(3) Overview of Isabelle/HOL
(4) Type and function definitions

5 Induction Heuristics
(6) Simplification

Notation

Implication associates to the right:

$$
A \Longrightarrow B \Longrightarrow C \quad \text { means } \quad A \Longrightarrow(B \Longrightarrow C)
$$

Similarly for other arrows: $\Rightarrow, \longrightarrow$

$$
\frac{A_{1} \ldots A_{n}}{B} \text { means } A_{1} \Longrightarrow \cdots \Longrightarrow A_{n} \Longrightarrow B
$$

(3) Overview of Isabelle/HOL
(4) Type and function definitions
(5) Induction Heuristics
(6) Simplification

$$
\begin{gathered}
\mathrm{HOL}=\text { Higher-Order Logic } \\
\mathrm{HOL}=\text { Functional Programming }+ \text { Logic }
\end{gathered}
$$

HOL has

- datatypes
- recursive functions
- logical operators

HOL is a programming language!
Higher-order $=$ functions are values, too!
HOL Formulas:

- For the moment: only term $=$ term, e.g. $1+2=4$
- Later: $\wedge, \vee, \longrightarrow, \forall, \ldots$
(3) Overview of Isabelle/HOL

Types and terms
Interface
By example: types bool, nat and list
Summary

Types

Basic syntax:

$$
\begin{aligned}
& \tau::=(\tau) \\
& \text { bool | nat | int | ... base types } \\
& \text { ' } a \mid \text { ' } b \mid \ldots \text { type variables } \\
& \tau \Rightarrow \tau \\
& \tau \times \tau \\
& \tau \text { list } \\
& \tau \text { set } \\
& \text { functions } \\
& \text { pairs (ascii: *) } \\
& \text { lists } \\
& \text { sets } \\
& \text { user-defined types }
\end{aligned}
$$

Convention: $\quad \tau_{1} \Rightarrow \tau_{2} \Rightarrow \tau_{3} \equiv \tau_{1} \Rightarrow\left(\tau_{2} \Rightarrow \tau_{3}\right)$

Terms

Terms can be formed as follows:

- Function application: $f t$ is the call of function f with argument t. If f has more arguments: $f t_{1} t_{2} \ldots$ Examples: $\sin \pi$, plus $x y$
- Function abstraction: λ x. t
is the function with parameter x and result t,
i.e. " $x \mapsto t$ ".

Example: λx. plus $x x$

Terms

Basic syntax:

$$
\begin{array}{rll}
t: & := & (t) \\
& a & \\
& t t & \text { constant or variable (identifier) } \\
& t x . t & \text { function application } \\
& \ldots & \text { function abstraction } \\
& \ldots & \text { lots of syntactic sugar }
\end{array}
$$

Examples: $f(g x) y$ $h(\lambda x . f(g x))$

Convention: $\quad f t_{1} t_{2} t_{3} \equiv\left(\left(f t_{1}\right) t_{2}\right) t_{3}$
This language of terms is known as the λ-calculus.

The computation rule of the λ-calculus is the replacement of formal by actual parameters:

$$
(\lambda x . t) u=t[u / x]
$$

where $t[u / x]$ is " t with u substituted for x ".
Example: $(\lambda x . x+5) 3=3+5$

- The step from $(\lambda x, t) u$ to $t[u / x]$ is called β-reduction.
- Isabelle performs β-reduction automatically.

Terms must be well-typed

(the argument of every function call must be of the right type)
Notation:
$t:: \tau$ means " t is a well-typed term of type τ ".

$$
\frac{t:: \tau_{1} \Rightarrow \tau_{2} \quad u:: \tau_{1}}{t u:: \tau_{2}}
$$

Type inference

Isabelle automatically computes the type of each variable in a term. This is called type inference.

In the presence of overloaded functions (functions with multiple types) this is not always possible.

User can help with type annotations inside the term.
Example: $f(x:: n a t)$

Currying

Thou shalt Curry your functions

- Curried: $f:: \tau_{1} \Rightarrow \tau_{2} \Rightarrow \tau$
- Tupled: $f^{\prime}:: \tau_{1} \times \tau_{2} \Rightarrow \tau$

Advantage:

Currying allows partial application
$f a_{1}$ where $a_{1}:: \tau_{1}$

Predefined syntactic sugar

- Infix: +, -, *, \#, @, ...
- Mixfix: if _ then _ else _, case _ of, ...

Prefix binds more strongly than infix:
! $f x+y \equiv(f x)+y \not \equiv f(x+y)$!

Enclose if and case in parentheses:
! (if_then_else_) !

Theory $=$ Isabelle Module

Syntax: theory MyTh
imports $T_{1} \ldots T_{n}$
begin
(definitions, theorems, proofs, ...)*
end

MyTh: name of theory. Must live in file MyTh.thy T_{i} : names of imported theories. Import transitive.

Usually: imports Main

Concrete syntax

In .thy files:
Types, terms and formulas need to be inclosed in "
Except for single identifiers
" normally not shown on slides

(3) Overview of Isabelle/HOL

Types and terms
Interface
By example: types bool, nat and list
Summary

isabelle jedit

- Based on jEdit editor
- Processes Isabelle text automatically when editing .thy files (like modern Java IDEs)

Overview_Demo.thy

(3) Overview of Isabelle/HOL

Types and terms
Interface
By example: types bool, nat and list Summary

Type bool

datatype bool $=$ True | False
Predefined functions:
$\wedge, \vee, \longrightarrow, \ldots$:: bool \Rightarrow bool \Rightarrow bool

A formula is a term of type bool
if-and-only-if: =

Type nat

datatype nat $=0 \mid$ Suc nat
Values of type nat: $0, \operatorname{Suc} 0, \operatorname{Suc}(\operatorname{Suc} 0), \ldots$
Predefined functions: $+, *, \ldots:$ nat \Rightarrow nat \Rightarrow nat
! Numbers and arithmetic operations are overloaded:
$0,1,2, \ldots:: ' a, \quad+:: \quad ' a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$
You need type annotations: $1::$ nat, $x+(y:: n a t)$ unless the context is unambiguous: Suc z

Nat_Demo.thy

An informal proof

Lemma $a d d m 0=m$
Proof by induction on m.

- Case 0 (the base case): add $00=0$ holds by definition of $a d d$.
- Case Suc m (the induction step): We assume add $m 0=m$, the induction hypothesis (IH). We need to show add (Suc m) $0=$ Suc m.
The proof is as follows:

$$
\begin{array}{rlrl}
\text { add }(\text { Suc } m) 0 & = & \text { Suc }(\text { add } m 0) & \\
& \text { by def. of add } \\
& =\text { Suc } m & & \text { by IH }
\end{array}
$$

Type 'a list

Lists of elements of type ' a
datatype 'a list $=$ Nil \mid Cons 'a ('a list)
Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:

- [] = Nil: empty list
- $x \#$ xs $=$ Cons x xs:
list with first element x ("head") and rest $x s$ ("tail")
- $\left[x_{1}, \ldots, x_{n}\right]=x_{1} \# \ldots x_{n} \#[]$

Structural Induction for lists

To prove that $P(x s)$ for all lists $x s$, prove

- $P([])$ and
- for arbitrary but fixed x and $x s$, $P(x s)$ implies $P(x \# x s)$.

$$
\frac{P([]) \quad \wedge x x s . P(x s) \Longrightarrow P(x \# x s)}{P(x s)}
$$

List_Demo.thy

An informal proof

Lemma app (app xs ys) zs = app xs (app ys zs)
Proof by induction on $x s$.

- Case Nil: app (app Nil ys) zs = app ys zs = app Nil (app ys zs) holds by definition of app.
- Case Cons x xs: We assume app (app xs ys) zs = app xs (app ys zs) (IH), and we need to show app (app (Cons x xs) ys) zs = app (Cons x xs) (app ys zs).
The proof is as follows:
app (app (Cons x xs) ys) zs
$=$ Cons $x(\operatorname{app}(a p p x s y s) z s)$ by definition of app
$=$ Cons x (app xs (app ys zs)) by IH
$=a p p($ Cons $x x s)(a p p y s z s)$ by definition of app

Large library: HOL/List.thy

Included in Main.

> Don't reinvent, reuse!

Predefined: xs @ ys (append), length, and map
(3) Overview of Isabelle/HOL

Types and terms
Interface
By example: types bool, nat and list
Summary

- datatype defines (possibly) recursive data types.
- fun defines (possibly) recursive functions by pattern-matching over datatype constructors.

Proof methods

- induction performs structural induction on some variable (if the type of the variable is a datatype).
- auto solves as many subgoals as it can, mainly by simplification (symbolic evaluation):
" $=$ " is used only from left to right!

Proofs

General schema:

```
lemma name: " . .."
apply (...)
apply (...)
done
```

If the lemma is suitable as a simplification rule:
lemma name[simp]: "..."

Top down proofs

Command

sorry

"completes" any proof.
Allows top down development:

> Assume lemma first, prove it later.

The proof state

1. $\wedge x_{1} \ldots x_{p}$. $A \Longrightarrow B$
$x_{1} \ldots x_{p}$ fixed local variables
$A \quad$ local assumption(s)
$B \quad$ actual (sub)goal

Multiple assumptions

$$
\begin{gathered}
\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow B \\
\text { abbreviates } \\
A_{1} \Longrightarrow \ldots \Longrightarrow A_{n} \Longrightarrow B \\
; \quad \approx \text { "and" }
\end{gathered}
$$

(3) Overview of Isabelle/HOL

(4) Type and function definitions
(5) Induction Heuristics
(6) Simplification

4 Type and function definitions
Type definitions
Function definitions

Type synonyms

type_synonym name $=\tau$
Introduces a synonym name for type τ

Examples
 type_synonym string $=$ char list
 type_synonym ('a,'b)foo $=$ 'a list \times 'b list

Type synonyms are expanded after parsing and are not present in internal representation and output

datatype - the general case

datatype $\left(\alpha_{1}, \ldots, \alpha_{n}\right) t=\begin{aligned} & C_{1} \tau_{1,1} \ldots \tau_{1, n_{1}} \\ & \ldots \\ & \\ & C_{k} \tau_{k, 1} \ldots \tau_{k, n_{k}}\end{aligned}$

- Types: $C_{i}:: \tau_{i, 1} \Rightarrow \cdots \Rightarrow \tau_{i, n_{i}} \Rightarrow\left(\alpha_{1}, \ldots, \alpha_{n}\right) t$
- Distinctness: $C_{i} \ldots \neq C_{j} \ldots \quad$ if $i \neq j$
- Injectivity: $\left(C_{i} x_{1} \ldots x_{n_{i}}=C_{i} y_{1} \ldots y_{n_{i}}\right)=$

$$
\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n_{i}}=y_{n_{i}}\right)
$$

Distinctness and injectivity are applied automatically Induction must be applied explicitly

Case expressions

Datatype values can be taken apart with case:

$$
\text { (case xs of }[] \Rightarrow \ldots \text { | } y \# y s \Rightarrow \ldots y \ldots y s \ldots)
$$

Wildcards:

$$
\text { (case } m \text { of } 0 \Rightarrow \text { Suc } 0 \mid \text { Suc }_{-} \Rightarrow 0 \text {) }
$$

Nested patterns:

$$
\text { (case xs of }[0] \Rightarrow 0 \mid \quad[\text { Suc } n] \Rightarrow n \mid \quad-\Rightarrow 2 \text {) }
$$

Complicated patterns mean complicated proofs!
Need () in context

Tree_Demo.thy

The option type

datatype 'a option $=$ None \mid Some 'a
If ' a has values a_{1}, a_{2}, \ldots
then ' a option has values None, Some a_{1}, Some a_{2}, \ldots
Typical application:

```
fun lookup :: (' }a\times\mathrm{ 'b) list }=>\mp@subsup{}{}{\prime}'a=>'b option wher
lookup [] x= None |
lookup ((a,b) # ps) x=
    (if }a=x\mathrm{ then Some b else lookup ps x)
```

4 Type and function definitions Type definitions
Function definitions

Non-recursive definitions

Example
definition $s q::$ nat \Rightarrow nat where $s q n=n * n$

No pattern matching, just $f x_{1} \ldots x_{n}=\ldots$

The danger of nontermination

How about $f x=f x+1$?
! All functions in HOL must be total !

Key features of fun

- Pattern-matching over datatype constructors
- Order of equations matters
- Termination must be provable automatically by size measures
- Proves customized induction schema

Example: separation

$$
\begin{aligned}
& \text { fun } \operatorname{sep}::{ }^{\prime} a \Rightarrow{ }^{\prime} a \text { list } \Rightarrow{ }^{\prime} a \text { list where } \\
& \text { sep } a(x \# y \# z s)=x \# a \# \text { sep } a(y \# z s) \\
& \text { sep } a x s=x s
\end{aligned}
$$

Example: Ackermann

```
fun ack :: nat \(\Rightarrow\) nat \(\Rightarrow\) nat where
ack \(0 \quad n \quad=\) Suc \(n \mid\)
ack \((\) Suc \(m) 0 \quad=\) ack \(m(\) Suc 0\() \mid\)
ack \((\) Suc \(m)(\) Suc \(n)=\) ack \(m(\) ack (Suc m) \(n)\)
```

Terminates because the arguments decrease lexicographically with each recursive call:

- (Suc m, 0) > (m, Suc 0)
- (Suc m, Suc n) > (Suc m, n)
- (Suc m, Suc n) > (m, _)

primrec

- A restrictive version of fun
- Means primitive recursive
- Most functions are primitive recursive
- Frequently found in Isabelle theories

The essence of primitive recursion:

$$
\begin{array}{llr}
f(0) & =\ldots & \text { no recursion } \\
f(\text { Suc } n) & =\ldots f(n) \ldots & \\
g([]) & =\ldots & \text { no recursion } \\
g(x \# x s) & =\ldots g(x s) \ldots &
\end{array}
$$

(3) Overview of Isabelle/HOL

(4) Type and function definitions

5 Induction Heuristics
(6) Simplification

Basic induction heuristics

Theorems about recursive functions are proved by induction

Induction on argument number i of f if f is defined by recursion on argument number i

A tail recursive reverse

Our initial reverse:
fun rev :: 'a list \Rightarrow ' a list where
$\operatorname{rev}[]=[] \mid$
$\operatorname{rev}(x \# x s)=r e v x s @[x]$
A tail recursive version:
fun itrev $::$ ' a list \Rightarrow 'a list $\Rightarrow{ }^{\prime} a$ list where

$$
\begin{array}{ll}
\text { itrev }[] & y s=y s \\
\text { itrev }(x \# x s) & y s=
\end{array}
$$

lemma itrev xs []$=$ rev xs

Induction_Demo.thy

Generalisation

Generalisation

- Replace constants by variables
- Generalize free variables
- by arbitrary in induction proof
- (or by universal quantifier in formula)

So far, all proofs were by structural induction because all functions were primitive recursive. In each induction step, 1 constructor is added. In each recursive call, 1 constructor is removed.

Now: induction for complex recursion patterns.

Computation Induction

Example

fun div2 :: nat \Rightarrow nat where
div2 $0=0 \quad \mid$
$\operatorname{div} 2($ Suc 0$)=0 \mid$
$\operatorname{div} 2(\operatorname{Suc}(S u c \pi))=\operatorname{Suc}(\operatorname{div} 2 n)$
\rightsquigarrow induction rule div2.induct:

$$
\frac{P(0) \quad P(\text { Suc } 0) \wedge n . P(n) \Longrightarrow P(\text { Suc }(\text { Suc } n))}{P(m)}
$$

Computation Induction

If $f:: \tau \Rightarrow \tau^{\prime}$ is defined by fun, a special induction schema is provided to prove $P(x)$ for all $x:: \tau$:
for each defining equation

$$
f(e)=\ldots f\left(r_{1}\right) \ldots f\left(r_{k}\right) \ldots
$$

```
prove P(e) assuming P(r r),\ldots, P(rk).
```

Induction follows course of (terminating!) computation Motto: properties of f are best proved by rule f.induct

How to apply f.induct

If $f:: \tau_{1} \Rightarrow \cdots \Rightarrow \tau_{n} \Rightarrow \tau^{\prime}$:

$$
\text { (induction } a_{1} \ldots a_{n} \text { rule: f.induct) }
$$

Heuristic:

- there should be a call $f a_{1} \ldots a_{n}$ in your goal
- ideally the a_{i} should be variables.

Induction_Demo.thy

Computation Induction

(3) Overview of Isabelle/HOL

(4) Type and function definitions

5 Induction Heuristics
(6) Simplification

Simplification means...

Using equations $l=r$ from left to right As long as possible

Terminology: equation \rightsquigarrow simplification rule
Simplification $=($ Term $)$ Rewriting

An example

Equations:

$$
\begin{align*}
0+n & =n \tag{1}\\
(\text { Suc } m)+n & =\text { Suc }(m+n) \tag{2}\\
(\text { Suc } m \leq \text { Suc } n) & =(m \leq n) \tag{3}\\
(0 \leq m) & =\text { True } \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& 0+\text { Suc } 0 \leq \text { Suc } 0+x \\
& \text { Suc } 0 \leq \text { Suc } 0+x \\
& \stackrel{(1)}{=} \\
& \text { Suc } 0 \leq \text { Suc }(0+x) \\
& 0 \stackrel{(3)}{=} \\
& 0 \leq x \\
& \text { True }
\end{aligned}
$$

Conditional rewriting

Simplification rules can be conditional:

$$
\llbracket P_{1} ; \ldots ; P_{k} \rrbracket \Longrightarrow l=r
$$

is applicable only if all P_{i} can be proved first, again by simplification.

Example

$$
p(0)=\text { True }
$$

$$
p(x) \Longrightarrow f(x)=g(x)
$$

We can simplify $f(0)$ to $g(0)$ but we cannot simplify $f(1)$ because $p(1)$ is not provable.

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.
Example: $f(x)=g(x), g(x)=f(x)$
Principle:

$$
\llbracket P_{1} ; \ldots ; P_{k} \rrbracket \Longrightarrow l=r
$$

is suitable as a simp-rule only
if l is "bigger" than r and each P_{i}

$$
\begin{aligned}
& n<m \Longrightarrow(n<\text { Suc } m)=\text { True YES } \\
& \text { Suc } n<m \Longrightarrow(n<m)=\text { True NO }
\end{aligned}
$$

Proof method simp

Goal: 1. $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow C$
apply (simp add: $e q_{1} \ldots e q_{n}$)
Simplify $P_{1} \ldots P_{m}$ and C using

- lemmas with attribute simp
- rules from fun and datatype
- additional lemmas $e q_{1} \ldots e q_{n}$
- assumptions $P_{1} \ldots P_{m}$

Variations:

- (simp ... del: ...) removes simp-lemmas
- add and del are optional

auto versus simp

- auto acts on all subgoals
- simp acts only on subgoal 1
- auto applies simp and more
- auto can also be modified: (auto simp add: . . . simp del: ...)

Rewriting with definitions

Definitions (definition) must be used explicitly:

$$
\left(\operatorname{simp} \text { add: } f_{-} d e f \ldots\right)
$$

f is the function whose definition is to be unfolded.

Case splitting with simp/auto

Automatic:

$$
\begin{gathered}
P(\text { if } A \text { then } s \text { else } t) \\
= \\
(A \longrightarrow P(s)) \wedge(\neg A \longrightarrow P(t))
\end{gathered}
$$

By hand:

$$
\begin{gathered}
P(\text { case } e \text { of } 0 \Rightarrow a \mid \text { Suc } n \Rightarrow b) \\
(e=0 \longrightarrow P(a)) \wedge(\forall n \cdot e=\text { Suc } n \longrightarrow P(b))
\end{gathered}
$$

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype t : t.split

Simp_Demo.thy

