
Resolution for First-Order Logic

Viktor Kuncak, EPFL

https://lara.epfl.ch/w/fv

https://lara.epfl.ch/w/fv


First-Order Logic Syntax and Terminology
A first-order signature (akka language) specifies a set of function symbols (constants
are functions symbols that take zero arguments), and predicate symbols.
Syntax of formulas (F ) and terms (t) in first-order logic with equality:

F ::= p(t1, . . . ,tn) | t1 = t2 | ⊤ | ⊥ | ¬F | F1 ∧F2 | F1 ∨F2 | F1→ F2 | F1↔ F2
t ::= x | c | f (t1, . . . ,tn)

where x ∈Var denotes variables, c denotes constants, f are function symbols and p are
predicate symbols.
ar denotes arity of functions and predicate symbols; e.g. ar(f )= 2 means f takes two
arguments, so it is allowed to form a term f (t1,t2), and also ar(p)= 2 for predicate
symbol p means that it is allowed to form formula p(t1,t2).

We call p(t1, . . . ,tn) an atomic formula (contains no logical connectives or quantifiers).
A literal is an atomic formula or its negation.
A clause is a disjunction of literals, e.g. ¬p(x , f (y))∨q(y)∨¬r(x ,z)



Semantics
A first-order interpretation is I =(D,e) where D ̸= ; and e maps constants, function
and predicate symbols as follows:
▶ each constant c into element of D, i.e. e(c) ∈D
▶ each function symbol f with ar(f )= n into a total function of n arguments,

e(f ) :Dn→D, i.e. a subset of Dn+1 such that for all d1, . . . ,dn ∈D there exists
exactly one d ∈D with (d1, . . . ,dn,d) ∈ e(f ).
▶ each predicate symbol p with ar(p)= n into an n-ary relation e(p)⊆Dn

We have defined I |= F to mean that formulas F is true in interpretation I and I ̸|= F
to mean that it is not the case that I |= F . We may also use notation ⟦F ⟧I = 1 to
mean I |= F and ⟦F ⟧I = 0 to mean I ̸|= F , so that, e.g.,

⟦F1 ∧F2⟧I = ⟦F1⟧I ∧ ⟦F2⟧I
as for propositional logic. For quantifiers we have, e.g.,

⟦∀x .F ⟧(D,e)=∀d ∈D. ⟦F ⟧(D,e[x :=d])



What Makes Logic First-Order

⟦∀x .F ⟧(D,e)=∀d ∈D. ⟦F ⟧(D,e[x :=d])

We can quantify over variables ∀x .F , ∃x .F , which are interpreted over D, and we can
nest quantifiers, e.g. ∀x .∃y . (p(x ,y)∧q(y ,x)).

We cannot write a FOL formula that quantifies over function and relation symbols.

The meaning of function and relation symbols is fixed in e of interpretation I =(D,e).

To make general statements, we use concepts of satisfiability and validity :
▶ F is valid if, for all interpretations (D,e) (for arbitrarily large sets D and all

possible choices of e), ⟦F ⟧(D,e)= 1
▶ F is satisfiable if there exists an interpretation (D,e) such that ⟦F ⟧(D,e)= 1



Satisfiability and Validity Illustration

Take first-order logic (FOL) formula

∀x .∃y . (p(x ,y)∧q(y ,x))

Its satisfiability is a statement:

∃D ̸= ;. ∃p,q⊆D2. ∀x ∈D.∃y ∈D. (x ,y) ∈ p ∧ (y ,x) ∈ q

Its validity is a statement:

∀D ̸= ;. ∀p,q⊆D2. ∀x ∈D.∃y ∈D. (x ,y) ∈ p ∧ (y ,x) ∈ q

So, the domain, functions, and relations are either all existentially quantified (if we ask
about satisfiability) or all universally quantified (if we ask about validity).

Observation: F is valid if and only if ¬F is not satisfiable.



Example

Consider this formula

(∀x .∃y . R(x ,y)) ∧
(∀x .∀y . R(x ,y)→∀z . R(x , f (y ,z))) ∧
(∀x . P(x)∨P(f (x ,a)))
→∀x .∃y . R(x ,y)∧P(y)

We are interested in checking its validity of this formula.
We will check the satisfiability of its negation:

(∀x .∃y . R(x ,y)) ∧
(∀x .∀y . R(x ,y)→∀z . R(x , f (y ,z))) ∧
(∀x . P(x)∨P(f (x ,a)))∧
¬∀x .∃y . R(x ,y)∧P(y)



Negation Normal Form for FOL
Observation: If F↔G is a valid FOL formula, then inside any other FOL formula H
we can replace a sub-formula F with G without changing the truth value of the
formula: H[F ]⇝H[G].

We can transform formulas to negation normal using these transformations:
F1↔ F2 ⇝ (F1→ F2)∧ (F2→ F1)
F1→ F2 ⇝ ¬F1 ∨F2¬¬F ⇝ F
¬(F1 ∧F2) ⇝ ¬F1 ∨¬F2¬(F1 ∨F2) ⇝ ¬F1 ∧¬F2¬∀x .F ⇝ ∃x .¬F
¬∃x .F ⇝ ∀x .¬F
¬⊥ ⇝ ⊤
¬⊤ ⇝ ⊥

In negation normal form, negation applies only to atomic formulas and the only other
propositional connectives are ∧, ∨.



Compute Negation Normal Form

(∀x .∃y . R(x ,y)) ∧
(∀x .∀y . R(x ,y)→∀z . R(x , f (y ,z))) ∧
(∀x . P(x)∨P(f (x ,a)))∧
¬∀x .∃y . R(x ,y)∧P(y)



Introducing a Skolem Function
Observe that e.g. the following formula is valid:

(∀x .p(x , f (x)))→ (∀x .∃y .p(x ,y))

Indeed, fix any interpretation (D,e) and assume ∀x .p(x , f (x)). To prove
∀x .∃y .p(x ,y), assume x to be arbitrary and let y be equal to f (x).

A sort of converse is also true. Take any interpretation (D,e) in which ∀x .∃y .p(x ,y) is
true. Then, for every xd ∈D there exists yd ∈D such that (xd ,yd) ∈ e(p). Construct
(by axiom of choice) a set f̄ that contains, for every element xd ∈D exactly one pair
(xd ,yd) where yd ∈D, picking yd such that (xd ,yd) ∈ e(p). Thus f̄ is a total function,
f̄ :D→D. Extend the signature with a new function symbol f (Skolem function,
from (W) Thoralf Skolem) that does not appear in the formula. Define a new
interpretation I ′=(D,e′) (on the same domain) where e′= e ∪{(f , f̄ )}, that is, e′
behaves like e but maps a new symbol f to the function f̄ .
Then ⟦∀x .p(x , f (x))⟧I ′ = 1. Thus, two formulas have same satisfiability.

https://en.wikipedia.org/wiki/Thoralf Skolem


Prenex Normal Form

Once in negation-normal form, we can pull quantifiers to the top level of the formula.



Skolemization
In a formula that is in prenex and negation normal form, replace a subformula

∀x1, . . . ,xn.∃y . F (x1, . . . ,xn,y)

with
∀x1, . . . ,xn. F (x1, . . . ,xn,g(x1, . . . ,xn))

where g is a new function symbol (Skolem function) of arity n.

Optimization: we do not need formula to be in prenex form. If it is in negation-normal
form, just introduce Skolem function whose arguments are the variables that are free in
F and are universally quantified.

FV (c) = ;, FV (x)= {x}
FV (f (t1, . . . ,tn)) = FV (t1)∪ . . .∪FV (tn)= FV (p(t1, . . . ,tn))

FV (F1 ∧F2) = FV (F1)∪FV (F2)
FV (¬F ) = FV (F )

FV (∀x .F ) = FV (F ) \ {x}= FV (∃x .F )



Compute Skolem Normal Form



Conjunctive Normal Form for FOL

Given formula with only ∀ quantifiers in prenex form, we can transform quantifier free
formula into conjunctive normal form, as for propositional logic:

∀x1, . . . ,xn.(C1 ∧ . . .∧Cm)

The quantifiers can be moved to each Ci and those that do not occur in Ci can be
dropped:

(∀x1, . . . ,xn.C1)∧ . . .∧ (∀x1, . . . ,xn.Cn)


