
Satisfiability Checking for Propositional Logic

Viktor Kuncak, EPFL

https://lara.epfl.ch/w/fv

Propositional (Boolean) Logic

Propositional logic is a language for representing Boolean functions f : {0,1}n→{0,1}.
▶ sometimes we write ⊥ for 0 and ⊤ for 1

Grammar of formulas:

P ::= x | 0 | 1 |P ∧P | ¬P |P ∨P |P ⊕P |P→P |P↔P

where x denotes variables (identifiers). Corresponding Scala trees:
sealed abstract class Expr
case class Var(id: Identifier) extends Expr
case class BooleanLiteral(b: Boolean) extends Expr
case class And(e1: Expr, e2: Expr) extends Expr
case class Or(e1: Expr, e2: Expr) extends Expr
case class Not(e: Expr) extends Expr
...

Environment and Truth of a Formula
An environment e is a partial map from propositional variables to {0,1}
For vector of n boolean variables p̄ =(p1, . . . ,pn) and v̄ =(v1, . . . ,vn) ∈ {0,1}n, we
denote [p̄ 7→ v̄] the environment e given by e(pi)= vi for 1≤ i ≤ n.
We write e |= F , and define ⟦F ⟧e = 1, to denote that F is true in environment e,
otherwise define ⟦F ⟧e = 0
Let e = {(a,1),(b,1),(c ,0)} and F be a∧ (¬b ∨ c). Then:

⟦a∧ (¬b ∨ c)⟧e = e(a)∧ (¬e(b)∨ e(c)) = 1∧ (¬1∨0) = 0

The general definition is recursive:

⟦x⟧e = e(x)
⟦0⟧e = 0
⟦1⟧e = 1
⟦F1 ∧F2⟧e = ⟦F1⟧e ∧ ⟦F2⟧e
⟦¬F1⟧e = ¬⟦F1⟧e

Note: ∧ and ¬ on left and right are different things

Truth of a Formula in Scala

The interpret method in Expr.scala of Labs 02:

def interpret(env: Map[Identifier, Boolean]): Boolean = this match {
case Var(id) => env(id)
case BooleanLiteral(b) => b
case Equal(e1, e2) => e1.interpret(env) == e2.interpret(env)
case Implies(e1, e2) => !e1.interpret(env) || e2.interpret(env)
case And(e1, e2) => e1.interpret(env) && e2.interpret(env)
case Or(e1, e2) => e1.interpret(env) || e2.interpret(env)
case Xor(e1, e2) => e1.interpret(env) ^ e2.interpret(env)
case Not(e) => !e.interpret(env)

}

Satisfiability Problem
Formula F is satisfiable, iff there exists e such that ⟦F ⟧e = 1.
Otherwise we call F unsatisfiable: when there does not exist e such that ⟦F ⟧e = 1,
that is, for all e, ⟦F ⟧e = 0.
Example: let F be a∧ (¬b∨ c). Then F is satisfiable, with e.g. e = {(a,1),(b,0),(c ,0)}
Its negation of ¬F , is also satisfiable, with e.g. e = {(a,0),(b,0),(c ,0)}

SAT is a problem: given a propositional formula, determine whether it is satisfiable.

The problem is decidable because given F we can compute its variables FV (F) and it
suffices to look at the 2n environments for n= FV (F). The problem is NP-complete,
but useful heristics exist.

A SAT solver is a program that, given boolean formula F , either:
▶ returns sat, and, optionally, returns one environment e such that ⟦F ⟧e = 1, or
▶ returns unsat and, optionally, returns a proof that no satisfying assignment exists

Formal Proof System
We will consider a some set of logical formulas F (e.g. propositional logic)
Definition
An proof system is (F , Infer) where Infer⊆F ∗×F a decidable set of inference steps.

▶ a set is decidable iff there is a program to check if an element belongs to it
▶ given a set S, notation S∗ denotes all finite sequences with elements from S

We schematically write an inference step ((P1, . . . ,Pn),C) ∈ Infer by

P1 . . .Pn
C

and we say that from P1, . . . ,Pn (premises) we derive C (conclusion).
An inference step is called an axiom instance when n= 0 (it has no premises).
Given a proof system (F , Infer), a proof is a finite sequence of inference steps such
that, for every inference step, each premise is a conclusion of a previous step.

Proof in a Proof System
Definition
Given (F , Infer) where Infer⊆F ∗×F a proof in (F , Infer) is a finite sequence of
inference steps S0, . . . ,Sm ∈ Infer such that, for each Si where 0≤ i ≤m, for each
premise Pj of Si there exists 0≤ k < i such that Pj is the conclusion of Sk .

S0 : ((), C0)
· · ·

Sk : ((.), Pj)
· · ·

Si : ((. . . ,Pj, . . .), Ci)

Given the definition of the proof, we can replace each premise Pj with the index k
where Pj was the conclusion of Sk (Pj ≡Conc(Sk))
A proof is then a sequence of elements from {0,1, . . .}∗×F where each Si in the
sequence is of the form (k1, . . . ,kn,C) for 0≤ k1, . . . ,kn < i and where
(Conc(Sk1), . . . ,Conc(Skn),C) ∈ Infer.

Proofs as Dags
We can view proofs as directed acyclic graphs.

Given a proof as a sequence of steps, for each (k1, . . . ,kn,C) in the sequence we
introduce a node labelled by C , and directed labelled edges (Conc(Skj), j ,C) for all
premises k1, . . . ,kn.

To check such proof, for each node, follow all of its incoming edges backwards in the
order of their indices to find the premises, then check that the inference step is in Infer.

A Minimal Propositional Logic Proof System

Formulas F defined by F ::= x | 0 | F → F

Shorthand:
¬F ≡ F → 0

Inference rules: Infer=P2 ∪P3 ∪MP where: (W: Hilbert system)

P2 = {((), F → (G→ F)) | F ,G ∈F}
P3 = {((), ((F → (G→H))→ ((F →G)→ (F →H))) | F ,G ,H ∈F}

MP = {((F →G ,F), G) | F ,G ∈F}
Elements of P1,P2,P3 are all axioms. These are infinite sets, but are given a schematic
way and there is an algorithm to check if a given formula satisfies each of the schemas.

Exercise: draw a DAG representing proof of a→ a where a is a propositional variable.

An Example Proof

Hint: use P3 for F ≡ a, G ≡ a→ a, H ≡ a

Apply MP to the above instance of P3 and an instance of P2, then to another instance
of P2.

An Example Proof

Hint: use P3 for F ≡ a, G ≡ a→ a, H ≡ a
Apply MP to the above instance of P3 and an instance of P2, then to another instance
of P2.

Derivation is a Proof from Assumptions

Definition
Given (F , Infer), Infer⊆F ∗×F and a set of assumptions A⊆F , a derivation from
A in (F , Infer) is a proof in (F , Infer′) where:

Infer′= Infer∪{((),F) | F ∈A}

Thus, assumptions from A are treated just as axioms.
Definition
We say that F ∈F is provable from assumptions A, denoted A ⊢Infer F iff there exists a
derivation from A in Infer that contains an inference step whose conclusion is F .
We write ⊢Infer F to denote that there exists a proof in Infer containing F as a
conslusion (same as ; ⊢Infer F).

Consequence and Soundness in Propositional Logic

Given a set A⊆F where F are in propositional logic, and C ∈F , we say that C is a
semantic consequence of A, denoted A |=C iff for every environment e that defines
all variables in FV (C)∪∪P∈A FV (P), if ⟦P⟧e = 1 for all P ∈A, then then ⟦C⟧e = 1.
Definition
Given (F , Infer) where F are propositional, step ((P1 . . .Pn),C) ∈ Infer is sound iff
{P1, . . . ,Pn} |=C . Proof system Infer is sound if every inference step is sound.
For axioms, this definition reduces to saying that C is true for all interpretations, i.e.,
that C is a valid formula (tautology).
Theorem
Let (F , Infer) where F are propositional logic formulas. If every inference rule in Infer
is sound, then A ⊢Infer F implies A |= F .
Proof is immediate by induction on the length of the formal proof.
Consequence: ⊢Infer F implies F is a tautology.

A Proof System with Decision and Simplification
Propositional formulas F and G are semantically equivalent if F |=G and G |= F .

Case analysis proof rule ((F ,G),F [x := 0]∨G[x := 1]) | F ,G ∈F ,x − variable}:
F G

F [x := 0]∨G[x := 1]

Proof of soundness: consider an environment e (that defines x as well as
FV (F)∪FV (G)), and assume ⟦F ⟧e = 1 and ⟦G⟧e = 1.
▶ If e(x)= 0, then ⟦F [x := 0]⟧e = ⟦F ⟧e = 1.
▶ If e(x)= 1, then ⟦G[x := 1]⟧e = ⟦G⟧e = 1.

Simplification rules that preserve equivalence can be applied: 0∧F ⇝ 0, 1∧F ⇝ F ,
0∨F ⇝ F , 1∨F ⇝ 1, ¬0⇝ 1, ¬1⇝ 0.
Introduce inferences {((F),F ′) | F ′ is simplified F }. These rules are also sound. Call
this InferD.

Example Derivation
Derivation from A= {a∧b, ¬b ∨¬a}. Draw the arrows to get a proof DAG

a∧b ¬b ∨¬a

(0∧b)∨ (1∧b)

b

(a∧0)∨ (a∧1)

a
0∨ (¬1∨¬a)

¬a
0∨ (¬1)

0

This derivation shows that: A ⊢ 0

Example Derivation
Derivation from A= {a∧b, ¬b ∨¬a}. Draw the arrows to get a proof DAG

a∧b ¬b ∨¬a

(0∧b)∨ (1∧b)

b

(a∧0)∨ (a∧1)

a
0∨ (¬1∨¬a)

¬a
0∨ (¬1)

0
This derivation shows that: A ⊢ 0

Proving Unsatisfiability

A set A of formulas is satisfiable if there exists e such that, for every F ∈A, ⟦F ⟧e = 1.
▶ when A= {F1, . . . ,Fn} the notion is the same as the satisfiability of F1 ∧ . . .∧Fn

Otherwise, we call the set A unsatisfiable.
Theorem (Soundness Consequence)
If A ⊢InferD 0 then A is unsatisfiable.
If there exists e is such that e(F)= 1 for all F ∈A then by soundness of InferD,
e(0)= 1, a contradiction. So there is no such e.
Theorem (Refutation Completeness)
If a finite set A is unsatisfiable, then A ⊢InferD 0
Proof hint: take conjunction of formulas in A and existentially quantify it to get A′.
What is the relationship of the truth of A′ and the satisfiability of A? For a
conjunction of formulas F , can you express ∃x .F using InferD?

Illustration of Completeness

Let A= {F1,F2} and let FV (F1)∪FV (F2)= {x1, . . . ,xn} and let x be some xi
We have the following equivalences:

∃x .(F1 ∧F2)
(F1 ∧F2)[x := 0]∨ (F1 ∧F2)[x := 1] try both values

(F1[x := 0]∧F2[x := 0])∨ (F1[x := 1]∧F2[x := 1]) meaning of substitution
(F1[x := 0]∨F1[x := 1])∧ (F1[x := 0]∨F2[x := 1])∧
(F2[x := 0]∨F1[x := 1])∧ (F2[x := 0]∨F2[x := 1])

Existentially quantifying over a variable gives us result of applying decision rule to all
pairs of formulas F1,F2.
Systematically applying rules will derive formula Z equivalent to ∃x1. . . .∃xn.(F1 ∧F2).
When A is unsatisfiable, Z is equivalent to 0, and has no free variables. By
simplification rules, we can derive 0.

Conjunctive Form, Literals, and Clauses
A propositional literal is either a variable (e.g., x) or its negation (¬x).
A clause is a disjunction of literals.
For convenience, we can represent clause as a finite set of literals
(because of associativity, commutativity, and idempotence of ∨).

Example: a∨¬b ∨ c represented as {a,¬b,c}

If C is a clause then ⟦C⟧e = 1 iff there exists a literal l ∈C such that ⟦l⟧e = 1. We
represent 0 using the empty clause ;.
As for any formulas, a finite set of clauses A can be interpreted as a conjunction.
Thus, a set of clauses can be viewed as a formula in conjunctive normal form:

A= {{a}, {b}, {¬a,¬b}}

represents the formula
a∧b ∧ (¬a∨¬b)

Resolution on Clauses as a Proof System
a∨b ∨ c d ∨¬c

(a∨b ∨0)∨ (d ∨¬1))
a∨b ∨d

{a,b,c} {d ,¬c}

{a,b,d}
Clausal resolution rule (decision rule for clauses):

C1 ∪{x} C2 ∪{¬x}
C1 ∪C2

resolve two clauses with respect to x

Theorem (Soundness)
Clausal resolution is sound for all clauses C1,C2 and propositional variable x,
{C1 ∪{x},C2 ∪{¬x}} |=C1 ∪C2.

Theorem (Refutational Completeness)
A finite set of clauses A is satisfiable if and only if there exists a derivation of the
empty clause from A using clausal resolution.

Resolution as Transitivity of Implication

For three formulas F1,F2,F3 if F1→ F2 and F2→ F3 are true, so is F1→ F3.
Thus, → denotes a transitive relation on {0,1}.

We can view resolution as a consequence of transitivity.
We use the fact that P→Q is equivalent to ¬P ∨Q:

C1 ∨ x C2 ∨¬x
C1 ∨C2

(¬C1)→ x x →C2
(¬C1)→C2

Exercise

Use resolution to prove that the following formula is valid:

¬(a∧b ∧ (¬a∨¬b))

Prove that its negation is unsatisfiable set of clauses:
{a} {b} {¬a,¬b}

{¬b}
;

Exercise

Use resolution to prove that the following formula is valid:

¬(a∧b ∧ (¬a∨¬b))

Prove that its negation is unsatisfiable set of clauses:
{a} {b} {¬a,¬b}

{¬b}
;

Exercise

Use resolution to prove that the following formula is valid:

¬(a∧b ∧ (¬a∨¬b))

Prove that its negation is unsatisfiable set of clauses:
{a} {b} {¬a,¬b}

{¬b}

;

Exercise

Use resolution to prove that the following formula is valid:

¬(a∧b ∧ (¬a∨¬b))

Prove that its negation is unsatisfiable set of clauses:
{a} {b} {¬a,¬b}

{¬b}
;

Unit Resolution

A unit clause is a clause that has precisely one literal; it’s of the form {L}
Given a literal L, its complement L̄ is defined by x =¬x , ¬x = x .

Unit resolution is a special case of resolution where at least one of the clauses is a unit
clause:

C {L}
C \ {L}

Soundness: if L is true, then L is false, so it can be deleted from a disjunction C .

Subsumption: when applying resolution, if we obtain a clause C ′ ⊆C that is subset of
a previosly derived one, we can delete C so we do not consider it any more. Any use of
C can be replaced by use of C ′ with progress towards ; at least as good.

Unit resolution with {L} can remove all occurences of L and L from our set.

Constructing a Conjunctive Normal Form

How would we transform this formula into a set of clauses:

¬(((c ∧a)∨ (¬c ∧b))↔ ((c→ b)∧ (¬c→ b)))

Which equivalences are guaranteed to produce a conjunctive normal form?

¬(F1 ∧F2) ↔ (¬F1)∨ (¬F2)
F1 ∧ (F2 ∨F3) ↔ (F1 ∧F2)∨ (F1 ∨F3)
F1 ∨ (F2 ∧F3) ↔ (F1 ∨F2)∧ (F1 ∨F3)

What is the complexity of such transformation in the general case?
Are there efficient algorithms for checking satisfiability of formulas in disjunctive
normal form (disjunctions of conjunctions of literals)?
When checking satisfiability, is conversion into conjunctive normal form any better
than disjunctive normal form?

Constructing a Conjunctive Normal Form

How would we transform this formula into a set of clauses:

¬(((c ∧a)∨ (¬c ∧b))↔ ((c→ b)∧ (¬c→ b)))

Which equivalences are guaranteed to produce a conjunctive normal form?

¬(F1 ∧F2) ↔ (¬F1)∨ (¬F2)
F1 ∧ (F2 ∨F3) ↔ (F1 ∧F2)∨ (F1 ∨F3)
F1 ∨ (F2 ∧F3) ↔ (F1 ∨F2)∧ (F1 ∨F3)

What is the complexity of such transformation in the general case?

Are there efficient algorithms for checking satisfiability of formulas in disjunctive
normal form (disjunctions of conjunctions of literals)?
When checking satisfiability, is conversion into conjunctive normal form any better
than disjunctive normal form?

Constructing a Conjunctive Normal Form

How would we transform this formula into a set of clauses:

¬(((c ∧a)∨ (¬c ∧b))↔ ((c→ b)∧ (¬c→ b)))

Which equivalences are guaranteed to produce a conjunctive normal form?

¬(F1 ∧F2) ↔ (¬F1)∨ (¬F2)
F1 ∧ (F2 ∨F3) ↔ (F1 ∧F2)∨ (F1 ∨F3)
F1 ∨ (F2 ∧F3) ↔ (F1 ∨F2)∧ (F1 ∨F3)

What is the complexity of such transformation in the general case?
Are there efficient algorithms for checking satisfiability of formulas in disjunctive
normal form (disjunctions of conjunctions of literals)?
When checking satisfiability, is conversion into conjunctive normal form any better
than disjunctive normal form?

Discussion of Normal Form Transformation
Transformation is exponential in general, applying from left to right equivalence

F1 ∨ (F2 ∧F3)↔ (F1 ∨F2)∧ (F1 ∨F3)

duplicates sub-formulas F1, which may result in an exponentially larger formula.

If we were willing to do transformation using those rules, we might just as well
transform formula into disjunctive normal form, because checking satisfiability of
formula in disjunctive normal form is trivial, such formulas is a disjunction of
conjunctions Di and we have these equivalences:

∃e.⟦D1 ∨ . . .∨Dn⟧e = 1
∃e.(⟦D1⟧e = 1∨ . . .∨ ⟦Dn⟧e = 1)

(∃e.⟦D1⟧e = 1)∨ . . .∨ (∃e.⟦Dn⟧e = 1)

and the last condition is trivial to check, because we check satisfiability of conjunction
Di separately.

Equivalence and Equisatisfiability
Formulas F1 and F2 are equivalent iff: F1 |= F2 and F2 |= F1 (∀e.⟦F1⟧e = ⟦F2⟧e)

Formulas F1 and F2 are equisatisfiable iff: F1 is satisfiable whenever F2 is satisfiable.

Equivalent formulas are always equisatisfiable, but the converse is not the case in
general. For example, formulas a and b are equisatisfiable, because they are both
satisfiable.

Consider these two formulas:
▶ F1: (a∧b)∨ c
▶ F2: (x↔ (a∧b)) ∧ (x ∨ c)

They are equisatisfiable but not equivalent. For example, given
e = {(a,1),(b,1),(c ,0),(x ,0)}, ⟦F1⟧e = 1 whereas ⟦F2⟧e = 0. Interestingly, every choice
of a,b,c that makes F1 true can be extended to make F2 true appropriately, if we
choose x as ⟦a∧b⟧e .

Flatenning as Satisfiability Preserving Transformation
Observation: Let F be a formula, G another formula, and x /∈ FV (F) a propositional
variable. Let F [G := x] denote the result of replacing an occurence of formula G inside
F with x . Then F is equisatisfiable with

(x =G)∧F [G := x]

(Here, = denotes↔.)
Proof of equisatisfiability: a satisfying assignment for new formula is also a satisfying
assignment for the old one. Conversely, since x does not occur in F , if ⟦F ⟧e = 1, we
can change e(x) to be defined as ⟦G⟧e , which will make the new formula true.

(A transformation that produces an equivalent formula: equivalence preserving.)
A transformation that produces an equisatisfiable formula: satisfiability preserving.
Flattening is this satisfiability preserving transformation in any formalism that supports
equality (here: equivalence): pick a subformula and given it a name by a fresh variable,
applying the above observation.
Strategy: apply transformation from smallest non-variable subformulas.

Tseytin’s Transformation (see also Calculus of Computation, Section 1.7.3)
Consider formula with ¬,∧,∨,→,=,⊕
▶ Replace F1→ F2 with ¬F1 ∨F2 and push negation into the propositional variables

using De Morgan’s laws and switching between ⊕ and =.
▶ Repeat: flatten an occurrence of a binary connective whose arguments are literals
▶ In the resulting conjunction, express each equivalence as a conjunction of clauses:

conjunct corresponding clauses

x = (a∧b) {x ,a},{x ,b},{a,b,x}
x = (a∨b) {x ,a,b},{a,x},{b,x}
x = (a= b)

x = (a⊕b)
Exercise: Complete the missing entries. Are the rules in the last step equivalence
preserving or only equisatisfiability preserving? Why is the resulting algorithm
polynomial?

Example: Find an Equisatisfiable Set of Formulas in CNF

{ c ∧a ∨ (¬c ∧b)}

{x1 ∨ ¬c ∧b , x1↔ (c ∧a)}
{x1 ∨ x2, x2↔ (¬c ∧b),

x1↔ (c ∧a)}
{x1 ∨ x2, x2→ (¬c ∧b), (¬c ∧b)→ x2,

x1→ (c ∧a), (c ∧a)→ x1}
{x1 ∨ x2, ¬x2 ∨¬c , ¬x2 ∨b, c ∨¬b ∨ x2,

¬x1 ∨ c , ¬x1 ∨a, ¬c ∨¬a∨ x1}
When representing clauses as sets:

{{x1,x2}, {¬x2,¬c}, {¬x2,b}, {c ,¬b,x2},
{¬x1,c}, {¬x1,a}, {¬c ,¬a,x1}}

Example: Find an Equisatisfiable Set of Formulas in CNF

{ c ∧a ∨ (¬c ∧b)}

{x1 ∨ ¬c ∧b , x1↔ (c ∧a)}

{x1 ∨ x2, x2↔ (¬c ∧b),
x1↔ (c ∧a)}

{x1 ∨ x2, x2→ (¬c ∧b), (¬c ∧b)→ x2,
x1→ (c ∧a), (c ∧a)→ x1}

{x1 ∨ x2, ¬x2 ∨¬c , ¬x2 ∨b, c ∨¬b ∨ x2,
¬x1 ∨ c , ¬x1 ∨a, ¬c ∨¬a∨ x1}

When representing clauses as sets:
{{x1,x2}, {¬x2,¬c}, {¬x2,b}, {c ,¬b,x2},

{¬x1,c}, {¬x1,a}, {¬c ,¬a,x1}}

Example: Find an Equisatisfiable Set of Formulas in CNF

{ c ∧a ∨ (¬c ∧b)}

{x1 ∨ ¬c ∧b , x1↔ (c ∧a)}
{x1 ∨ x2, x2↔ (¬c ∧b),

x1↔ (c ∧a)}

{x1 ∨ x2, x2→ (¬c ∧b), (¬c ∧b)→ x2,
x1→ (c ∧a), (c ∧a)→ x1}

{x1 ∨ x2, ¬x2 ∨¬c , ¬x2 ∨b, c ∨¬b ∨ x2,
¬x1 ∨ c , ¬x1 ∨a, ¬c ∨¬a∨ x1}

When representing clauses as sets:
{{x1,x2}, {¬x2,¬c}, {¬x2,b}, {c ,¬b,x2},

{¬x1,c}, {¬x1,a}, {¬c ,¬a,x1}}

Example: Find an Equisatisfiable Set of Formulas in CNF

{ c ∧a ∨ (¬c ∧b)}

{x1 ∨ ¬c ∧b , x1↔ (c ∧a)}
{x1 ∨ x2, x2↔ (¬c ∧b),

x1↔ (c ∧a)}
{x1 ∨ x2, x2→ (¬c ∧b), (¬c ∧b)→ x2,

x1→ (c ∧a), (c ∧a)→ x1}
{x1 ∨ x2, ¬x2 ∨¬c , ¬x2 ∨b, c ∨¬b ∨ x2,

¬x1 ∨ c , ¬x1 ∨a, ¬c ∨¬a∨ x1}
When representing clauses as sets:

{{x1,x2}, {¬x2,¬c}, {¬x2,b}, {c ,¬b,x2},
{¬x1,c}, {¬x1,a}, {¬c ,¬a,x1}}

SAT Solvers

A SAT solver takes as input a set of clauses.

To check satisfiability, convert to equisatisfiable set of clauses in polynomial time using
Tseytin’s transformation.

To check validity of a formula, take negation, check satisfiability, then negate the
answer.

How should we check satisfiability of a set of clauses?
▶ resolution on clauses, favoring unit resolution and applying subsumption

(complete)
Davis and Putnam, 1960
▶ truth table method: check one value of a variable, then other (space efficient)

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm Sketch

def DPLL(S: Set[Clause]) : Bool =
val S' = subsumption(UnitProp(S))
if ; ∈ S' then false // unsat
else if S' has only unit clauses then true // unit clauses give e
else

val L = a literal from a clause of S' where {L} /∈ S'
DPLL(S' ∪ {{L}}) || DPLL(S' ∪ {{complement(L)}})

def UnitProp(S: Set[Clause]): Set[Clause] = // Unit Propagation (BCP)
if C ∈ S, unit U ∈ S, resolve(U,C) /∈ S
then UnitProp((S - {C}) ∪ {resolve(U,C)}) else S

def subsumption(S: Set[Clause]): Set[Clause] =
if C1,C2 ∈ S such that C1 ⊆ C2
then subsumption(S - {C2}) else S

SAT Solvers: A Condensed History

� Deductive

� Davis-Putnam 1960 [DP]

� Iterative existential quantification by �resolution�

� Backtrack Search

� Davis, Logemann and Loveland 1962 [DLL]

� Exhaustive search for satisfying assignment

� Conflict Driven Clause Learning [CDCL]

� GRASP: Integrate a constraint learning procedure, 1996

� Locality Based Search

� Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

� Added focus on efficient implementation

� �Pre-processing�

� Peephole optimization, e.g. miniSAT, 2005

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4

x1 + x3� + x8�

x1 + x8 + x12

x2 + x11

x7� + x3� + x9

x7� + x8 + x9�

x7 + x8 + x10�

x7 + x10 + x12�

J. P. Marques-Silva and Karem A. Sakallah, �GRASP: A Search Algorithm for
Propositional Satisfiability�, IEEE Trans. Computers, C-48, 5:506-521, 1999.

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4

x1 + x3� + x8�

x1 + x8 + x12

x2 + x11

x7� + x3� + x9

x7� + x8 + x9�

x7 + x8 + x10�

x7 + x10 + x12�

x1 x1=0

x1=0

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4

x1 + x3� + x8�

x1 + x8 + x12

x2 + x11

x7� + x3� + x9

x7� + x8 + x9�

x7 + x8 + x10�

x7 + x10 + x12�

x1 x1=0, x4=1

x4=1

x1=0

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1 x1=0, x4=1

x3 x3=1

x4=1

x3=1x1=0

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1 x1=0, x4=1

x3 x3=1, x8=0

x4=1

x3=1

x8=0

x1=0

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1 x1=0, x4=1

x3 x3=1, x8=0, x12=1

x4=1

x12=1

x3=1

x8=0

x1=0

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0

x11=1

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7 x7=1x4=1

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7 x7=1, x9= 0, 1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x7

x3=1∧x7=1∧x8=0 → conflict

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x7

Add conflict clause: x3�+x7�+x8

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1 x3=1∧x7=1∧x8=0 → conflict

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

x3�+x7�+x8

Add conflict clause: x3�+x7�+x8

x3=1∧x7=1∧x8=0 → conflict

Backtrack to the decision level of x3=1

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

x3�+x7�+x8

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3� + x8�
x1 + x8 + x12
x2 + x11
x7� + x3� + x9
x7� + x8 + x9�
x7 + x8 + x10�
x7 + x10 + x12�
x3� + x7� + x8

x1

x3

x1=0, x4=1

x3=1, x8=0, x12=1,x7=0

Backtrack to the decision level of x3=1
Assign x7 = 0

x4=1

x12=1

x3=1

x8=0

x1=0

←new clause

x7=0

What’s the big deal?

Conflict clause: x1�+x3+x5�

Significantly prune the search space �
learned clause is useful forever!

Useful in generating future conflict
clauses.

x1

x2

x3x3

x4 x4

x5x5x5 x5

Restart

� Abandon the
current search tree
and reconstruct a
new one

� The clauses learned
prior to the restart
are still there after
the restart and can
help pruning the
search space

� Adds to robustness
in the solver

x2

x1

x4

x3

x4

x3

x5x5x5x5

Conflict clause: x1�+x3+x5�

x2

x1

x3

x5

SAT Solvers: A Condensed History

� Deductive

� Davis-Putnam 1960 [DP]

� Iterative existential quantification by �resolution�

� Backtrack Search

� Davis, Logemann and Loveland 1962 [DLL]

� Exhaustive search for satisfying assignment

� Conflict Driven Clause Learning [CDCL]

� GRASP: Integrate a constraint learning procedure, 1996

� Locality Based Search

� Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

� Added focus on efficient implementation

� �Pre-processing�

� Peephole optimization, e.g. miniSAT, 2005

Success with Chaff

� First major instance: Tough (Industrial Processor Verification)
� Bounded Model Checking, 14 cycle behavior

� Statistics
� 1 million variables

� 10 million literals initially
� 200 million literals including added clauses

� 30 million literals finally

� 4 million clauses (initially)
� 200K clauses added

� 1.5 million decisions

� 3 hour run time

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proc., 38th Design Automation Conference (DAC2001), June 2001.

Chaff Contribution 1: Lazy Data Structures
2 Literal Watching for Unit-Propagation

� Avoid expensive book-keeping for unit-propagation

� N-literal clause can be unit or conflicting only after N-1 of the literals have
been assigned to F

� (v1 + v2 + v3): implied cases: (0 + 0 + v3) or (0 + v2 + 0) or (v1 + 0 + 0)

� Can completely ignore the first N-2 assignments to this clause

� Pick two literals in each clause to �watch� and thus can ignore any
assignments to the other literals in the clause.

� Example: (v1 + v2 + v3 + v4 + v5)

� (v1=X + v2=X + v3=? {i.e. X or 0 or 1} + v4=? + v5=?)

� Maintain the invariant: If a clause can become newly implied via any
sequence of assignments, then this sequence will include an assignment of
one of the watched literals to F

2 Literal Watching

-V1 V3 V5 V6 -V7

V2 V4 V6

-V1 V4 -V7 V11 V12 V15

-V1 V3 V4 -V5 V6

-V3 V2 -V5 -V6

-V2 -V3 V11 V12 V13 V15

V1

V2

+

-

+

-

For every clause, two
literals are watched

� When a variable is assigned
true, only need to visit clauses
where its watched literal is
false (only one polarity)
� Pointers from each literal to all

clauses it is watched in

� In a n clause formula with v
variables and m literals
� Total number of pointers is 2n
� On average, visit n/v clauses

per assignment

� *No updates to watched
literals on backtrack*

Decision Heuristics –Conventional
Wisdom

� �Assign most tightly constrained variable� : e.g. DLIS (Dynamic
Largest Individual Sum)
� Simple and intuitive: At each decision simply choose the assignment that

satisfies the most unsatisfied clauses.

� Expensive book-keeping operations required
� Must touch *every* clause that contains a literal that has been set to true.

Often restricted to initial (not learned) clauses.

� Need to reverse the process for un-assignment.

� Look ahead algorithms even more compute intensive
C. Li, Anbulagan, �Look-ahead versus look-back for satisfiability problems�
Proc. of CP, 1997.

� Take a more �global� view of the problem

Chaff Contribution 2:
Activity Based Decision Heuristics

� VSIDS: Variable State Independent Decaying Sum
� Rank variables by literal count in the initial clause database

� Only increment counts as new (learnt) clauses are added

� Periodically, divide all counts by a constant

� Quasi-static:
� Static because it doesn�t depend on variable state

� Not static because it gradually changes as new clauses are added

� Decay causes bias toward *recent* conflicts.

� Has a beneficial interaction with 2-literal watching

Activity Based Heuristics
and Locality Based Search

� By focusing on a sub-space, the covered spaces tend to coalesce

� More opportunities for resolution since most of the variables are common.

� Variable activity based heuristics lead to locality based search

SAT Solvers: A Condensed History

� Deductive

� Davis-Putnam 1960 [DP]

� Iterative existential quantification by �resolution�

� Backtrack Search

� Davis, Logemann and Loveland 1962 [DLL]

� Exhaustive search for satisfying assignment

� Conflict Driven Clause Learning [CDCL]

� GRASP: Integrate a constraint learning procedure, 1996

� Locality Based Search

� Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

� Added focus on efficient implementation

� �Pre-processing�

� Peephole optimization, e.g. miniSAT, 2005

Pre-Processing of CNF Formulas

N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and
Clause Elimination, In Proceedings of SAT 2005

� Use structural information to simplify
� Subsumption

� Self-subsumption

� Substitution

Pre-Processing: Subsumption

� Clause C1 subsumes clause C2 if C1 implies C2

� Subsumed clauses can be discarded

Pre-Processing: Self-Subsumption

� Subsumption after resolution step

Pre-Processing: Substitution

� Tseitin transformation introduces definition of variable

� Occurrence of x1 can be eliminated by substitution
� Corresponds to resolution with defining clauses

Concluding Remarks

� SAT: Significant shift from theoretical interest to practical impact.

� Quantum leaps between generations of SAT solvers

� Successful application of diverse CS techniques
� Logic (Deduction and Solving), Search, Caching, Randomization, Data

structures, efficient algorithms

� Engineering developments through experimental computer science

� Presence of drivers results in maximum progress.
� Electronic design automation � primary driver and main beneficiary

� Software verification- the next frontier

� Opens attack on even harder problems
� SMT, Max-SAT, QBF�

Sharad Malik and Lintao Zhang. 2009. Boolean satisfiability from theoretical
hardness to practical success. Commun. ACM 52, 8 (August 2009), 76-82.

References

� [GJ79] Michael R. Garey and David S. Johnson, Computers and intractability: A
guide to the theory of NP-completeness, W. H. Freeman and Company, San
Francisco, 1979

� [T68] G. Tseitin, On the complexity of derivation in propositional calculus. In Studies
in Constructive Mathematics and Mathematical Logic, Part 2 (1968)

� [DP 60] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:201�215, 1960

� [DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394�397, 1962

� [SS99] J. P. Marques-Silva and Karem A. Sakallah, �GRASP: A Search Algorithm for
Propositional Satisfiability�, IEEE Trans. Computers, C-48, 5:506-521, 1999.

� [BS97] R. J. Bayardo Jr. and R. C. Schrag �Using CSP look-back techniques to solve
real world SAT instances.� Proc. AAAI, pp. 203-208, 1997

� [BS00] Luís Baptista and João Marques-Silva, �Using Randomization and Learning
to Solve Hard Real-World Instances of Satisfiability,� In Principles and Practice of
Constraint Programming � CP 2000, 2000.

References

� [H07] J. Huang, �The effect of restarts on the efficiency of clause learning,�
Proceedings of the Twentieth International Joint Conference on Automated
Reasoning, 2007

� [MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik. Chaff:
Engineering and efficient sat solver. In Proc., 38th Design Automation Conference
(DAC2001), June 2001.

� [ZS96] H. Zhang, M. Stickel, �An efficient algorithm for unit-propagation� In
Proceedings of the Fourth International Symposium on Artificial Intelligence and
Mathematics,1996

� [ES03] N. Een and N. Sorensson. An extensible SAT solver. In SAT-2003

� [B02] F. Bacchus �Exploring the Computational Tradeoff of more Reasoning and Less
Searching�, Proc. 5th Int. Symp. Theory and Applications of Satisfiability Testing, pp.
7-16, 2002.

� [GN02] E.Goldberg and Y.Novikov. BerkMin: a fast and robust SAT-solver. In Proc.,
DATE-2002, pages 142�149, 2002.

References

� [R04] L. Ryan, Efficient algorithms for clause-learning SAT solvers, M. Sc. Thesis,
Simon Fraser University, 2002.

� [EB05] N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and
Clause Elimination, In Proceedings of SAT 2005

� [ZM03] L. Zhang and S. Malik, Validating SAT solvers using an independent
resolution-based checker: practical implementations and other applications, In
Proceedings of Design Automation and Test in Europe, 2003.

� [LSB07] M. Lewis, T. Schubert, B. Becker, Multithreaded SAT Solving, In Proceedings
of the 2007 Conference on Asia South Pacific Design Automation

� [HJS08] Youssef Hamadi, Said Jabbour, and Lakhdar Sais, ManySat: solver
description, Microsoft Research-TR-2008-83

� [B86] R. E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation, IEEE
Transactions on Computers , vol.C-35, no.8, pp.677-691, Aug. 1986

� [ZM09] Sharad Malik and Lintao Zhang. 2009. Boolean satisfiability from
theoretical hardness to practical success. Commun. ACM 52, 8 (August 2009), 76-
82.

