prime} \in Q\right]$
which are easy to show equivalent using basic first-order logic properties.

Lemma: Characterization of sp

$s p(P, r)$ is the the smallest set Q such that $\{P\} r\{Q\}$, that is:

- $\{P\} r\{s p(P, r)\}$
- $\forall Q \subseteq S .\{P\} r\{Q\} \rightarrow s p(P, r) \subseteq Q$

$$
\begin{aligned}
\{P\} r\{Q\} & \Leftrightarrow \forall s, s^{\prime} \in S .\left(s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right) \\
s p(P, r) & =\left\{s^{\prime} \mid \exists s . s \in P \wedge\left(s, s^{\prime}\right) \in r\right\}
\end{aligned}
$$

Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

- $s p(P, r) \subseteq s p(P, r)$
- $\forall P \subseteq S . s p(P, r) \subseteq Q \rightarrow s p(P, r) \subseteq Q$

Lemma: Characterization of wp

$w p(r, Q)$ is the largest set P such that $\{P\} r\{Q\}$, that is:

- $\{w p(r, Q)\} r\{Q\}$
- $\forall P \subseteq S .\{P\} r\{Q\} \rightarrow P \subseteq w p(r, Q)$

$$
\begin{aligned}
\{P\} r\{Q\} & \Leftrightarrow \forall s, s^{\prime} \in S .\left(s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right) \\
w p(r, Q) & =\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
\end{aligned}
$$

Proof of Lemma: Characterization of wp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

- $w p(r, Q) \subseteq w p(r, Q)$
- $\forall P \subseteq S . P \subseteq w p(r, Q) \rightarrow P \subseteq w p(r, Q)$

Exercise: Postcondition of inverse versus wp

Lemma:

$$
S \backslash w p(r, Q)=s p\left(S \backslash Q, r^{-1}\right)
$$

In other words, when instead of good states we look at the completement set of "error states", then wp corresponds to doing sp backwards.

Note that $r^{-1}=\{(y, x) \mid(x, y) \in r\}$ and is always defined.

Exercise: Postcondition of inverse versus wp

Lemma:

$$
S \backslash w p(r, Q)=s p\left(S \backslash Q, r^{-1}\right)
$$

In other words, when instead of good states we look at the completement set of "error states", then wp corresponds to doing sp backwards.

Note that $r^{-1}=\{(y, x) \mid(x, y) \in r\}$ and is always defined.
Proof of the lemma: Expand both sides and apply basic first-order logic properties.

More Laws on Preconditions and Postconditions

Disjunctivity of sp

$$
\begin{aligned}
& s p\left(P_{1} \cup P_{2}, r\right)=s p\left(P_{1}, r\right) \cup s p\left(P_{2}, r\right) \\
& s p\left(P, r_{1} \cup r_{2}\right)=s p\left(P, r_{1}\right) \cup s p\left(P, r_{2}\right)
\end{aligned}
$$

Conjunctivity of wp

$$
\begin{aligned}
w p\left(r, Q_{1} \cap Q_{2}\right) & =w p\left(r, Q_{1}\right) \cap w p\left(r, Q_{2}\right) \\
w p\left(r_{1} \cup r_{2}, Q\right) & =w p\left(r_{1}, Q\right) \cap w p\left(r_{2}, Q\right)
\end{aligned}
$$

Pointwise wp

$$
w p(r, Q)=\{s \mid s \in S \wedge s p(\{s\}, r) \subseteq Q\}
$$

Pointwise sp

$$
s p(P, r)=\bigcup_{s \in P} s p(\{s\}, r)
$$

Hoare Logic for Loop-free Code

Expanding Paths

The condition

$$
\{P\}\left(\bigcup_{i \in J} r_{i}\right)\{Q\}
$$

is equivalent to

$$
\forall i . i \in J \rightarrow\{P\} r_{i}\{Q\}
$$

Proof: By definition, or use that the first condition is equivalent to $s p\left(P, \bigcup_{i \in J} r_{i}\right) \subseteq Q$ and $\{P\} r_{i}\{Q\}$ to $s p\left(P, r_{i}\right) \subseteq Q$

Transitivity

If $\{P\} s_{1}\{Q\}$ and $\{Q\} s_{2}\{R\}$ then also $\{P\} s_{1} \circ s_{2}\{R\}$.
We write this as the following inference rule:

$$
\frac{\{P\} s_{1}\{Q\}, \quad\{Q\} s_{2}\{R\}}{\{P\} s_{1} \circ s_{2}\{R\}}
$$

Hoare Logic for Loops

The following inference rule holds:

$$
\frac{\{P\} s\{P\}, \quad n \geq 0}{\{P\} s^{n}\{P\}}
$$

Proof is by transitivity.
By Expanding Paths condition, we then have:

$$
\frac{\{P\} s\{P\}}{\{P\} \bigcup_{n \geq 0} s^{n}\{P\}}
$$

In fact, $\bigcup_{n \geq 0} s^{n}=s^{*}$, so we have

$$
\frac{\{P\} s\{P\}}{\{P\} s^{*}\{P\}}
$$

This is the rule for non-deterministic loops.

