
Linear Temporal Logic Semantics. Binary Decision Diagrams.
Interpolation

Viktor Kuncak, EPFL

https://lara.epfl.ch/w/fv



History Variables
How to check properties of past events of a finite-state system?
Example: traffic lights
▶ (green yellow red)∗
▶ (red yellow green)∗

Each of the three single light states is reachable in both cases.
Two traffic lights can are obviously observed as different: different sets of traces.
Ghost state (auxiliary variable): double the state to remember the previous one:

green(was : none)→ yellow(was : green)→ red(was : yellow)

red(was : none)→ yellow(was : red)→ green(was : yellow)

These two systems have different reachable extended states.
We can remember entire past trace (unbounded), or any finite events in the trace.
Such history variables can depend on original state, but do not influence it (we can
monitor the original system without changing it). We use them to express more
properties (just got overflow vs. you have had an overflow).



Fairness and termination properties

If we have only seen a finite trace we cannot necessarily conclude whether the property
is true or false.
Examples:
▶ Execution terminates
▶ If a customer files a complaint, they will eventually receive an answer.
▶ Arbiter inside of a hardware bus: every request is eventually served (FIFO vs stack)
▶ Scheduler: priority (can delay some forever) vs round robin.

Set of infinite traces of a system M = (S , I , r ,A)
Remember: trace t is an infinite sequence s0,a0,s1,a1,s2, . . . starting from s0 ∈ I with
steps given by r , (si ,ai ,si+1) ∈ r for all i .



Linear Temporal Logic (LTL)
A sequential circuit as a transition system. B - a boolean formula over state and input
vars

F ::= B | ¬F | F1 ∨F2 | nextF | prevF | F1untilF2 | F1 sinceF2

Semantics: F holds a position i , written t , i |= F :
▶ t , i |= B iff ⟦B⟧e = 1 where e is state at step i of t
▶ t , i |=¬F iff not t , i |= F
▶ t , i |= F1 ∨F2 iff t , i |= F1 or t , i |= F2
▶ t , i |= nextF iff t , i +1 |= F
▶ t , i |= prevF iff i > 0 and t , i −1 |= F
▶ t , i |= F1untilF2 iff there exists k ≥ i such that t ,k |= F2 and t , j |= F1 for all j

where i ≤ j < k
▶ t , i |= F1 sinceF2 iff there exists k where 0≤ k ≤ i such that t ,k |= F2 and t , j |= F1

for all j where k < j ≤ i



Using LTL: Derived Operators and Example
eventuallyF : 1untilF

globallyF : ¬eventually¬F

Expand the shorthands above, using the definition of t , i |= F1untilF2:

∃k ≥ i . t ,k |= F2 ∧∀j .i ≤ j < k . t , j |= F1

Example: globally(p→ eventuallyq)
In every trace, for every state of the trace where p holds, either q holds there, or q
holds in a some subsequent state of the same trace.

More graphical notation for LTL is also used, e.g.:

next ⃝
eventually ◊
globally □



Linear Temporal Logic Model Checking

There exists an algorithm to check, given sequential circuit and an LTL formula to
check whether all traces of the sequential circuit satisfy the formula.

Implemented inside model checkers inside hardware verification tools, as well as
standalone model checkers such as nuXmv

https://nuxmv.fbk.eu/



Conditional Expressions

b ?x :y = (b ∧ x)∨ (¬b ∧ y)

We will use them to define BDDs and also to extract interpolants from proofs

Next: Binary Decision Diagrams

In the algorithm to compute reachable states:
states = I
while states' != states do
  states' = states U r[states]

Represent "states" using binary decision diagrams



Computer-Aided Formal Verification
(MT 2009)

Binary Decision Diagrams (BDDs)

Daniel Kroening

Oxford University, Computing Laboratory

Version 1.0, 2009



Motivation

✘ The state space of interesting systems is too big,
explicit enumeration will fail inevitably.

✔ However, the reachable state space isn’t random,
but follows specific rules

✔ We hope to exploit that with data structures that are
concise in relevant cases

D. Kroening: Computer-Aided Formal Verification (MT 2009) 3



Binary Decision Diagrams (BDDs)

Randal E.
Bryant

� Binary Decision Diagrams
(BDDs) are a
symbolic representation of
Boolean functions

� Key idea: specific forms of BDDs
are canonical

� [Bryant86] is one of the
most-cited papers in computer
science

D. Kroening: Computer-Aided Formal Verification (MT 2009) 4



Explicit vs. Symbolic Representations of Functions

x y z f(x, y, z)

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

f(x, y, z) = x ↔ (y ∧ z)

Explicit
Obviously gets large

Symbolic
Potentially smaller

D. Kroening: Computer-Aided Formal Verification (MT 2009) 6



Decision Diagrams

� Distinguishes terminal from non-terminal nodes
� The edges are labeled with decisions
� The sink nodes (squares) are labeled with the outcome

D. Kroening: Computer-Aided Formal Verification (MT 2009) 7



Decision Diagrams for Functions

x

1

0

y

1 0

f = 1 f = 1 f = 0

� This encodes f(x, y) = x ∨ y

� Inner nodes: a variable v

� Out-edges: value for v

� Terminal nodes: function value
D. Kroening: Computer-Aided Formal Verification (MT 2009) 8



BDD

� represents Boolean function f : {0, 1}n → {0, 1}
(n = number of variables)

� as directed acyclic graph (DAG)
� one root, two leaves (0 and 1), two (colored) edges at inner

nodes

� as finite automaton (but no cycles)
� accepts subset of {0, 1}n, 1 as accepting state, 0 as

dead-end state

� as branching program (but loop-free)
� <label>: if <var> goto <label> else goto <label>
� <label>: return [ 0 | 1 ]

D. Kroening: Computer-Aided Formal Verification (MT 2009) 9



Drawing BDDs

x

1

0

y

1 0

f = 1 f = 1 f = 0

→

x

y

01

� A solid edge (“high edge”) means the variable is 1

� A dashed edge (“low edge”) means the variable is 0

D. Kroening: Computer-Aided Formal Verification (MT 2009) 10



Ordered BDDs

x x

y y y

z z z

10

x

y z

z y

10

� Assign arbitrary total ordering to variables,
e.g., x < y < z.

� Variables must appear in that order along all paths.



Ordered BDDs

x x

y y y

z z z

10

x

y z

z y

10

� Assign arbitrary total ordering to variables,
e.g., x < y < z.

� Variables must appear in that order along all paths.

D. Kroening: Computer-Aided Formal Verification (MT 2009) 11



Reduced Ordered BDDs (RO-BDDs)

A reduced ordered BDD (RO-BDD) is obtained from an ordered
BDD by applying three rules:
#1: Merge equivalent leaf nodes
#2: Merge isomorphic nodes
#3: Eliminate redundant tests

D. Kroening: Computer-Aided Formal Verification (MT 2009) 12



Reduction #1: Equivalent Leaf Nodes

This one is trivial:

x

y

11 0

x

y

01

D. Kroening: Computer-Aided Formal Verification (MT 2009) 13



Reduction #2: Isomorphic Nodes

aa

gf g

a

f

Merge nodes with the same variable and the same children

D. Kroening: Computer-Aided Formal Verification (MT 2009) 14



Reduction #3: Redundant Tests

Eliminate nodes where both out-edges go into the same node:

x

y

z

0 1

x

z

0 1

D. Kroening: Computer-Aided Formal Verification (MT 2009) 15



Canonicity of BDDs

� Reduced Ordered BDDs (RO-BDDs) [Bryant86]
� Apply (algebraic) reduction rule until convergence
� Nodes are ordered with respect to fixed variable order

(ordered)

� We restrict our discussion to RO-BDDs
(and just call them BDDs)

Theorem Fix variable order, then (RO)BDD for
Boolean function f is unique

Proof Obtained from unique minimal automata theorem

D. Kroening: Computer-Aided Formal Verification (MT 2009) 16



Observation: given a BDD it takes constant time to check
whether a formula is

� a tautology,
� inconsistent,
� satisfiable

Aren’t these hard?

D. Kroening: Computer-Aided Formal Verification (MT 2009) 17



Variable Ordering and BDD Size

Equality of two 2-bit vectors

(a, c) = (b, d) equivalent to (a ↔ b) ∧ (c ↔ d)

>
>

>

(full) BDD
simplified

visualization
variable

order

d

b

d

b

0

1

a

d

b

c

b

a

1

c

a

b

c

dd

unique BDD for (one) optimal, interleaved variable ordering
(linear in the width of the bit vectors)

D. Kroening: Computer-Aided Formal Verification (MT 2009) 18



Variable Ordering and BDD Size

Equality of two 2-bit vectors

(a, c) = (b, d) equivalent to (a ↔ b) ∧ (c ↔ d)

>
>

>

bb

d

c

a

1

c

bb

d

a

c

b

d

unique BDD for (one) worst case, blocked variable ordering
(exponential in the width of the bit vectors)

D. Kroening: Computer-Aided Formal Verification (MT 2009) 19



Selecting a Good Ordering

✘ Intractable problem

✘ Even when input is an OBDD
(i.e., to find optimum improvement to current ordering)

✔ Application-based heuristics
� Exploit characteristics of application
� E.g., ordering for functions of combinational circuit:

traverse circuit graph depth-first from outputs to inputs

D. Kroening: Computer-Aided Formal Verification (MT 2009) 20



Data Structures for BDDs

� Nodes are numbered 0, 1, 2, 3, . . .
(0, 1 are the terminals)

� Variables are numbered 1, 2, 3, . . . , n

D. Kroening: Computer-Aided Formal Verification (MT 2009) 21



Data Structures for BDDs

Node table:
T : u → (i, l, h)

Operations:
� init(T )
� u := add(T, i, l, h)
� var(u)
� low(u)
� high(u)

Inverse of node table:
H : (i, l, h) → u

Operations:
� init(H)
� u := lookup(H, i, l, h)
� insert(H, i, l, h, u)

D. Kroening: Computer-Aided Formal Verification (MT 2009) 22



Node Table

Initial State:

# var low high

0 n + 1
1 n + 1

(The n + 1 variable number for 0/1 will become clear later).

D. Kroening: Computer-Aided Formal Verification (MT 2009) 23



Node Table: Example

y 4

x 3

10

# var low high

0 3
1 3

2 − − −
3 2 x 0 1
4 1 y 0 3

D. Kroening: Computer-Aided Formal Verification (MT 2009) 24



Inserting a Node into T

MK[T, H](i, l, h)

if l = h then
return l;

else if lookup(H, i, l, h)�= then
return lookup(H, i, l, h);

else
u := add(T, i, l, h);
insert(H, i, l, h, u);
return u;

D. Kroening: Computer-Aided Formal Verification (MT 2009) 25



Building a BDD

Goal: build BDD for f .

Use Shannon’s expansion as follows

f = (¬x ∧ f |x=0) ∨ (x ∧ f |x=1)

to break problem into two subproblems. Solve subproblems
recursively.

D. Kroening: Computer-Aided Formal Verification (MT 2009) 26



Building a BDD

BUILD[T ,H](f )
return BUILD2(f , 1);

function BUILD2(f , var) =
if var > n then

if f is false then return 0 else return 1;
else

f0 := BUILD2(f [0/xi], var + 1);
f1 := BUILD2(f [1/xi], var + 1);
return MK[T ,H](var, f0, f1);

end

D. Kroening: Computer-Aided Formal Verification (MT 2009) 27



Basic Operations on BDDs

� Canonicity implies
� f ≡ g iff. BDDs for f and g are equal
� f tautology iff. BDD for f is 1
� f satisfiable iff. BDD for f is not 0

� Basic operation: RESTRICT
� f |x=0: replace all x nodes by their low-edge sub-tree.
� f |x=1: replace all x nodes by their high-edge sub-tree.

D. Kroening: Computer-Aided Formal Verification (MT 2009) 28



Applying a Function

Conjunction, ...: f(a, b, c, d) � g(a, b, c, d),
where the symbol � denotes some binary operator.

Again, use Shannon’s expansion as follows

f � g = ¬x ∧ (f |x=0 � g|x=0) ∨ x ∧ (f |x=1 � g|x=1)

to break problem into two subproblems. Solve subproblems
recursively.

D. Kroening: Computer-Aided Formal Verification (MT 2009) 29



Applying a Function

function APPLY(u1, u2) =
if u1, u2 ∈ {0, 1} then

u := u1 � u2;
else if var(u1) = var(u2) then

u := MK(var(u1), APPLY(low(u1),low(u2)),
APPLY(high(u1),high(u2)));

else if var(u1) < var(u2) then
u := MK(var(u1), APP(low(u1),u2), APP(high(u1),u2));

else (* var(u1) > var(u2) *)
u := MK(var(u2), APP(u1,low(u2)), APP(u1,high(u2)));

return u;

D. Kroening: Computer-Aided Formal Verification (MT 2009) 30



Example

x1 5

x2 3 4

10

x1 ⇐⇒ x2

x1

x2 4

10

¬x2

D. Kroening: Computer-Aided Formal Verification (MT 2009) 31



Example

x1 5

x2 3 4

10

x1 ⇐⇒ x2

x1

x2 4

10

¬x2

Now compute BDD for (x1 ⇐⇒ x2) ∨ ¬x2 using APPLY!

D. Kroening: Computer-Aided Formal Verification (MT 2009) 31



Example (cont.)

x1 5

x2 3 4

10

APPLY(5, 4):
var(5)=1, var(4)=2

MK(var(5), APP(low(5),4), APP(high(5),4));
MK(1, APP(4,4), APP(3,4)); MK(1, 4, 1);
APP(4, 4):

var(4)=var(4)=2
MK(2, APP(1,1), APP(0,0));
MK(2, 1, 0); =4!

APP(3, 4):
var(3)=var(4)=2
MK(2, APP(0,1), APP(1,0));
MK(2, 1, 1); =1!

D. Kroening: Computer-Aided Formal Verification (MT 2009) 32



Example (cont.)

Final result:

x1 6

x2 4

10

# var low high

0 3
1 3

2 − − −
3 − − −
4 2 x2 1 0
5 − − −
6 1 x1 4 1

D. Kroening: Computer-Aided Formal Verification (MT 2009) 33



Existential Quantification

For BDD f and a variable x compute BDD for

∃ x. f

D. Kroening: Computer-Aided Formal Verification (MT 2009) 34



Existential Quantification

For BDD f and a variable x compute BDD for

∃ x. f

This is equivalent to
f |x=0 ∨ f |x=1

� Two RESTRICT operations
� One call to APPLY

D. Kroening: Computer-Aided Formal Verification (MT 2009) 34



Summary: Binary Decision Diagrams (BDDs)

� Canonical representation of boolean functions
� Every Boolean function has a unique RO-BDD
� Try to obtain small graphs by means of sharing

✔ Efficient manipulation algorithms
(e.g., conjunction, quantification, . . .)

✘ Often explode in size

D. Kroening: Computer-Aided Formal Verification (MT 2009) 35


