
3 Overview of Isabelle/HOL

4 Type and function definitions

5 Induction Heuristics

6 Simplification

31

Notation

Implication associates to the right:

A =⇒ B =⇒ C means A =⇒ (B =⇒ C)

Similarly for other arrows: ⇒, −→

A1 . . . An

B
means A1 =⇒ · · · =⇒ An =⇒ B

33

3 Overview of Isabelle/HOL

4 Type and function definitions

5 Induction Heuristics

6 Simplification

34

HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
• datatypes
• recursive functions
• logical operators

HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
• For the moment: only term = term,

e.g. 1 + 2 = 4
• Later: ∧, ∨, −→, ∀, . . .

35

3 Overview of Isabelle/HOL
Types and terms
Interface
By example: types bool, nat and list
Summary

36

Types

Basic syntax:

τ ::= (τ)
| bool | nat | int | . . . base types
| ′a | ′b | . . . type variables
| τ ⇒ τ functions
| τ × τ pairs (ascii: *)
| τ list lists
| τ set sets
| . . . user-defined types

Convention: τ 1 ⇒ τ 2 ⇒ τ 3 ≡ τ 1 ⇒ (τ 2 ⇒ τ 3)

37

Terms

Terms can be formed as follows:

• Function application: f t
is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

• Function abstraction: λx. t
is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

38

Terms
Basic syntax:

t ::= (t)
| a constant or variable (identifier)
| t t function application
| λx. t function abstraction
| . . . lots of syntactic sugar

Examples: f (g x) y
h (λx. f (g x))

Convention: f t1 t2 t3 ≡ ((f t1) t2) t3

This language of terms is known as the λ-calculus.
39

The computation rule of the λ-calculus is the
replacement of formal by actual parameters:

(λx. t) u = t[u/x]

where t[u/x] is “t with u substituted for x”.

Example: (λx. x + 5) 3 = 3 + 5

• The step from (λx. t) u to t[u/x] is called
β-reduction.

• Isabelle performs β-reduction automatically.

40

Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:
t :: τ means “t is a well-typed term of type τ”.

t :: τ 1 ⇒ τ 2 u :: τ 1
t u :: τ 2

41

Type inference

Isabelle automatically computes the type of each variable
in a term. This is called type inference.

In the presence of overloaded functions (functions with
multiple types) this is not always possible.

User can help with type annotations inside the term.
Example: f (x::nat)

42

Currying

Thou shalt Curry your functions

• Curried: f :: τ 1 ⇒ τ 2 ⇒ τ

• Tupled: f ′ :: τ 1 × τ 2 ⇒ τ

Advantage:

Currying allows partial application
f a1 where a1 :: τ 1

43

Predefined syntactic sugar

• Infix: +, −, ∗, #, @, . . .

• Mixfix: if then else , case of, . . .

Prefix binds more strongly than infix:

! f x + y ≡ (f x) + y 6≡ f (x + y) !

Enclose if and case in parentheses:

! (if then else) !

44

Theory = Isabelle Module

Syntax: theory MyTh
imports T1 . . .Tn
begin

(definitions, theorems, proofs, ...)∗

end

MyTh: name of theory. Must live in file MyTh.thy

Ti: names of imported theories. Import transitive.

Usually: imports Main

45

Concrete syntax

In .thy files:
Types, terms and formulas need to be inclosed in "

Except for single identifiers

" normally not shown on slides

46

3 Overview of Isabelle/HOL
Types and terms
Interface
By example: types bool, nat and list
Summary

47

isabelle jedit

• Based on jEdit editor

• Processes Isabelle text automatically
when editing .thy files (like modern Java IDEs)

48

Overview_Demo.thy

49

3 Overview of Isabelle/HOL
Types and terms
Interface
By example: types bool, nat and list
Summary

50

Type bool

datatype bool = True | False

Predefined functions:
∧, ∨, −→, . . . :: bool ⇒ bool ⇒ bool

A formula is a term of type bool

if-and-only-if: =

51

Type nat

datatype nat = 0 | Suc nat

Values of type nat: 0, Suc 0, Suc(Suc 0), . . .

Predefined functions: +, ∗, ... :: nat ⇒ nat ⇒ nat

! Numbers and arithmetic operations are overloaded:
0,1,2,... :: ′a, + :: ′a ⇒ ′a ⇒ ′a

You need type annotations: 1 :: nat, x + (y::nat)
unless the context is unambiguous: Suc z

52

Nat_Demo.thy

53

An informal proof

Lemma add m 0 = m
Proof by induction on m.

• Case 0 (the base case):
add 0 0 = 0 holds by definition of add.

• Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suc m.
The proof is as follows:
add (Suc m) 0 = Suc (add m 0) by def. of add

= Suc m by IH

54

Type ′a list

Lists of elements of type ′a

datatype ′a list = Nil | Cons ′a (′a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), . . .

Syntactic sugar:

• [] = Nil: empty list

• x # xs = Cons x xs:
list with first element x (“head”) and rest xs (“tail”)

• [x1, . . . , xn] = x1 # . . . xn # []

55

Structural Induction for lists

To prove that P(xs) for all lists xs, prove

• P([]) and

• for arbitrary but fixed x and xs,
P(xs) implies P(x#xs).

P([])
∧
x xs. P(xs) =⇒ P(x#xs)

P(xs)

56

List_Demo.thy

57

An informal proof
Lemma app (app xs ys) zs = app xs (app ys zs)
Proof by induction on xs.
• Case Nil: app (app Nil ys) zs = app ys zs =
app Nil (app ys zs) holds by definition of app.
• Case Cons x xs: We assume app (app xs ys) zs =
app xs (app ys zs) (IH), and we need to show
app (app (Cons x xs) ys) zs =
app (Cons x xs) (app ys zs).
The proof is as follows:
app (app (Cons x xs) ys) zs
= Cons x (app (app xs ys) zs) by definition of app
= Cons x (app xs (app ys zs)) by IH
= app (Cons x xs) (app ys zs) by definition of app

58

Large library: HOL/List.thy

Included in Main.

Don’t reinvent, reuse!

Predefined: xs @ ys (append), length, and map

59

3 Overview of Isabelle/HOL
Types and terms
Interface
By example: types bool, nat and list
Summary

60

• datatype defines (possibly) recursive data types.

• fun defines (possibly) recursive functions by
pattern-matching over datatype constructors.

61

Proof methods

• induction performs structural induction on some
variable (if the type of the variable is a datatype).

• auto solves as many subgoals as it can, mainly by
simplification (symbolic evaluation):

“=” is used only from left to right!

62

Proofs

General schema:

lemma name: "..."

apply (...)

apply (...)
...
done

If the lemma is suitable as a simplification rule:

lemma name[simp]: "..."

63

Top down proofs

Command

sorry

“completes” any proof.

Allows top down development:

Assume lemma first, prove it later.

64

The proof state

1.
∧

x1 . . . xp. A =⇒ B

x1 . . . xp fixed local variables
A local assumption(s)
B actual (sub)goal

65

Multiple assumptions

[[A1; . . . ; An]] =⇒ B

abbreviates

A1 =⇒ . . . =⇒ An =⇒ B

; ≈ “and”

66

3 Overview of Isabelle/HOL

4 Type and function definitions

5 Induction Heuristics

6 Simplification

67

4 Type and function definitions
Type definitions
Function definitions

68

Type synonyms
type_synonym name = τ

Introduces a synonym name for type τ

Examples

type_synonym string = char list

type_synonym (′a, ′b)foo = ′a list × ′b list

Type synonyms are expanded after parsing
and are not present in internal representation and output

69

datatype — the general case
datatype (α1, . . . , αn)t = C1 τ1,1 . . . τ1,n1

| . . .
| Ck τk,1 . . . τk,nk

• Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni
⇒ (α1, . . . , αn)t

• Distinctness: Ci . . . 6= Cj . . . if i 6= j

• Injectivity: (Ci x1 . . . xni
= Ci y1 . . . yni

) =
(x1 = y1 ∧ · · · ∧ xni

= yni
)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

70

Case expressions
Datatype values can be taken apart with case:

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

Wildcards:

(case m of 0 ⇒ Suc 0 | Suc ⇒ 0)

Nested patterns:

(case xs of [0] ⇒ 0 | [Suc n] ⇒ n | ⇒ 2)

Complicated patterns mean complicated proofs!

Need () in context

71

Tree_Demo.thy

72

The option type

datatype ′a option = None | Some ′a

If ′a has values a1, a2, . . .
then ′a option has values None, Some a1, Some a2, . . .

Typical application:

fun lookup :: (′a × ′b) list ⇒ ′a ⇒ ′b option where
lookup [] x = None |
lookup ((a, b) # ps) x =

(if a = x then Some b else lookup ps x)

73

4 Type and function definitions
Type definitions
Function definitions

74

Non-recursive definitions

Example
definition sq :: nat ⇒ nat where sq n = n∗n

No pattern matching, just f x1 . . . xn = . . .

75

The danger of nontermination

How about f x = f x + 1 ?

Subtract f x on both sides.
=⇒ 0 = 1

! All functions in HOL must be total !

76

Key features of fun

• Pattern-matching over datatype constructors

• Order of equations matters

• Termination must be provable automatically
by size measures

• Proves customized induction schema

77

Example: separation

fun sep :: ′a ⇒ ′a list ⇒ ′a list where
sep a (x#y#zs) = x # a # sep a (y#zs) |
sep a xs = xs

78

Example: Ackermann

fun ack :: nat ⇒ nat ⇒ nat where
ack 0 n = Suc n |
ack (Suc m) 0 = ack m (Suc 0) |
ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

Terminates because the arguments decrease
lexicographically with each recursive call:

• (Suc m, 0) > (m, Suc 0)

• (Suc m, Suc n) > (Suc m, n)

• (Suc m, Suc n) > (m,)

79

primrec

• A restrictive version of fun

• Means primitive recursive

• Most functions are primitive recursive

• Frequently found in Isabelle theories

The essence of primitive recursion:

f(0) = . . . no recursion
f(Suc n) = . . . f(n). . .

g([]) = . . . no recursion
g(x#xs) = . . . g(xs). . .

80

3 Overview of Isabelle/HOL

4 Type and function definitions

5 Induction Heuristics

6 Simplification

81

Basic induction heuristics

Theorems about recursive functions
are proved by induction

Induction on argument number i of f
if f is defined by recursion on argument number i

82

A tail recursive reverse

Our initial reverse:

fun rev :: ′a list ⇒ ′a list where
rev [] = [] |
rev (x#xs) = rev xs @ [x]

A tail recursive version:

fun itrev :: ′a list ⇒ ′a list ⇒ ′a list where
itrev [] ys = ys |
itrev (x#xs) ys =

itrev xs (x#ys)

lemma itrev xs [] = rev xs

83

Induction_Demo.thy

Generalisation

84

Generalisation

• Replace constants by variables

• Generalize free variables
• by arbitrary in induction proof
• (or by universal quantifier in formula)

85

So far, all proofs were by structural induction
because all functions were primitive recursive.

In each induction step, 1 constructor is added.
In each recursive call, 1 constructor is removed.

Now: induction for complex recursion patterns.

86

Computation Induction

Example
fun div2 :: nat ⇒ nat where
div2 0 = 0 |
div2 (Suc 0) = 0 |
div2 (Suc(Suc n)) = Suc(div2 n)

 induction rule div2.induct:

P (0) P (Suc 0)
∧
n. P (n) =⇒ P (Suc(Suc n))

P (m)

87

Computation Induction

If f :: τ ⇒ τ ′ is defined by fun, a special induction
schema is provided to prove P (x) for all x :: τ :

for each defining equation

f(e) = . . . f(r1) . . . f(rk) . . .

prove P (e) assuming P (r1), . . . , P (rk).

Induction follows course of (terminating!) computation
Motto: properties of f are best proved by rule f.induct

88

How to apply f.induct

If f :: τ1 ⇒ · · · ⇒ τn ⇒ τ ′:

(induction a1 . . . an rule: f.induct)

Heuristic:

• there should be a call f a1 . . . an in your goal

• ideally the ai should be variables.

89

Induction_Demo.thy

Computation Induction

90

3 Overview of Isabelle/HOL

4 Type and function definitions

5 Induction Heuristics

6 Simplification

91

Simplification means . . .

Using equations l = r from left to right

As long as possible

Terminology: equation simplification rule

Simplification = (Term) Rewriting

92

An example

Equations:

0 + n = n (1)
(Suc m) + n = Suc (m+ n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)
(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x
(2)
=

Suc 0 ≤ Suc (0 + x)
(3)
=

0 ≤ 0 + x
(4)
=

True
93

Conditional rewriting

Simplification rules can be conditional:

[[P1; . . . ; Pk]] =⇒ l = r

is applicable only if all Pi can be proved first,
again by simplification.

Example
p(0) = True

p(x) =⇒ f(x) = g(x)

We can simplify f(0) to g(0) but
we cannot simplify f(1) because p(1) is not provable.

94

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(x) = g(x), g(x) = f(x)

Principle:

[[P1; . . . ; Pk]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

n < m =⇒ (n < Suc m) = True YES
Suc n < m =⇒ (n < m) = True NO

95

Proof method simp
Goal: 1. [[P1; . . . ; Pm]] =⇒ C

apply(simp add: eq1 . . . eqn)

Simplify P1 . . . Pm and C using

• lemmas with attribute simp

• rules from fun and datatype

• additional lemmas eq1 . . . eqn
• assumptions P1 . . . Pm

Variations:

• (simp . . . del: . . .) removes simp-lemmas

• add and del are optional
96

auto versus simp

• auto acts on all subgoals

• simp acts only on subgoal 1

• auto applies simp and more

• auto can also be modified:
(auto simp add: . . . simp del: . . .)

97

Rewriting with definitions

Definitions (definition) must be used explicitly:

(simp add: f def . . .)

f is the function whose definition is to be unfolded.

98

Case splitting with simp/auto
Automatic:

P (if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))

By hand:

P (case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P(a)) ∧ (∀ n. e = Suc n −→ P(b))

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype t: t.split

99

Simp_Demo.thy

100

