(3) Overview of Isabelle/HOL
(4) Type and function definitions

5 Induction Heuristics
(6) Simplification

Notation

Implication associates to the right:

$$
A \Longrightarrow B \Longrightarrow C \quad \text { means } \quad A \Longrightarrow(B \Longrightarrow C)
$$

Similarly for other arrows: $\Rightarrow, \longrightarrow$

$$
\frac{A_{1} \ldots A_{n}}{B} \text { means } A_{1} \Longrightarrow \cdots \Longrightarrow A_{n} \Longrightarrow B
$$

(3) Overview of Isabelle/HOL
(4) Type and function definitions
(5) Induction Heuristics
(6) Simplification

$$
\begin{gathered}
\mathrm{HOL}=\text { Higher-Order Logic } \\
\mathrm{HOL}=\text { Functional Programming }+ \text { Logic }
\end{gathered}
$$

HOL has

- datatypes
- recursive functions
- logical operators

HOL is a programming language!
Higher-order $=$ functions are values, too!
HOL Formulas:

- For the moment: only term $=$ term, e.g. $1+2=4$
- Later: $\wedge, \vee, \longrightarrow, \forall, \ldots$
(3) Overview of Isabelle/HOL

Types and terms
Interface
By example: types bool, nat and list
Summary

Types

Basic syntax:

$$
\begin{aligned}
& \tau::=(\tau) \\
& \text { bool | nat | int | ... base types } \\
& \text { ' } a \mid \text { ' } b \mid \ldots \text { type variables } \\
& \tau \Rightarrow \tau \\
& \tau \times \tau \\
& \tau \text { list } \\
& \tau \text { set } \\
& \text { functions } \\
& \text { pairs (ascii: *) } \\
& \text { lists } \\
& \text { sets } \\
& \text { user-defined types }
\end{aligned}
$$

Convention: $\quad \tau_{1} \Rightarrow \tau_{2} \Rightarrow \tau_{3} \equiv \tau_{1} \Rightarrow\left(\tau_{2} \Rightarrow \tau_{3}\right)$

Terms

Terms can be formed as follows:

- Function application: $f t$ is the call of function f with argument t. If f has more arguments: $f t_{1} t_{2} \ldots$ Examples: $\sin \pi$, plus $x y$
- Function abstraction: λ x. t
is the function with parameter x and result t,
i.e. " $x \mapsto t$ ".

Example: λx. plus $x x$

Terms

Basic syntax:

$$
\begin{array}{rll}
t: & := & (t) \\
& a & \\
& t t & \text { constant or variable (identifier) } \\
& t x . t & \text { function application } \\
& \ldots & \text { function abstraction } \\
& \ldots & \text { lots of syntactic sugar }
\end{array}
$$

Examples: $f(g x) y$ $h(\lambda x . f(g x))$

Convention: $\quad f t_{1} t_{2} t_{3} \equiv\left(\left(f t_{1}\right) t_{2}\right) t_{3}$
This language of terms is known as the λ-calculus.

The computation rule of the λ-calculus is the replacement of formal by actual parameters:

$$
(\lambda x . t) u=t[u / x]
$$

where $t[u / x]$ is " t with u substituted for x ".
Example: $(\lambda x . x+5) 3=3+5$

- The step from $(\lambda x, t) u$ to $t[u / x]$ is called β-reduction.
- Isabelle performs β-reduction automatically.

Terms must be well-typed

(the argument of every function call must be of the right type)
Notation:
$t:: \tau$ means " t is a well-typed term of type τ ".

$$
\frac{t:: \tau_{1} \Rightarrow \tau_{2} \quad u:: \tau_{1}}{t u:: \tau_{2}}
$$

Type inference

Isabelle automatically computes the type of each variable in a term. This is called type inference.

In the presence of overloaded functions (functions with multiple types) this is not always possible.

User can help with type annotations inside the term.
Example: $f(x:: n a t)$

Currying

Thou shalt Curry your functions

- Curried: $f:: \tau_{1} \Rightarrow \tau_{2} \Rightarrow \tau$
- Tupled: $f^{\prime}:: \tau_{1} \times \tau_{2} \Rightarrow \tau$

Advantage:

Currying allows partial application
$f a_{1}$ where $a_{1}:: \tau_{1}$

Predefined syntactic sugar

- Infix: +, -, *, \#, @, ...
- Mixfix: if _ then _ else _, case _ of, ...

Prefix binds more strongly than infix:
! $f x+y \equiv(f x)+y \not \equiv f(x+y)$!

Enclose if and case in parentheses:
! (if_then_else_) !

Theory $=$ Isabelle Module

Syntax: theory MyTh
imports $T_{1} \ldots T_{n}$
begin
(definitions, theorems, proofs, ...)*
end

MyTh: name of theory. Must live in file MyTh.thy T_{i} : names of imported theories. Import transitive.

Usually: imports Main

Concrete syntax

In .thy files:
Types, terms and formulas need to be inclosed in "
Except for single identifiers
" normally not shown on slides

(3) Overview of Isabelle/HOL

Types and terms
Interface
By example: types bool, nat and list
Summary

isabelle jedit

- Based on jEdit editor
- Processes Isabelle text automatically when editing .thy files (like modern Java IDEs)

Overview_Demo.thy

(3) Overview of Isabelle/HOL

Types and terms
Interface
By example: types bool, nat and list Summary

Type bool

datatype bool $=$ True | False
Predefined functions:
$\wedge, \vee, \longrightarrow, \ldots$:: bool \Rightarrow bool \Rightarrow bool

A formula is a term of type bool
if-and-only-if: =

Type nat

datatype nat $=0 \mid$ Suc nat
Values of type nat: $0, \operatorname{Suc} 0, \operatorname{Suc}(\operatorname{Suc} 0), \ldots$
Predefined functions: $+, *, \ldots:$ nat \Rightarrow nat \Rightarrow nat
! Numbers and arithmetic operations are overloaded:
$0,1,2, \ldots:: ' a, \quad+:: \quad ' a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$
You need type annotations: $1::$ nat, $x+(y:: n a t)$ unless the context is unambiguous: Suc z

Nat_Demo.thy

An informal proof

Lemma $a d d m 0=m$
Proof by induction on m.

- Case 0 (the base case): add $00=0$ holds by definition of $a d d$.
- Case Suc m (the induction step): We assume add $m 0=m$, the induction hypothesis (IH). We need to show add (Suc m) $0=$ Suc m.
The proof is as follows:

$$
\begin{array}{rlrl}
\text { add }(\text { Suc } m) 0 & = & \text { Suc }(\text { add } m 0) & \\
& \text { by def. of add } \\
& =\text { Suc } m & & \text { by IH }
\end{array}
$$

Type 'a list

Lists of elements of type ' a
datatype 'a list $=$ Nil \mid Cons 'a ('a list)
Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:

- [] = Nil: empty list
- $x \#$ xs $=$ Cons x xs:
list with first element x ("head") and rest $x s$ ("tail")
- $\left[x_{1}, \ldots, x_{n}\right]=x_{1} \# \ldots x_{n} \#[]$

Structural Induction for lists

To prove that $P(x s)$ for all lists $x s$, prove

- $P([])$ and
- for arbitrary but fixed x and $x s$, $P(x s)$ implies $P(x \# x s)$.

$$
\frac{P([]) \quad \wedge x x s . P(x s) \Longrightarrow P(x \# x s)}{P(x s)}
$$

List_Demo.thy

An informal proof

Lemma app (app xs ys) zs = app xs (app ys zs)
Proof by induction on $x s$.

- Case Nil: app (app Nil ys) zs = app ys zs = app Nil (app ys zs) holds by definition of app.
- Case Cons x xs: We assume app (app xs ys) zs = app xs (app ys zs) (IH), and we need to show app (app (Cons x xs) ys) zs = app (Cons x xs) (app ys zs).
The proof is as follows:
app (app (Cons x xs) ys) zs
$=$ Cons $x(\operatorname{app}(a p p x s y s) z s)$ by definition of app
$=$ Cons x (app xs (app ys zs)) by IH
$=a p p($ Cons $x x s)(a p p y s z s)$ by definition of app

Large library: HOL/List.thy

Included in Main.

> Don't reinvent, reuse!

Predefined: xs @ ys (append), length, and map
(3) Overview of Isabelle/HOL

Types and terms
Interface
By example: types bool, nat and list
Summary

- datatype defines (possibly) recursive data types.
- fun defines (possibly) recursive functions by pattern-matching over datatype constructors.

Proof methods

- induction performs structural induction on some variable (if the type of the variable is a datatype).
- auto solves as many subgoals as it can, mainly by simplification (symbolic evaluation):
" $=$ " is used only from left to right!

Proofs

General schema:

```
lemma name: " . .."
apply (...)
apply (...)
done
```

If the lemma is suitable as a simplification rule:
lemma name[simp]: "..."

Top down proofs

Command

sorry

"completes" any proof.
Allows top down development:

> Assume lemma first, prove it later.

The proof state

1. $\wedge x_{1} \ldots x_{p}$. $A \Longrightarrow B$
$x_{1} \ldots x_{p}$ fixed local variables
$A \quad$ local assumption(s)
$B \quad$ actual (sub)goal

Multiple assumptions

$$
\begin{gathered}
\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow B \\
\text { abbreviates } \\
A_{1} \Longrightarrow \ldots \Longrightarrow A_{n} \Longrightarrow B \\
; \quad \approx \text { "and" }
\end{gathered}
$$

(3) Overview of Isabelle/HOL

(4) Type and function definitions
(5) Induction Heuristics
(6) Simplification

4 Type and function definitions
Type definitions
Function definitions

Type synonyms

type_synonym name $=\tau$
Introduces a synonym name for type τ

Examples
 type_synonym string $=$ char list
 type_synonym ('a,'b)foo $=$ 'a list \times 'b list

Type synonyms are expanded after parsing and are not present in internal representation and output

datatype - the general case

datatype $\left(\alpha_{1}, \ldots, \alpha_{n}\right) t=\begin{aligned} & C_{1} \tau_{1,1} \ldots \tau_{1, n_{1}} \\ & \ldots \\ & \\ & C_{k} \tau_{k, 1} \ldots \tau_{k, n_{k}}\end{aligned}$

- Types: $C_{i}:: \tau_{i, 1} \Rightarrow \cdots \Rightarrow \tau_{i, n_{i}} \Rightarrow\left(\alpha_{1}, \ldots, \alpha_{n}\right) t$
- Distinctness: $C_{i} \ldots \neq C_{j} \ldots \quad$ if $i \neq j$
- Injectivity: $\left(C_{i} x_{1} \ldots x_{n_{i}}=C_{i} y_{1} \ldots y_{n_{i}}\right)=$

$$
\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n_{i}}=y_{n_{i}}\right)
$$

Distinctness and injectivity are applied automatically Induction must be applied explicitly

Case expressions

Datatype values can be taken apart with case:

$$
\text { (case xs of }[] \Rightarrow \ldots \text { | } y \# y s \Rightarrow \ldots y \ldots y s \ldots)
$$

Wildcards:

$$
\text { (case } m \text { of } 0 \Rightarrow \text { Suc } 0 \mid \text { Suc }_{-} \Rightarrow 0 \text {) }
$$

Nested patterns:

$$
\text { (case xs of }[0] \Rightarrow 0 \mid \quad[\text { Suc } n] \Rightarrow n \mid \quad-\Rightarrow 2 \text {) }
$$

Complicated patterns mean complicated proofs!
Need () in context

Tree_Demo.thy

The option type

datatype 'a option $=$ None \mid Some 'a
If ' a has values a_{1}, a_{2}, \ldots
then ' a option has values None, Some a_{1}, Some a_{2}, \ldots
Typical application:

```
fun lookup :: (' }a\times\mathrm{ 'b) list }=>\mp@subsup{}{}{\prime}'a=>'b option wher
lookup [] x= None |
lookup ((a,b) # ps) x=
    (if }a=x\mathrm{ then Some b else lookup ps x)
```

4 Type and function definitions Type definitions
Function definitions

Non-recursive definitions

Example
definition $s q::$ nat \Rightarrow nat where $s q n=n * n$

No pattern matching, just $f x_{1} \ldots x_{n}=\ldots$

The danger of nontermination

How about $f x=f x+1$?
! All functions in HOL must be total !

Key features of fun

- Pattern-matching over datatype constructors
- Order of equations matters
- Termination must be provable automatically by size measures
- Proves customized induction schema

Example: separation

$$
\begin{aligned}
& \text { fun } \operatorname{sep}::{ }^{\prime} a \Rightarrow{ }^{\prime} a \text { list } \Rightarrow{ }^{\prime} a \text { list where } \\
& \text { sep } a(x \# y \# z s)=x \# a \# \text { sep } a(y \# z s) \\
& \text { sep } a x s=x s
\end{aligned}
$$

Example: Ackermann

```
fun ack :: nat \(\Rightarrow\) nat \(\Rightarrow\) nat where
ack \(0 \quad n \quad=\) Suc \(n \mid\)
ack \((\) Suc \(m) 0 \quad=\) ack \(m(\) Suc 0\() \mid\)
ack \((\) Suc \(m)(\) Suc \(n)=\) ack \(m(\) ack (Suc m) \(n)\)
```

Terminates because the arguments decrease lexicographically with each recursive call:

- (Suc m, 0) > (m, Suc 0)
- (Suc m, Suc n) > (Suc m, n)
- (Suc m, Suc n) > (m, _)

primrec

- A restrictive version of fun
- Means primitive recursive
- Most functions are primitive recursive
- Frequently found in Isabelle theories

The essence of primitive recursion:

$$
\begin{array}{llr}
f(0) & =\ldots & \text { no recursion } \\
f(\text { Suc } n) & =\ldots f(n) \ldots & \\
g([]) & =\ldots & \text { no recursion } \\
g(x \# x s) & =\ldots g(x s) \ldots &
\end{array}
$$

(3) Overview of Isabelle/HOL

(4) Type and function definitions

5 Induction Heuristics
(6) Simplification

Basic induction heuristics

Theorems about recursive functions are proved by induction

Induction on argument number i of f if f is defined by recursion on argument number i

A tail recursive reverse

Our initial reverse:
fun rev :: 'a list \Rightarrow ' a list where
$\operatorname{rev}[]=[] \mid$
$\operatorname{rev}(x \# x s)=r e v x s @[x]$
A tail recursive version:
fun itrev $::$ ' a list \Rightarrow 'a list $\Rightarrow{ }^{\prime} a$ list where

$$
\begin{array}{ll}
\text { itrev }[] & y s=y s \\
\text { itrev }(x \# x s) & y s=
\end{array}
$$

lemma itrev xs []$=$ rev xs

Induction_Demo.thy

Generalisation

Generalisation

- Replace constants by variables
- Generalize free variables
- by arbitrary in induction proof
- (or by universal quantifier in formula)

So far, all proofs were by structural induction because all functions were primitive recursive. In each induction step, 1 constructor is added. In each recursive call, 1 constructor is removed.

Now: induction for complex recursion patterns.

Computation Induction

Example

fun div2 :: nat \Rightarrow nat where
div2 $0=0 \quad \mid$
$\operatorname{div} 2($ Suc 0$)=0 \mid$
$\operatorname{div} 2(\operatorname{Suc}(S u c \pi))=\operatorname{Suc}(\operatorname{div} 2 n)$
\rightsquigarrow induction rule div2.induct:

$$
\frac{P(0) \quad P(\text { Suc } 0) \wedge n . P(n) \Longrightarrow P(\text { Suc }(\text { Suc } n))}{P(m)}
$$

Computation Induction

If $f:: \tau \Rightarrow \tau^{\prime}$ is defined by fun, a special induction schema is provided to prove $P(x)$ for all $x:: \tau$:
for each defining equation

$$
f(e)=\ldots f\left(r_{1}\right) \ldots f\left(r_{k}\right) \ldots
$$

```
prove P(e) assuming P(r r),\ldots, P(rk).
```

Induction follows course of (terminating!) computation Motto: properties of f are best proved by rule f.induct

How to apply f.induct

If $f:: \tau_{1} \Rightarrow \cdots \Rightarrow \tau_{n} \Rightarrow \tau^{\prime}$:

$$
\text { (induction } a_{1} \ldots a_{n} \text { rule: f.induct) }
$$

Heuristic:

- there should be a call $f a_{1} \ldots a_{n}$ in your goal
- ideally the a_{i} should be variables.

Induction_Demo.thy

Computation Induction

(3) Overview of Isabelle/HOL

(4) Type and function definitions

5 Induction Heuristics
(6) Simplification

Simplification means...

Using equations $l=r$ from left to right As long as possible

Terminology: equation \rightsquigarrow simplification rule
Simplification $=($ Term $)$ Rewriting

An example

Equations:

$$
\begin{align*}
0+n & =n \tag{1}\\
(\text { Suc } m)+n & =\text { Suc }(m+n) \tag{2}\\
(\text { Suc } m \leq \text { Suc } n) & =(m \leq n) \tag{3}\\
(0 \leq m) & =\text { True } \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& 0+\text { Suc } 0 \leq \text { Suc } 0+x \\
& \text { Suc } 0 \leq \text { Suc } 0+x \\
& \stackrel{(1)}{=} \\
& \text { Suc } 0 \leq \text { Suc }(0+x) \\
& 0 \stackrel{(3)}{=} \\
& 0 \leq x \\
& \text { True }
\end{aligned}
$$

Conditional rewriting

Simplification rules can be conditional:

$$
\llbracket P_{1} ; \ldots ; P_{k} \rrbracket \Longrightarrow l=r
$$

is applicable only if all P_{i} can be proved first, again by simplification.

Example

$$
p(0)=\text { True }
$$

$$
p(x) \Longrightarrow f(x)=g(x)
$$

We can simplify $f(0)$ to $g(0)$ but we cannot simplify $f(1)$ because $p(1)$ is not provable.

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.
Example: $f(x)=g(x), g(x)=f(x)$
Principle:

$$
\llbracket P_{1} ; \ldots ; P_{k} \rrbracket \Longrightarrow l=r
$$

is suitable as a simp-rule only
if l is "bigger" than r and each P_{i}

$$
\begin{aligned}
& n<m \Longrightarrow(n<\text { Suc } m)=\text { True YES } \\
& \text { Suc } n<m \Longrightarrow(n<m)=\text { True NO }
\end{aligned}
$$

Proof method simp

Goal: 1. $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow C$
apply (simp add: $e q_{1} \ldots e q_{n}$)
Simplify $P_{1} \ldots P_{m}$ and C using

- lemmas with attribute simp
- rules from fun and datatype
- additional lemmas $e q_{1} \ldots e q_{n}$
- assumptions $P_{1} \ldots P_{m}$

Variations:

- (simp ... del: ...) removes simp-lemmas
- add and del are optional

auto versus simp

- auto acts on all subgoals
- simp acts only on subgoal 1
- auto applies simp and more
- auto can also be modified: (auto simp add: . . . simp del: ...)

Rewriting with definitions

Definitions (definition) must be used explicitly:

$$
\left(\operatorname{simp} \text { add: } f_{-} d e f \ldots\right)
$$

f is the function whose definition is to be unfolded.

Case splitting with simp/auto

Automatic:

$$
\begin{gathered}
P(\text { if } A \text { then } s \text { else } t) \\
= \\
(A \longrightarrow P(s)) \wedge(\neg A \longrightarrow P(t))
\end{gathered}
$$

By hand:

$$
\begin{gathered}
P(\text { case } e \text { of } 0 \Rightarrow a \mid \text { Suc } n \Rightarrow b) \\
(e=0 \longrightarrow P(a)) \wedge(\forall n \cdot e=\text { Suc } n \longrightarrow P(b))
\end{gathered}
$$

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype t : t.split

Simp_Demo.thy

Chapter 3

Case Study: IMP Expressions

7 Case Study: IMP Expressions

7 Case Study: IMP Expressions

This section introduces arithmetic and boolean expressions
of our imperative language IMP.
IMP commands are introduced later.
(7) Case Study: IMP Expressions

Arithmetic Expressions
Boolean Expressions
Stack Machine and Compilation

Concrete and abstract syntax

Concrete syntax: strings, eg "a+5*b"
Abstract syntax: trees, eg

Parser: function from strings to trees
Linear view of trees: terms, eg Plus a (Times 5 b)
Abstract syntax trees/terms are datatype values!

Concrete syntax is defined by a context-free grammar, eg

$$
a::=n|x|(a)|a+a| a * a \mid \ldots
$$

where n can be any natural number and x any variable.

We focus on abstract syntax which we introduce via datatypes.

Datatype aexp

Variable names are strings, values are integers:
type_synonym vname $=$ string
datatype aexp $=N$ int $\mid V$ vname \mid Plus aexp aexp

Concrete	Abstract
5	$N 5$
x	$V^{\prime \prime} x^{\prime \prime}$
$\mathrm{x}+\mathrm{y}$	$\operatorname{Plus}\left(V^{\prime \prime} x^{\prime \prime}\right)\left(V^{\prime \prime} y^{\prime \prime}\right)$
$2+(\mathrm{z}+3)$	$\operatorname{Plus}\left(\begin{array}{ll}N & 2)\left(\operatorname{Plus}\left(V^{\prime \prime} z^{\prime \prime}\right)\left(\begin{array}{l}N\end{array}\right)\right)\end{array}\right.$

Warning

This is syntax, not (yet) semantics!

$$
N 0 \neq \operatorname{Plus}\left(\begin{array}{ll}
N & 0
\end{array}\right)\left(\begin{array}{ll}
N & 0
\end{array}\right)
$$

The (program) state

What is the value of $x+1$?

- The value of an expression depends on the value of its variables.
- The value of all variables is recorded in the state.
- The state is a function from variable names to values:

```
type_synonym val= int
type_synonym state = vname => val
```


Function update notation

$$
\text { If } f:: \tau_{1} \Rightarrow \tau_{2} \text { and } a:: \tau_{1} \text { and } b:: \tau_{2} \text { then }
$$

$$
f(a:=b)
$$

is the function that behaves like f except that it returns b for argument a.

$$
f(a:=b)=(\lambda x \text {. if } x=a \text { then } b \text { else } f x)
$$

How to write down a state

Some states:

- λx. 0
- $(\lambda x .0)\left({ }^{\prime \prime} a^{\prime \prime}:=3\right)$
- $\left((\lambda x .0)\left({ }^{\prime \prime} a^{\prime \prime}:=5\right)\right)\left({ }^{\prime \prime} x^{\prime \prime}:=3\right)$

Nicer notation:

$$
<^{\prime \prime} a^{\prime \prime}:=5,{ }^{\prime \prime} x^{\prime \prime}:=3, \quad{ }^{\prime \prime} y^{\prime \prime}:=7>
$$

Maps everything to 0 , but " a " to 5 , " x " to 3 , etc.

AExp.thy

7 Case Study: IMP Expressions

Arithmetic Expressions

Boolean Expressions

Stack Machine and Compilation

BExp.thy

7 Case Study: IMP Expressions

Arithmetic Expressions
Boolean Expressions
Stack Machine and Compilation

ASM.thy

This was easy.
Because evaluation of expressions always terminates. But execution of programs may not terminate. Hence we cannot define it by a total recursive function.

We need more logical machinery
to define program execution and reason about it.

Chapter 4

Logic and Proof
 Beyond Equality

8 Logical Formulas

(9) Proof Automation
(10) Single Step Proofs
(11) Inductive Definitions

8 Logical Formulas

(9) Proof Automation
(10) Single Step Proofs
(11) Inductive Definitions

Syntax (in decreasing precedence):

$$
\begin{array}{l|l|l|l}
\text { form } & ::=(\text { form }) & \text { term }=\text { term } & \text { form } \\
& \mid \text { form } \wedge \text { form } & \text { form } \vee \text { form } & \text { form } \longrightarrow \text { form } \\
& \forall x . \text { form } & \exists x . \text { form } &
\end{array}
$$

Examples:

$$
\begin{aligned}
\neg A \wedge B \vee C & \equiv((\neg A) \wedge B) \vee C \\
s=t \wedge C & \equiv(s=t) \wedge C \\
A \wedge B=B \wedge A & \equiv A \wedge(B=B) \wedge A \\
\forall x . P x \wedge Q x & \equiv \forall x .(P x \wedge Q x)
\end{aligned}
$$

Input syntax: $\longleftrightarrow \quad$ (same precedence as \longrightarrow)

Variable binding convention:

$$
\forall x y \cdot P x y \equiv \forall x \cdot \forall y \cdot P x y
$$

Similarly for \exists and λ.

Warning

$$
\begin{aligned}
& \text { Quantifiers have low precedence } \\
& \text { and need to be parenthesized (if in some context) } \\
& \text { ! } P \wedge \forall x . Q x \rightsquigarrow P \wedge(\forall x . Q x) \quad \text { ! }
\end{aligned}
$$

Mathematical symbols

... and their ascii representations:

\forall	\<forall>	ALL
\exists	\<exists>	EX
λ	\<lambda>	$\%$
\longrightarrow	$-->$	
\longleftrightarrow	$<->$	
Λ	Λ	$\&$
\vee	$\backslash /$	I
\neg	\<not>	\sim
\neq	\<noteq>	\sim

Sets over type ' a

'a set

- $\left\}, \quad\left\{e_{1}, \ldots, e_{n}\right\}\right.$
- $e \in A, A \subseteq B$
- $A \cup B, \quad A \cap B, A-B,-A$

\in	\<in>	$:$
\subseteq	\<subseteq>	$<=$
\cup	\<union>	Un
\cap	\<inter>	Int

Set comprehension

- $\{x . P\}$ where x is a variable
- But not $\{t . P\}$ where t is a proper term
- Instead: $\{t \mid x y z . P\}$ is short for $\{v . \exists x y z . v=t \wedge P\}$ where x, y, z are the free variables in t
(8 Logical Formulas
(9) Proof Automation
(10) Single Step Proofs
(11) Inductive Definitions

simp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets

- Show you where they got stuck
- highly incomplete
- Extensible with new simp-rules

Exception: auto acts on all subgoals

fastforce

- rewriting, logic, sets, relations and a bit of arithmetic.
- incomplete but better than auto.
- Succeeds or fails
- Extensible with new simp-rules

blast

- A complete proof search procedure for FOL ...
- ... but (almost) without "="
- Covers logic, sets and relations
- Succeeds or fails
- Extensible with new deduction rules

Automating arithmetic

arith:

- proves linear formulas (no "*")
- complete for quantifier-free real arithmetic
- complete for first-order theory of nat and int (Presburger arithmetic)

Sledgehammer

Architecture:

Isabelle

Characteristics:

- Sometimes it works,
- sometimes it doesn't.

> Do you feel lucky?

[^0]\[

$$
\begin{aligned}
& \text { by }(\text { proof-method }) \\
& \approx \\
& \text { apply }(\text { proof-method }) \\
& \text { done }
\end{aligned}
$$
\]

Auto_Proof_Demo.thy

(8) Logical Formulas
(9) Proof Automation
(10) Single Step Proofs
(11) Inductive Definitions

Step-by-step proofs can be necessary if automation fails and you have to explore where and why it failed by taking the goal apart.

What are these ?-variables ?

After you have finished a proof, Isabelle turns all free variables V in the theorem into ? V.

Example: theorem conjI: $\llbracket ? P ; ? Q \rrbracket \Longrightarrow ? P \wedge ? Q$
These ?-variables can later be instantiated:

- By hand:

$$
\begin{aligned}
& \text { conjI[of "a=b" "False"] } \rightsquigarrow \\
& \llbracket a=b ; \text { Fals } \rrbracket \Longrightarrow a=b \wedge \text { False }
\end{aligned}
$$

- By unification:

$$
\begin{aligned}
& \text { unifying } ? P \wedge ? Q \text { with } a=b \wedge \text { False } \\
& \text { sets ?P to } a=b \text { and ? } Q \text { to False. }
\end{aligned}
$$

Rule application

Example: rule: $\llbracket ? P ; ? Q \rrbracket \Longrightarrow ? P \wedge ? Q$ subgoal: 1. $\ldots \Longrightarrow A \wedge B$
Result: 1. ... $\Longrightarrow A$

$$
\text { 2. } \ldots \Longrightarrow B
$$

The general case: applying rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ to subgoal $\ldots \Longrightarrow C$:

- Unify A and C
- Replace C with n new subgoals $A_{1} \ldots A_{n}$
apply(rule xyz)
"Backchaining"

Typical backwards rules

$$
\begin{gathered}
\frac{? P \quad ? Q}{? P \wedge ? Q} \operatorname{conjI} \\
\frac{? P \Longrightarrow ? Q}{? P \longrightarrow ? Q} \text { impI } \frac{\wedge x \cdot ? P x}{\forall x \cdot ? P x} \text { allI } \\
\frac{? P \Longrightarrow ? Q \quad ? Q \Longrightarrow ? P}{? P=? Q} \text { iffI }
\end{gathered}
$$

They are known as introduction rules
because they introduce a particular connective.

Automating intro rules

If r is a theorem $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ then

(blast intro: r)

allows blast to backchain on r during proof search.

Example:

theorem le_trans: $\llbracket ? x \leq ? y ; ? y \leq ? z \rrbracket \Longrightarrow ? x \leq ? z$
goal 1. $\llbracket a \leq b ; b \leq c ; c \leq d \rrbracket \Longrightarrow a \leq d$
proof apply(blast intro: le_trans)
Also works for auto and fastforce
Can greatly increase the search space!

Forward proof: OF

If r is a theorem $A \Longrightarrow B$
and s is a theorem that unifies with A then

$$
r\left[\begin{array}{lll}
O F & s
\end{array}\right]
$$

is the theorem obtained by proving A with s.
Example: theorem refl: ? $t=? t$

$$
\begin{aligned}
& \operatorname{conjI}[0 \mathrm{~F} \underset{\rightsquigarrow}{\text { refl[of "a"] }]} \\
& \qquad ? Q \Longrightarrow a=a \wedge ? Q
\end{aligned}
$$

The general case:
If r is a theorem $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ and $r_{1}, \ldots, r_{m}(m \leq n)$ are theorems then

$$
r\left[\begin{array}{llll}
O F & r_{1} & \ldots & r_{m}
\end{array}\right]
$$

is the theorem obtained
by proving $A_{1} \ldots A_{m}$ with $r_{1} \ldots r_{m}$.
Example: theorem refl: ? $t=? t$

$$
\begin{gathered}
\operatorname{conjI}[\text { OF refl[of "a"] refl[of "b"] }] \\
\rightsquigarrow \rightsquigarrow \\
a=a \wedge b=b
\end{gathered}
$$

From now on: ? mostly suppressed on slides

Single_Step_Demo.thy

\Longrightarrow is part of the Isabelle framework. It structures theorems and proof states: $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$
\longrightarrow is part of HOL and can occur inside the logical formulas A_{i} and A.

Phrase theorems like this $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$
not like this
$A_{1} \wedge \ldots \wedge A_{n} \longrightarrow A$
(8) Logical Formulas
(9) Proof Automation
(10) Single Step Proofs
(11) Inductive Definitions

Example: even numbers

Informally:

- 0 is even
- If n is even, so is $n+2$
- These are the only even numbers

In Isabelle/HOL:
inductive $e v::$ nat \Rightarrow bool where
ev 0
ev $n \Longrightarrow e v(n+2)$

An easy proof: ev 4

$$
e v 0 \Longrightarrow e v 2 \Longrightarrow e v 4
$$

Consider

```
fun evn :: nat => bool where
evn 0 = True |
evn (Suc 0) = False 
evn (Suc (Suc n)) = evn n
```

A trickier proof: ev $m \Longrightarrow$ evn m
By induction on the structure of the derivation of $\mathrm{ev} m$
Two cases: ev m is proved by

- rule ev 0
$\Longrightarrow m=0 \Longrightarrow$ evn $m=$ True
- rule $\mathrm{ev} n \Longrightarrow e v(n+2)$
$\Longrightarrow m=n+2$ and evn n (IH)
\Longrightarrow evn $m=$ evn $(n+2)=$ evn $n=$ True

Rule induction for ev

To prove

$$
\text { ev } n \Longrightarrow P n
$$

by rule induction on $e v n$ we must prove

- P 0
- $P n \Longrightarrow P(n+2)$

Rule ev.induct:

$$
\frac{e v n \quad P 0 \quad \bigwedge n . \llbracket e v n ; P n \rrbracket \Longrightarrow P(n+2)}{P n}
$$

Format of inductive definitions

inductive $I:: \tau \Rightarrow$ bool where

$$
\llbracket I a_{1} ; \ldots ; I a_{n} \rrbracket \Longrightarrow I a
$$

Note:

- I may have multiple arguments.
- Each rule may also contain side conditions not involving I.

Rule induction in general

To prove

$$
I x \Longrightarrow P x
$$

by rule induction on I x
we must prove for every rule

$$
\llbracket I a_{1} ; \ldots ; I a_{n} \rrbracket \Longrightarrow I a
$$

that P is preserved:

$$
\llbracket I a_{1} ; P a_{1} ; \ldots ; I a_{n} ; P a_{n} \rrbracket \Longrightarrow P a
$$

Rule induction is absolutely central to (operational) semantics
! and the rest of this lecture course

Inductive_Demo.thy

Inductively defined sets

inductive_set $I:: \tau$ set where

$\llbracket a_{1} \in I ; \ldots ; a_{n} \in I \rrbracket \Longrightarrow a \in I \mid$

Difference to inductive:

- arguments of I are tupled, not curried
- I can later be used with set theoretic operators, eg $I \cup \ldots$

Chapter 5

Isar: A Language for Structured Proofs

(12 Isar by example
(13) Proof patterns
(14) Streamlining Proofs
(15) Proof by Cases and Induction

Apply scripts

- unreadable
- hard to maintain
- do not scale

No structure!

Apply scripts versus Isar proofs

Apply script $=$ assembly language program
Isar proof $=$ structured program with assertions

But: apply still useful for proof exploration

A typical Isar proof

proof

assume formula a_{0}
have formula ${ }_{1}$ by simp
have formula ${ }_{n}$ by blast show formula a_{n+1} by ...
qed
proves formula ${ }_{0} \Longrightarrow$ formula $_{n+1}$

Isar core syntax

$$
\begin{aligned}
\text { proof } & =\text { proof }[\text { method }] \text { step* } \text { qed } \\
& \mid \text { by method }
\end{aligned}
$$

```
method = (simp \ldots.) |(blast \ldots.) |(\mathrm{ induction ...) | ...}
```


prop $=$ [name:] "formula"
fact $=$ name $\mid \ldots$
(12 Isar by example
(13) Proof patterns
(14) Streamlining Proofs
(15) Proof by Cases and Induction

Example: Cantor's theorem

```
lemma \neg surj(f:: 'a m 'a set)
proof default proof: assume surj, show False
    assume a: surj f
    from a have b: \forall A.\existsa.A=fa
        by(simp add: surj_def)
    from b have c: \existsa.{x. x\not\infx}=fa
        by blast
    from c show False
    by blast
qed
```


Isar_Demo.thy

Cantor and abbreviations

Abbreviations

$$
\begin{aligned}
\text { this } & =\text { the previous proposition proved or assumed } \\
\text { then } & =\text { from this } \\
\text { thus } & =\text { then show } \\
\text { hence } & =\text { then have }
\end{aligned}
$$

using and with

(have|show) prop using facts
from facts (have|show) prop
with facts
$=$
from facts this

Structured lemma statement

lemma
fixes $f::{ }^{\prime} a \Rightarrow{ }^{\prime} a$ set
assumes s : surj f
shows False
proof - no automatic proof step
have $\exists a$. $\{x . x \notin f x\}=f a$ using s
by (auto simp: surj_def)
thus False by blast
qed
Proves surj $f \Longrightarrow$ False
but surj f becomes local fact s in proof.

The essence of structured proofs

Assumptions and intermediate facts can be named and referred to explicitly and selectively

Structured lemma statements

fixes $x:: \tau_{1}$ and $y:: \tau_{2} \ldots$
assumes $a: P$ and $b: Q \ldots$
shows R

- fixes and assumes sections optional
- shows optional if no fixes and assumes
(12) Isar by example
(13) Proof patterns
(14) Streamlining Proofs
(15) Proof by Cases and Induction

Case distinction

```
show \(R\)
proof cases
assume \(P\)
    :
    show \(R\langle\) proof \(\rangle\)
next
    assume \(\neg P\)
    !
    show \(R\langle\) proof \(\rangle\)
qed
    show \(R\langle\) proof \(\rangle\)
```

show R
have $P \vee Q\langle$ proof \rangle
then show R
proof assume P
show $R\langle$ proof \rangle
next
assume Q
show $R\langle$ proof \rangle
qed

Contradiction

```
show \negP
proof
    assume P
    show False <proof\rangle
qed
```



```
show }P\longleftrightarrow
proof
    assume P
    :
    show Q \langleproof\rangle
next
    assume Q
    show P \langleproof\rangle
qed
```


\forall and \exists introduction

```
show }\forallx.P(x
proof
    fix x local fixed variable
    show }P(x)\langleproof
qed
show \existsx. P(x)
proof
    \vdots
    show P(witness) \langleproof\rangle
qed
```


\exists elimination: obtain

have $\exists x . P(x)$
then obtain x where $p: P(x)$ by blast
: x fixed local variable

Works for one or more x

obtain example

lemma $\neg \operatorname{surj}\left(f::{ }^{\prime} a \Rightarrow{ }^{\prime} a\right.$ set $)$
proof
assume surj f
hence $\exists a$. $\{x . x \notin f x\}=f a$ by (auto simp: surj_def)
then obtain a where $\{x . x \notin f x\}=f a$ by blast
hence $a \notin f a \longleftrightarrow a \in f a$ by blast
thus False by blast
qed

Set equality and subset

```
show }A=
proof
    show }A\subseteqB\langleproof
next
    show }B\subseteqA\langleproof
qed
show \(A=B\)
proof show \(A \subseteq B\langle p r o o f\rangle\) next
show \(B \subseteq A\langle p r o o f\rangle\) qed
```

show $A \subseteq B$
proof
fix x
assume $x \in A$:
show $x \in B\langle$ proof \rangle
qed

Isar_Demo.thy

Exercise

(12) Isar by example

(13) Proof patterns

(14) Streamlining Proofs
(15) Proof by Cases and Induction
(14) Streamlining Proofs

Pattern Matching and Quotations
Top down proof development
moreover
Local lemmas

Example: pattern matching

```
show formula }1\longleftrightarrow\mp@subsup{\mathrm{ formula }}{2}{}(\mathrm{ is ? }L\longleftrightarrow\mathrm{ ? }\longleftrightarrow\mathrm{ )
proof
    assume ?L
    show ?R \langleproof\rangle
next
    assume ?R
    show ?L \langleproof\rangle
qed
```


?thesis

```
show formula (is ?thesis)
proof -
    \vdots
    show ?thesis <proof\rangle
qed
```

Every show implicitly defines?thesis

let

Introducing local abbreviations in proofs:
let $?$ t $=$ "some-big-term"
:
have "...?t..."

Quoting facts by value

By name:
have $x 0$: " $x>0$ "...
$:$
from $x 0 \ldots$

By value:
have " $x>0$ "...
from ' $x>0$ ' \ldots
back quotes

Isar_Demo.thy

Pattern matching and quotations
(14) Streamlining Proofs

Pattern Matching and Quotations
Top down proof development
moreover
Local lemmas

Example

```
lemma
    \(\exists y s z s . x s=y s @ z s \wedge\)
    (length \(y s=\) length \(z s \vee\) length \(y s=\) length \(z s+1\) )
proof ???
```


Isar_Demo.thy

Top down proof development

When automation fails

Split proof up into smaller steps.
Or explore by apply: have ... using ...

apply -	to make incoming facts part of proof state
apply auto	or whatever
apply ...	

At the end:

- done
- Better: convert to structured proof
(14) Streamlining Proofs

Pattern Matching and Quotations
Top down proof development
moreover
Local lemmas

moreover-ultimately

have $P_{1} \ldots$
moreover
have P_{2}
moreover
:
moreover
have P_{n}
ultimately
have P
have $l a b_{1}: P_{1} \ldots$
have $l a b_{2}: P_{2} \ldots$
:
have $l a b_{n}: P_{n} \ldots$
from $l a b_{1} l a b_{2} \ldots$
have P

With names
(14) Streamlining Proofs

Pattern Matching and Quotations
Top down proof development
moreover
Local lemmas

Local lemmas

have B if name: $A_{1} \ldots A_{m}$ for $x_{1} \ldots x_{n}$〈proof〉
proves $\llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow B$
where all x_{i} have been replaced by ? x_{i}.

Proof state and Isar text

In general: proof method
Applies method and generates subgoal(s):

$$
\bigwedge x_{1} \ldots x_{n} . \llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow B
$$

How to prove each subgoal:

```
fix }\mp@subsup{x}{1}{}\ldots\mp@subsup{x}{n}{
assume }\mp@subsup{A}{1}{}\ldots\mp@subsup{A}{m}{
\vdots
show }
```

Separated by next
(12) Isar by example
(13) Proof patterns
(14) Streamlining Proofs
(15) Proof by Cases and Induction

Isar_Induction_Demo.thy

Proof by cases

Datatype case analysis

datatype $t=C_{1} \vec{\tau}$

```
proof (cases "term")
    case (}\mp@subsup{C}{1}{}\mp@subsup{x}{1}{}\ldots..\mp@subsup{x}{k}{\prime}
    ... }\mp@subsup{x}{j}{\ldots}.
next
:
qed
```

where case $\left(C_{i} x_{1} \ldots x_{k}\right) \equiv$
fix $x_{1} \ldots x_{k}$
assume $\underbrace{C_{i}:}_{\text {label }} \underbrace{\operatorname{term}=\left(C_{i} x_{1} \ldots x_{k}\right)}_{\text {formula }}$

Isar_Induction_Demo.thy

Structural induction for nat

Structural induction for nat

```
show }P(n
proof (induction n)
    case 0
    \equiv let ?case = P(0)
    show ?case
next
    case (Suc n) \equiv fix n assume Suc: P(n)
    let ?case = P(Suc n)
    show ?case
qed
```


Structural induction with \Longrightarrow

```
show \(A(n) \Longrightarrow P(n)\)
proof (induction \(n\) )
    case \(0 \quad \equiv\) assume \(0: A(0)\)
    let ? case \(=P(0)\)
    show ?case
next
    case (Suc \(n) \quad \equiv\) fix \(n\)
        assume Suc: \(\quad A(n) \Longrightarrow P(n)\)
        \(A(\) Suc \(n)\)
    let ?case \(=P(\) Suc \(n)\)
    show?case
qed
```


Named assumptions

In a proof of

$$
A_{1} \Longrightarrow \ldots \Longrightarrow A_{n} \Longrightarrow B
$$

by structural induction:
In the context of

case C

we have
C.IH the induction hypotheses
C.prems the premises A_{i}
C C.IH + C.prems

A remark on style

- case (Suc n) ...show ?case is easy to write and maintain
- fix n assume formula ...show formula ${ }^{\prime}$ is easier to read:
- all information is shown locally
- no contextual references (e.g. ?case)
(15) Proof by Cases and Induction Rule Induction Rule Inversion

Isar_Induction_Demo.thy

Rule induction

Rule induction

```
inductive }I::\tau=>\sigma=>\mathrm{ bool
where
rule}\mp@subsup{1}{1}{:...
rulen:...
```

inductive $I:: \tau \Rightarrow \sigma \Rightarrow$ bool where
rule ${ }_{1}$:...
rule $_{n}: . .$.

```
show I x y \LongrightarrowPxy
```

show I x y \LongrightarrowPxy
proof (induction rule: I.induct)
proof (induction rule: I.induct)
case rule.
case rule.
show ?case
show ?case
next
next
next
case rulen
show ?case
qed

```

\section*{Fixing your own variable names}

\section*{case \(\left(\right.\) rule \(\left._{i} x_{1} \ldots x_{k}\right)\)}

Renames the first \(k\) variables in rule \(_{i}\) (from left to right) to \(x_{1} \ldots x_{k}\).

\section*{Named assumptions}

In a proof of
\[
I \ldots \Longrightarrow A_{1} \Longrightarrow \ldots \Longrightarrow A_{n} \Longrightarrow B
\]
rule induction on \(I \ldots\) :
In the context of
case \(R\)
we
have
R.IH the induction hypotheses
R.hyps the assumptions of rule \(R\)
\(R\).prems the premises \(A_{i}\)
R R.IH + R.hyps + R.prems
(15) Proof by Cases and Induction Rule Induction

\author{
Rule Inversion
}

\section*{Rule inversion}
inductive \(e v::\) nat \(\Rightarrow\) bool where
ev0: ev 0 |
evSS: ev \(n \Longrightarrow \operatorname{ev}(\operatorname{Suc}(\) Suc \(n))\)
What can we deduce from ev \(n\) ?
That it was proved by either ev0 or evSS!
\(e v n \Longrightarrow n=0 \vee(\exists k . n=\operatorname{Suc}(\) Suc \(k) \wedge e v k)\)
Rule inversion \(=\) case distinction over rules

\title{
Isar_Induction_Demo.thy
}

\author{
Rule inversion
}

\section*{Rule inversion template}
```

from'ev n' have P
proof cases

```
case ev0
\[
n=0
\]
show?thesis
next
case (evSS k) \(n=\) Suc (Suc \(k\) ), ev \(k\)
```

show?thesis
qed

```

Impossible cases disappear automatically```


[^0]:    ${ }^{1}$ Automatic Theorem Provers

