© Overview of Isabelle/HOL
O Type and function definitions
@ Induction Heuristics

@ Simplification

31

Notation

Implication associates to the right:
A— B—=—C means A— (B=C)

Similarly for other arrows: =, —>

A oo A,

B means A — ---— A, — B

33

© Overview of Isabelle/HOL

34

HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
e datatypes
® recursive functions
® |ogical operators
HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
® For the moment: only term = term,
eg. 1+2=4
e Later: A, V, —,V, ...

35

© Overview of Isabelle/HOL
Types and terms

36

Basic syntax:

()

T

bool | nat | int | ...

Ial

.

T =T

T list
T set

Convention:

|
|
|
| T xT
|
|
|

T1 = To = T3

Types

base types

type variables
functions

pairs (ascii: *)
lists

sets

user-defined types

T1 = (Tg@Tg)

37

Terms

Terms can be formed as follows:

® Function application: f1
is the call of function f with argument t.
If f has more arguments: ft & ...
Examples: sinmw, plusxy

® function abstraction: Ax. t
is the function with parameter z and result ¢,
ie. "z t".
Example: Ax. plus z «

Terms

Basic syntax:

t (%)
a constant or variable (identifier)

. t function abstraction

|ttt function application
| lots of syntactic sugar

Examples: f(gz) y
h (Az. f (g))

Convention: ftthts = ((ft) k) &3

This language of terms is known as the \-calculus.

39

The computation rule of the A-calculus is the
replacement of formal by actual parameters:

(Az. t) u = tlu/x]
where t[u/z] is "t with u substituted for 2.

Example: (Az. z+5)3 = 3+5
® The step from (Az. t) u to t[u/a] is called

[B-reduction.
® |sabelle performs [3-reduction automatically.

40

Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:
t :: 7 means “tis a well-typed term of type 7".

t::7T] = T9 U Ty
tu: 7o

41

Type inference

Isabelle automatically computes the type of each variable
in a term. This is called type inference.

In the presence of overloaded functions (functions with
multiple types) this is not always possible.

User can help with type annotations inside the term.
Example: f (x:nat)

42

Currying
Thou shalt Curry your functions

e Curried: fuum71 = 79 =T
e Tupled: f':: 71 X 79 = 7T

Advantage:
Currying allows partial application

fa where a; :: 74

43

Predefined syntactic sugar

® Infix: +, —, %, #, Q, ...
o Mixfix: if _ then _ else _, case _ of, ...

Prefix binds more strongly than infix:
V ety = fFo+y # fla+y

Enclose if and case in parentheses:
L (if _ then _ else)

44

Theory = Isabelle Module

Syntax: theory MyTh
imports Ty ... T,
begin
(definitions, theorems, proofs, ...)*
end

MyTh: name of theory. Must live in file MyTh.thy
T;: names of imported theories. Import transitive.

Usually: imports Main

45

Concrete syntax

In .thy files:
Types, terms and formulas need to be inclosed in "

Except for single identifiers

" normally not shown on slides

46

© Overview of Isabelle/HOL

Interface

47

isabelle jedit

e Based on jEdit editor

® Processes Isabelle text automatically
when editing . thy files (like modern Java IDEs)

48

Overview_Demo. thy

49

© Overview of Isabelle/HOL

By example: types bool, nat and list

50

Type bool

datatype bool = True | False

Predefined functions:
A, V, —>, ... 2 bool = bool = bool

A formula is a term of type bool

if-and-only-if: =

51

Type nat

datatype nat = 0 | Suc nat
Values of type nat: 0, Suc 0, Suc(Suc0), ...

Predefined functions: +, %, ... :: nat = nat = nat
|

+ Numbers and arithmetic operations are overloaded:
0,1,2,... :7a, +: 'a="a="a

You need type annotations: 1 :: nat, z + (y::nat)
unless the context is unambiguous: Suc z

52

Nat_Demo.thy

53

An informal proof

Lemma add m 0 = m
Proof by induction on m.

e Case 0 (the base case):
add 0 0 = 0 holds by definition of add.

e Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suc m.

The proof is as follows:
add (Suc m) 0 = Suc (add m 0) by def. of add
= Sucm by IH

54

Type ‘a list
Lists of elements of type a
datatype ’a list = Nil | Cons 'a ('a list)
Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:
e [| = Nil: empty list
e 1 # xs= Cons x xs:
list with first element z (“head”) and rest zs (“tail”)

L] [:L’l,...,flin]:ﬁ#--- $n#[]

55

Structural Induction for lists

To prove that P(xs) for all lists xs, prove
e P([]) and

e for arbitrary but fixed z and zs,
P(zs) implies P(z#xs).

P([) Nz zs. P(zs) = P(z#1s)
P(xs)

56

List_Demo.thy

57

An informal proof

Lemma app (app s ys) zs = app xs (app ys zs)
Proof by induction on zs.

Case Nil: app (app Nil ys) zs = app ys zs =

app Nil (app ys zs) holds by definition of app.

Case Cons x zs: We assume app (app xs ys) zs =
app xs (app ys zs) (IH), and we need to show

app (app (Cons x xs) ys) zs =

app (Cons x xs) (app ys zs).

The proof is as follows:

app (app (Cons x xs) ys) zs

= Cons z (app (app zs ys) zs) by definition of app
= Cons z (app zs (app ys zs)) by IH

= app (Cons x xs) (app ys zs) by definition of app

Large library: HOL/List.thy

Included in Main.
Don't reinvent, reuse!

Predefined: zs @ ys (append), length, and map

59

© Overview of Isabelle/HOL

Summary

60

e datatype defines (possibly) recursive data types.

e fun defines (possibly) recursive functions by
pattern-matching over datatype constructors.

61

Proof methods

e induction performs structural induction on some
variable (if the type of the variable is a datatype).

® quto solves as many subgoals as it can, mainly by
simplification (symbolic evaluation):

i

="is used only from left to right!

62

Proofs

General schema:

lemma name: "..."

apply (...)
apply (...)
done

If the lemma is suitable as a simplification rule:

lemma name[simp]: "..."

63

Top down proofs

Command

sorry
“completes” any proof.
Allows top down development:

Assume lemma first, prove it later.

64

1/\271

I ...

A
B

Tp

The proof state

1, A= B

fixed local variables
local assumption(s)
actual (sub)goal

65

Multiple assumptions

[Ay; ... ;A] = B
abbreviates

Al — ... — A, — B

% “and”

)

66

O Type and function definitions

67

O Type and function definitions
Type definitions

68

Type synonyms
type_synonym name = T

Introduces a synonym name for type 7

Examples

type_synonym string = char list

type_synonym ('a,’b)foo = 'a list x 'b list

Type synonyms are expanded after parsing
and are not present in internal representation and output

69

datatype — the general case

datatype (041, ce ,Otn)t Cl T1---Tiny

‘ Ck Tkl Tkng
L Types: CZ NTil = = Tip, = (041, .. .,Oén)t
e Distinctness: C; ... #C; ... ifi#j
e Injectivity: (C; x1...2, =Ciy1...Yp,) =

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

70

Case expressions
Datatype values can be taken apart with case:

(casezsof [| = ... | y#ys= ...y ... ys ...

Wildcards: _
(case m of 0 = Suc0 | Suc_=0)

Nested patterns:
(case zs of [0] = 0 | [Sucn]=n | - = 2)

Complicated patterns mean complicated proofs!

Need () in context

71

Tree_Demo.thy

72

The option type

datatype 'a option = None | Some 'a

If ‘a has values ay, as, ...
then 'a option has values None, Some a;, Some as, ...

Typical application:

fun lookup :: ('a x 'b) list = 'a = 'b option where
lookup [] © = None |

lookup ((a, b) # ps) x =
(if @ = z then Some b else lookup ps)

73

O Type and function definitions

Function definitions

74

Non-recursive definitions

Example
definition sq :: nat = nat where sq n = nxn

No pattern matching, just fx; ... z, =

75

The danger of nontermination

How about fz=faz+ 1 7?

All functions in HOL must be total |

76

Key features of fun

Pattern-matching over datatype constructors
Order of equations matters

Termination must be provable automatically
by size measures

Proves customized induction schema

v

Example: separation

fun sep :: 'a = 'a list = 'a list where

sep a (v y#tzs) = v 4 a # sep a (y#zs) |

SEP a4 IS = IS

78

Example: Ackermann

fun ack :: nat = nat = nat where

ack 0 n = Sucn |

ack (Suc m) 0 = ack m (Suc 0) |

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

Terminates because the arguments decrease
lexicographically with each recursive call:

e (Suc m, 0) > (m, Suc 0)

e (Suc m, Suc n) > (Suc m, n)

e (Suc m, Suc n) > (m,)

79

primrec

A restrictive version of fun

Means primitive recursive

Most functions are primitive recursive

Frequently found in Isabelle theories

The essence of primitive recursion:

f(0) = ... no recursion
f(Suc n) =...f(n)...

g([1) = ... no recursion
g(a#tzs) = ...g(xs)...

80

@ Induction Heuristics

81

Basic induction heuristics

Theorems about recursive functions
are proved by induction

Induction on argument number ¢ of f
if f is defined by recursion on argument number ¢

82

A tail recursive reverse

Our initial reverse:

fun rev :: 'a list = 'a list where
rev || = |

rev (z#zs) = rev zs Q [z

A tail recursive version:

fun itrev :: 'a list = 'a list = 'a list where
itrev || ys = ys |
itrev (z#xs) ys =

lemma itrev xs [| = rev s

83

Induction_Demo.thy

Generalisation

84

Generalisation

® Replace constants by variables

® Generalize free variables

® by arbitrary in induction proof
® (or by universal quantifier in formula)

85

So far, all proofs were by structural induction
because all functions were primitive recursive.

In each induction step, 1 constructor is added.
In each recursive call, 1 constructor is removed.

Now: induction for complex recursion patterns.

86

Computation Induction

Example

fun div2 :: nat = nat where
div2 0 =0 |

div2 (Suc 0) =0 |

div2 (Suc(Suc n)) = Suc(div2 n)

~~ induction rule div2. induct:

P(0) P(Suc0) An. P(n) = P(Suc(Sucn))

P(m)

87

Computation Induction

If f::7 = 7" is defined by fun, a special induction
schema is provided to prove P(z) for all z :: 7:

for each defining equation

fle) = ...f(r) ... f(re) ...
prove P(e) assuming P(ry), ..., P(rg).

Induction follows course of (terminating!) computation
Motto: properties of f are best proved by rule f.induct

88

How to apply f.induct

ffomnm=-=mn=r1"
(induction ay ... a, rule: finduct)

Heuristic:
® there should be acall fa; ... a, in your goal
® ideally the a; should be variables.

89

Induction_Demo.thy

Computation Induction

90

@ Simplification

91

Simplification means ...

Using equations [= r from left to right

As long as possible
Terminology: equation ~~ simplification rule

Simplification = (Term) Rewriting

92

Equations:

Rewriting:

O0+n
(Sucm)+n

(Suc m < Suc

n)

(0 <m)

0+ Suc0
Suc 0
Suc 0

0

<
<
<

IA

An example

= n

= Suc (m+n)

— (m<n)
= True

Suc 0+ x
Suc 0+
Suc (0 + x)
0+

True

93

Conditional rewriting

Simplification rules can be conditional:
[Pi; ...; P] = 1l=r

is applicable only if all P; can be proved first,
again by simplification.

Example
p(0) = True
p(x) = f(z) = g(=)
We can simplify f(0) to g(0) but
we cannot simplify f(1) because p(1) is not provable.

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(x), g(z) = f(x)
Principle:
[P; .. P] = 1=

is suitable as a simp-rule only
if [is “bigger” than r and each P,

n < m=> (n < Suc m) = True YES
Sucn < m= (n<m)= True NO

95

Proof method simp
Goal: 1.[Py;...; P,] = C

apply(simp add: eq ... eq,)
Simplify Py ... P,, and C using
® |lemmas with attribute simp

rules from fun and datatype

additional lemmas eq; ... eq,
® assumptions Py ... P,

Variations:
® (simp ... del: ...) removes simp-lemmas
® add and del are optional

96

auto versus simp

auto acts on all subgoals
simp acts only on subgoal 1

auto applies stmp and more

auto can also be modified:
(auto simp add: ... simp del: ...)

97

Rewriting with definitions

Definitions (definition) must be used explicitly:
(simp add: fdef ...)

f is the function whose definition is to be unfolded.

98

Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) A (mA — P(t))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) A (Vn. e = Suc n — P(b))

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype t: t.split

99

Simp_Demo.thy

100

Chapter 3

Case Study: IMP Expressions

@ Case Study: IMP Expressions

102

@ Case Study: IMP Expressions

103

This section introduces
arithmetic and boolean expressions
of our imperative language IMP.

IMP commands are introduced later.

104

@ Case Study: IMP Expressions
Arithmetic Expressions

Concrete and abstract syntax

Concrete syntax: strings, eg "a+5*b"

Abstract syntax: trees, eg +

Parser: function from strings to trees

Linear view of trees: terms, eg Plus a (Times 5 b)

Abstract syntax trees/terms are datatype values!

106

Concrete syntax is defined by a context-free grammar, eg
az:=nl|z|(a)|a+talaxal...
where n can be any natural number and = any variable.

We focus on abstract syntax
which we introduce via datatypes.

Datatype aexp

Variable names are strings, values are integers:

type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

Concrete | Abstract

5 N5

X V I/l,/l

x+y Plus (V "z"y (V ""y")

2+(z+3)

Plus (N 2) (Plus (V' "2") (N 3))

108

Warning

This is syntax, not (yet) semantics!

NO # Plus (NO) (NO)

109

The (program) state

What is the value of x+17

® The value of an expression
depends on the value of its variables.

® The value of all variables is recorded in the state.
e The state is a function from variable names to
values:
type_synonym val = int
type_synonym state = vname = val

110

Function update notation

If f:: 71 = 79and a :: 71 and b :: 79 then

is the function that behaves like f
except that it returns b for argument a.

fla == b) = (A\z. if © = a then b else f x)

111

How to write down a state

Some states:
e \z. 0
(AI, 0)(// //)
(()\I, O)(// // . 5))(// 1/ - 3)

Nicer notation:
<//a// . 5 // 1! = 3 // ! — 7>

Maps everything to 0, but "a” to 5, "z" to 3, etc.

112

AExp.thy

@ Case Study: IMP Expressions

Boolean Expressions

114

BExp.thy

@ Case Study: IMP Expressions

Stack Machine and Compilation

116

ASM.thy

This was easy.

Because evaluation of expressions always terminates.
But execution of programs may not terminate.

Hence we cannot define it by a total recursive function.

We need more logical machinery
to define program execution and reason about it.

118

Chapter 4

Logic and Proof
Beyond Equality

@® Logical Formulas

© Proof Automation

@ Single Step Proofs

@ Inductive Definitions

120

@® Logical Formulas

121

Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | form\ form | form — form
| V. form | Jx. form
Examples:
-~ AABVC = (A ANB)VC
s=tNC = (s=tANC
ANB=BANA = AN(B=B ANA
V. Pz AN Qz = Va. (Pz A Q x)

Input syntax: <— (same precedence as —)

122

Variable binding convention:
Vey Pxy =
Similarly for 3 and .

Vo.Vy. Pxy

123

Warning

Quantifiers have low precedence
and need to be parenthesized (if in some context)

I PAVZ Q2 ~ PANz Qz) |

124

Mathematical symbols

. and their ascii representations:

v \<forall> ALL
3 \<exists> EX
A \<lambda> pA
— -->

s <>

A /\ &

v \/ |

- \<not> ~
=+ \<noteqg> Y=

Sets over type ‘a

'a set

{}, {e, ...en}
ec A, ACB

AUuB, AnB A-B -—-A

o Cinm

\<in> :
\<subseteq> <=
\<union> Un

\<inter> Int

126

Set comprehension

e {z. P} where zis a variable
e But not {¢. P} where tis a proper term
e Instead: {t|zy 2 P}

is short for {v. Jzy 2z v=1tA P}
where z, y, z are the free variables in ¢

127

© Proof Automation

128

simp and auto

simp: rewriting and a bit of arithmetic

auto: rewriting and a bit of arithmetic, logic and sets

® Show you where they got stuck
® highly incomplete
e Extensible with new simp-rules

Exception: auto acts on all subgoals

129

fastforce

rewriting, logic, sets, relations and a bit of arithmetic.
incomplete but better than auto.

Succeeds or fails

Extensible with new simp-rules

130

blast

A complete proof search procedure for FOL . ..
... but (almost) without “="

Covers logic, sets and relations

Succeeds or fails

Extensible with new deduction rules

131

Automating arithmetic

arith:
e proves linear formulas (no “x")
e complete for quantifier-free real arithmetic

e complete for first-order theory of nat and int
(Presburger arithmetic)

132

Sledgehammer

Architecture:

Isabelle
Goal
& filtered library \l’ T Proof
external
ATPs!

Characteristics:
e Sometimes it works,
® sometimes it doesn't.

Do you feel lucky?

L Automatic Theorem Provers
134

by(proof-method)

~
~

apply(proof-method)
done

Auto_Proof_Demo.thy

136

@ Single Step Proofs

Step-by-step proofs can be necessary if automation fails
and you have to explore where and why it failed by
taking the goal apart.

138

What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.
Example: theorem conjI: [?P; ?Q] = 7P A ?Q)

These ?-variables can later be instantiated:
e By hand:
conjIfof "a=b" "False"] ~»
[a = b; False] = a = b A Fulse
e By unification:
unifying 2P A Q) with a=b A False
sets 7P to a=b and 7() to Fulse.

139

Rule application
Example: rule: [?7P; Q] = “P N ?Q)

subgoal: 1. ... = A A B
Result: 1. ... = A
2. ... =18
The general case: applying rule [Ay; ... ; A,] = A
to subgoal ... = (!

e Unify A and C
® Replace C'with n new subgoals A; ... A,

apply(rule xyz)
“Backchaining”

140

Typical backwards rules

‘P20]

m conjl
P = ?() . Nz. 7Pz
P — QP v P

P = 7Q 7Q = ?P
P = 720

iffI

They are known as introduction rules
because they introduce a particular connective.

141

Automating intro rules
If ris a theorem | A;; ...; A,] = A then

(blast intro:)

allows blast to backchain on r during proof search.
Example:
theorem le_trans: | %a < %y, 2y < 2] = %2 < 22
goal .[a< b b< ¢ c<d]=a<d
proof apply(blast intro: le_trans)
Also works for auto and fastforce

Can greatly increase the search space!

142

Forward proof: OF

If ris a theorem A = B
and s is a theorem that unifies with A then

rlOF 4]
is the theorem obtained by proving A with s.
Example: theorem refl: 2t = 7t

conjI[0F refllof "a"l]

~

Q0= a=aN ?0Q

143

The general case:

If ris atheorem [Ay; ...; A4,] = A
and 71, ..., 1, (m<n) are theorems then
rTOF ... 1)

is the theorem obtained
by proving Ay ... A, with r ... 7.

Example: theorem refl: 7t = 7t

conjI[OF refllof "a"] refllof "b"]]

~

a=aANb=1>

144

From now on:

? mostly suppressed on slides

145

Single_Step_Demo.thy

—> Versus —

= is part of the Isabelle framework. It structures
theorems and proof states: [Ay; ...; A, | = A

— is part of HOL and can occur inside the logical
formulas A; and A.

Phrase theorems like this [Ay; ...; A,] = A
not like this A; A ... N A, — A

147

@ Inductive Definitions

148

Example: even numbers

Informally:
® (O is even
e If nis even, soisn + 2
® These are the only even numbers

In Isabelle/HOL:

inductive ev :: nat = bool
where

ev 0 |

evn = ev(n+ 2)

149

An easy proof: cv 4

ev) = ev2 =— ev4d

150

Consider

fun evn :: nat = bool where
evn 0 = True |

evn (Suc 0) = False |
evn (Suc (Suc n)) = evn n

A trickier proof: ev m = evn m
By induction on the structure of the derivation of ev m
Two cases: ev m is proved by

® rule ev 0
= m = 0= evn m = True
e rule ev n = ev (n+2)
= m = n+2 and evn n (IH)
—> evn m = evn (n+2) = evn n = True

151

Rule induction for ev

To prove
evn—=— Pn

by rule induction on ev n we must prove
e PO
e Pn= P(n+2)

Rule ev.induct:

evn PO An [evn; Pn] = P(nt+2)
Pn

152

Format of inductive definitions

inductive [:: 7 = bool where
[Tay;...;1a,] = Ta |

Note:
® [may have multiple arguments.

e Each rule may also contain side conditions not
involving [.

153

Rule induction in general
To prove
Ir=— Px

by rule induction on I x
we must prove for every rule

[Tay;...;1a,] = Ia
that P is preserved:

[Ta; Pay;... ;1ay; Pa,] = Pa

154

Rule induction is absolutely central
to (operational) semantics
and the rest of this lecture course

Inductive_Demo.thy

156

Inductively defined sets

inductive_set [:: 7 set where
lawel,...;a,€l] = ael |

Difference to inductive:
® arguments of [are tupled, not curried

® [can later be used with set theoretic operators,
eg TU...

Chapter 5

Isar: A Language for
Structured Proofs

@® Isar by example

@® Proof patterns

@ Streamlining Proofs

@® Proof by Cases and Induction

159

® unreadable
® hard to maintain
® do not scale

Apply scripts

No structure!

160

Apply scripts versus lsar proofs

Apply script = assembly language program

Isar proof = structured program with assertions

But: apply still useful for proof exploration

161

A typical Isar proof

proof
assume formula,
have formula, by simp

have formula, by blast
show formula,_ , by ...
ged

proves formula, = formula,,_

162

Isar core syntax

proof = proof [method] step* qed
| by method

method = (simp ...) | (blast ...) | (induction ...) | ...

step = fix variables (A\)

| assume prop (=)

| [from fact™] (have | show) prop proof
prop = [name:] "formula”

fact = name| ...

163

@® Isar by example

164

Example: Cantor's theorem

lemma — surj(f:: 'a = 'a set)
proof default proof: assume surj, show False
assume a: surj f
fromahave b: V A.d a A= fa
by(simp add: surj_def)
from bhave ¢: 3 a. {z. 2 ¢ fz} = fa
by blast
from ¢ show Fulse
by blast
ged

Isar_Demo.thy

Cantor and abbreviations

166

this
then
thus
hence

Abbreviations

the previous proposition proved or assumed
from this

then show

then have

using and with

(have|show) prop using facts

from facts (have|show) prop

with facts

from facts this

168

Structured lemma statement

lemma
fixes f:: 'a = 'a set
assumes s: surj f
shows False
proof — no automatic proof step
have 3 a. {z. 2 ¢ fz} = f a using s
by(auto simp: surj_def)
thus False by blast
ged

Proves surj f = Fulse
but surj f becomes local fact s in proof.

169

The essence of structured proofs

Assumptions and intermediate facts
can be named and referred to explicitly and selectively

170

Structured lemma statements

fixesz :mmandy > ...
assumes a: Pand b: () ...
shows R

¢ fixes and assumes sections optional
e shows optional if no fixes and assumes

171

@® Proof patterns

172

show R
proof cases
assume P

show R (proof)
next
assume — P

show R (proof)
ged

Case distinction

have PV @ (proof)
then show R
proof

assume P

show R (proof)
next
assume ()

show R (proof)
ged

173

Contradiction

show — P show P

proof proof (rule ccontr)
assume P assume —F
show False (proof) show Fualse (proof)

ged ged

174

show P +— @)
proof
assume P

show @ (proof)
next

assume ()

show P (proof)
ged

Y and 3 introduction

show Vz. P(z)
proof
fix £ local fixed variable
show P(z) (proof)
ged

show Jz. P(x)
proof

show P(witness) (proof)
ged

176

- elimination: obtain

have Jz. P(z)
then obtain z where p: P(z) by blast

z fixed local variable

Works for one or more z

obtain example

lemma — surj(f:: 'a = 'a set)

proof
assume surj f
hence Ja. {z. v ¢ fz} = faby(auto simp: surj_def)
then obtain « where {z. © ¢ fz} = fa by blast
hence a ¢ fa<+— a € fa by blast
thus Fualse by blast

ged

178

Set equality and subset

show A = B
proof

show A C B (proof)
next

show B C A (proof)
ged

show A C B
proof

fix z

assume z € A

show z € B (proof)
ged

179

Isar_Demo.thy

Exercise

180

@ Streamlining Proofs

181

@ Streamlining Proofs
Pattern Matching and Quotations

182

Example: pattern matching

show formula, <— formula, (is ?L <— ?R)
proof
assume ?L

show ?R (proof)
next
assume ‘R

show ?L (proof)
ged

183

thesis

show formula (is “thesis)
proof -

show ?thesis (proof)

ged

Every show implicitly defines “thesis

184

Introducing local abbreviations in proofs:

let “t = "some-big-term"

have "... %t ... "

let

Quoting facts by value
By name:

have x0: "z > 0"

from x0 . ..

By value:
have "z > 0" ...

from ‘>0°. ..
T 1

back quotes

186

Isar_Demo.thy

Pattern matching and quotations

@ Streamlining Proofs

Top down proof development

188

Example

lemma

dys zs. xs = ys Q zs A

(length ys = length zs V length ys = length zs + 1)
proof 7?77

189

Isar_Demo.thy

Top down proof development

190

When automation fails

Split proof up into smaller steps.

Or explore by apply:

have ... using ...
apply - to make incoming facts
part of proof state
apply auto or whatever
apply ...
At the end:
® done

e Better: convert to structured proof

191

@ Streamlining Proofs

moreover

192

have P,
moreover

have P, ...

moreover

moreover

have P, ...

ultimately
have P

moreover—ultimately

Q

have lab;: P;
have labQ: PQ

have lab,: P, ...

from laby laby ...
have P

With names

193

@ Streamlining Proofs

Local lemmas

194

L ocal lemmas

have B if name: A, ... A,, forz; ... z,

(proof)

proves [Ay; ... ; A,] = B
where all z; have been replaced by “x;.

Proof state and Isar text

In general: proof method

Applies method and generates subgoal(s):

How to prove each subgoal:

fix z; ... z,
assume A, ... A,
show B

Separated by next

196

@® Proof by Cases and Induction

Isar_Induction_Demo.thy

Proof by cases

198

Datatype case analysis
datatype t = () 7 |

proof (cases "term")
case (Cy x1 ... xx)
next

ged

where case (C; 7 ... 1) =

fix o1 ... @
assume Cj: term = (C; 2y ...)
S~~~ \ ~ 2

label formula
199

Isar_Induction_Demo.thy

Structural induction for nat

200

Structural induction for nat

show P(n)
proof (induction n)
case 0

let ?case = P(0)

show “case
next
case (Suc n)

fix n assume Suc: P(n)
let ?case = P(Suc n)

show “case
ged

201

Structural induction with =

show A(n) = P(n)
proof (induction n)
case (

assume 0: A(0)

: let Ycase = P(0)
show “case
next

case (Suc n) fix n

assume Suc: A(n) = P(n)
A(Suc n)

: let ?case = P(Suc n)
show ?case
qged

202

Named assumptions

In a proof of
Al — ... — A, — B
by structural induction:

In the context of
case ('
we have
C.IH the induction hypotheses

C.prems the premises A;
¢ C.IH + C.prems

203

A remark on style

e case (Suc n) ...show ?Zcase
is easy to write and maintain

e fix n assume formula ...show formula’
is easier to read:

® all information is shown locally
® no contextual references (e.g. “case)

204

@ Proof by Cases and Induction
Rule Induction

Isar_Induction_Demo.thy

Rule induction

206

inductive [:

where
ruleg: ...

rule,: ...

T = 0 = bool

Rule induction

show [z y=— Pzy
proof (induction rule: Iinduct)
case rule;

show Zcase
next

next
case rule,

show Zcase
ged

Fixing your own variable names

case (rule; x; ... xy)

Renames the first k variables in rule; (from left to right)
tor ... 2.

208

Named assumptions

In a proof of
/.. 5 A — ... = A, — B by
rule inductionon [...:
In the context of
case R
we

have
R.IH the induction hypotheses
R.hyps the assumptions of rule R
R.prems the premises A;
R R.IH + R.hyps + R.prems

209

@ Proof by Cases and Induction

Rule Inversion

210

Rule inversion

inductive ev :: nat = bool where
e: ev 0 |
evSS: ev n => ev(Suc(Suc n))

What can we deduce from ev n ?
That it was proved by either ev0 or evSS'!

evn = n=0V (3k n= Suc (Suc k) A ev k)

Rule inversion = case distinction over rules

211

Isar_Induction_Demo.thy

Rule inversion

212

Rule inversion template

from ‘ev n‘ have P
proof cases
case el n=>~0

show ?thesis ...
next
case (evSS k) n = Suc (Suc k), ev k

show ?thesis ...
ged

Impossible cases disappear automatically

213

