Satisfiability Checking for Propositional Logic

Viktor Kuncak, EPFL

https://lara.epfl.ch/w/fv

Propositional (Boolean) Logic

Propositional logic is a language for representing Boolean functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$.

- sometimes we write \perp for 0 and T for 1

Grammar of formulas:

$$
P::=x|0| 1|P \wedge P| \neg P|P \oplus P| P \rightarrow P \mid P \hookrightarrow P
$$

where x denotes variables (identifiers). Corresponding Scala trees:
sealed abstract class Expr
case class Var(id: Identifier) extends Expr
case class BooleanLiteral(b: Boolean) extends Expr
case class And(e1: Expr, e2: Expr) extends Expr
case class Or(e1: Expr, e2: Expr) extends Expr
case class Not(e: Expr) extends Expr

Environment and Truth of a Formula

An environment e is a partial map from propositional variables to $\{0,1\}$
For vector of n boolean variables $\bar{p}=\left(p_{1}, \ldots, p_{n}\right)$ and $\bar{v}=\left(v_{1}, \ldots, v_{n}\right) \in\{0,1\}^{n}$, we denote $[\bar{p} \mapsto \bar{v}]$ the environment e given by $e\left(p_{i}\right)=v_{i}$ for $1 \leq i \leq n$.
We write $e \ell F$, and define $\llbracket F \rrbracket_{e}=1$, to denote that F is true in environment e, otherwise define $\llbracket F \rrbracket_{e}=0$
Let $e=\{(a, 1),(b, 1),(c, 0)\}$ and F be $a \wedge(\neg b \vee c)$. Then:

$$
\llbracket a \wedge(\neg b \vee c) \rrbracket_{e}=e(a) \wedge(\neg e(b) \vee e(c))=1 \wedge(\neg 1 \vee 0)=0
$$

The general definition is recursive:

$$
\begin{aligned}
\llbracket x \rrbracket_{e} & =e(x) \\
\llbracket 0 \rrbracket_{e} & =0 \\
\llbracket 1 \rrbracket_{e} & =1 \\
\mathbb{F} F_{1} \wedge F_{2} \rrbracket_{e} & =\llbracket F_{1} \rrbracket_{e} \wedge \llbracket F_{2} \rrbracket_{e} \\
\llbracket \neg F_{1} \rrbracket_{e} & =\llbracket \llbracket F_{1} \rrbracket_{e}
\end{aligned}
$$

Note: \wedge and \neg on left and right are different things

Truth of a Formula in Scala

The interpret method in Expr.scala of Labs 02:

```
def interpret(env: Map[Identifier, Boolean]): Boolean = this match {
    case Var(id) }=>\mathrm{ env(id)
    case BooleanLiteral(b) = b
    case Equal(e1, e2) => e1.interpret(env) = e2.interpret(env)
    case Implies(e1, e2) = !e1.interpret(env) || e2.interpret(env)
    case And(e1, e2) m e1.interpret(env) &&ठ e2.interpret(env)
    case Or(e1, e2) = e1.interpret(env) || e2.interpret(env)
    case Xor(e1, e2) = e1.interpret(env) ^ e2.interpret(env)
    case Not(e) = !e.interpret(env)
}
```


Satisfiability Problem

Formula F is satisfiable, iff there exists e such that $\llbracket F \rrbracket_{e}=1$.
Otherwise we call F unsatisfiable: when there does not exist e such that $\llbracket F \rrbracket_{e}=1$, that is, for all $e, \llbracket F \rrbracket_{e}=0$.
Example: let F be $a \wedge(\neg b \vee c)$. Then F is satisfiable, with e.g. $e=\{(a, 1),(b, 0),(c, 0)\}$ Its negation of $\neg F$, is also satisfiable, with e.g. $e=\{(a, 0),(b, 0),(c, 0)\}$

SAT is a problem: given a propositional formula, determine whether it is satisfiable.
The problem is decidable because given F we can compute its variables $F V(F)$ and it suffices to look at the 2^{n} environments for $n=F V(F)$. The problem is NP-complete, but useful heristics exist.

A SAT solver is a program that, given boolean formula F, either:

- returns sat, and, optionally, returns one environment e such that $\llbracket F \rrbracket_{e}=1$, or
- returns unsat and, optionally, returns a proof that no satisfying assignment exists

Formal Proof System

We will consider a some set of logical formulas \mathscr{F} (e.g. propositional logic)

Definition

An proof system is (\mathscr{F}, Infer $)$ where Infer $\subseteq \mathscr{F}^{*} \times \mathscr{F}$ a decidable set of inference steps.

- a set is decidable iff there is a program to check if an element belongs to it
- given a set S, notation S^{*} denotes all finite sequences with elements from S

We schematically write an inference step $\left(\left(P_{1}, \ldots, P_{n}\right), C\right) \in \operatorname{lnfer}$ by

$$
\frac{P_{1} \ldots P_{n}}{C}
$$

and we say that from P_{1}, \ldots, P_{n} (premises) we derive C (conclusion).
An inference step is called an axiom instance when $n=0$ (it has no premises).
Given a proof system (\mathscr{F}, Infer), a proof is a finite sequence of inference steps such that, for every inference step, each premise is a conclusion of a previous step.

Proof in a Proof System

Definition

Given (\mathscr{F}, Infer) where $\operatorname{Infer} \subseteq \mathscr{F}^{*} \times \mathscr{F}$ a proof in (\mathscr{F}, Infer) is a finite sequence of inference steps $S_{0}, \ldots, S_{m} \in \operatorname{lnfer}$ such that, for each S_{i} where $0 \leq i \leq m$, for each premise P_{j} of S_{i} there exists $0 \leq k<i$ such that P_{j} is the conclusion of S_{k}.

$$
\begin{array}{rll}
S_{0}: & ((), & \left.C_{0}\right) \\
S_{k}: & ((\ldots \ldots \ldots), & \left.\mathbf{P}_{\mathbf{j}}\right) \\
& \ldots & (\\
S_{i}: & \left(\left(\ldots, \mathbf{P}_{\mathbf{j}}, \ldots\right),\right. & \left.C_{i}\right)
\end{array}
$$

Given the definition of the proof, we can replace each premise P_{j} with the index k where P_{j} was the conclusion of $S_{k}\left(P_{j} \equiv \operatorname{Conc}\left(S_{k}\right)\right)$
A proof is then a sequence of elements of $\left(\{0,1, \ldots\}^{*}, \mathscr{F}\right)$ where each S_{i} is of the form $\left(k_{1}, \ldots, k_{n}, C\right)$ for $0 \leq k_{1}, \ldots, k_{n}<i$ and $\left(\operatorname{Conc}\left(S_{k_{1}}\right), \ldots, \operatorname{Conc}\left(S_{k_{n}}\right), C\right) \in \operatorname{Infer}$.

Proofs as Dags

We can view proofs as directed acyclic graphs.
Given a proof as a sequence of steps $\left(\{0,1, \ldots\}^{*}, \mathscr{F}\right)$, for each $\left(k_{1}, \ldots, k_{n}, C\right)$ in the sequence we introduce a node labelled by C, and directed labelled edges $\left(\operatorname{Conc}\left(S_{k_{j}}\right), j, C\right)$ for all premises k_{1}, \ldots, k_{n}.

To check such proof, for each node, follow all of its incoming edges backwards in the order of their indices to find the premises, then check that the inference step is in Infer.

A Minimal Propositional Logic Proof System

Formulas \mathscr{F} defined by $F::=x|0| F \rightarrow F$
Shorthand:
$\neg F \equiv F \rightarrow 0$

Inference rules: Infer $=P_{2} \cup P_{3} \cup \mathrm{MP}$ where:
(W: Hilbert system)

$$
\begin{array}{rlll}
P_{2} & =\{((), & F \rightarrow(G \rightarrow F) &) \mid F, G \in \mathscr{F}\} \\
P_{3} & =\{((), & ((F \rightarrow(G \rightarrow H)) \rightarrow((F \rightarrow G) \rightarrow(F \rightarrow H)) &) \mid F, G, H \in \mathscr{F}\} \\
M P & =\{((F \rightarrow G, F), & G &
\end{array}
$$

Elements of P_{1}, P_{2}, P_{3} are all axioms. These are infinite sets, but are given a schematic way and there is an algorithm to check if a given formula satisfies each of the schemas.

Exercise: draw a DAG representing proof of $a \rightarrow a$ where a is a propositional variable.

An Example Proof

Hint: use P_{3} for $F \equiv a, G \equiv a \rightarrow a, H \equiv a$

An Example Proof

Hint: use P_{3} for $F \equiv a, G \equiv a \rightarrow a, H \equiv a$
Apply MP to the above instance of P_{3} and an instance of P_{2}, then to another instance of P_{2}.

Derivation is a Proof from Assumptions

Definition

Given (\mathscr{F}, Infer), Infer $\subseteq \mathscr{F}^{*} \times \mathscr{F}$ and a set of assumptions $A \subseteq \mathscr{F}$, a derivation from A in (\mathscr{F}, Infer $)$ is a proof in (\mathscr{F}, Infer $)$ where:

$$
\text { Infer }^{\prime}=\operatorname{Infer} \cup\{((), F) \mid F \in A\}
$$

Thus, assumptions from A are treated just as axioms.

Definition

We say that $F \in \mathscr{F}$ is provable from assumptions A, denoted $A \vdash_{\text {Infer }} F$ iff there exists a derivation from A in Infer that contains an inference step whose conclusion is F.
We write $\vdash_{\text {Infer }} F$ to denote that there exists a proof in Infer containing F as a conslusion (same as $\emptyset \vdash_{\text {Infer }} F$).

Consequence and Soundness in Propositional Logic

Given a set $A \subseteq \mathscr{F}$ where \mathscr{F} are in propositional logic, and $C \in \mathscr{F}$, we say that C is a semantic consequence of A, denoted $A \mid=C$ iff for every environment e that defines all variables in $F V(C) \cup \bigcup_{P \in A} F V(P)$, if $\llbracket P \rrbracket_{e}=1$ for all $P \in A$, then then $\llbracket C \rrbracket_{e}=1$.

Definition

Given $(\mathscr{F}, \operatorname{lnfer})$ where \mathscr{F} are propositional, step $\left(\left(P_{1} \ldots P_{n}\right), C\right) \in \operatorname{lnfer}$ is sound iff $\left\{P_{1}, \ldots, P_{n}\right\} \neq C$. Proof system Infer is sound if every inference step is sound.
For axioms, this definition reduces to saying that C is true for all interpretations, i.e., that C is a valid formula (tautology).

Theorem

Let (\mathscr{F}, Infer) where \mathscr{F} are propositional logic formulas. If every inference rule in Infer is sound, then $A \vdash_{I n f e r} F$ implies $A \mid=F$.
Proof is immediate by induction on the length of the formal proof.
Consequence: $\vdash_{\text {Infer }} F$ implies F is a tautology.

A Proof System with Decision and Simplification

Propositional formulas F and G are semantically equivalent if $F \vDash G$ and $G \vDash F$.
Case analysis proof rule $((F, G), F[x:=0] \vee G[x:=1]) \mid F, G \in \mathscr{F}, x$-variable $\}$:

$$
\frac{F}{F[x:=0] \vee G[x:=1]}
$$

Proof of soundness: consider an environment e (that defines x as well as $F V(F) \cup F V(G))$, and assume $\llbracket F \rrbracket_{e}=1$ and $\llbracket G \rrbracket_{e}=1$.

- If $e(x)=0$, then $\llbracket F[x:=0] \rrbracket_{e}=\llbracket F \rrbracket_{e}=1$.
- If $e(x)=1$, then $\llbracket G[x:=1] \rrbracket_{e}=\llbracket G \rrbracket_{e}=1$.

Simplification rules that preserve equivalence can be applied: $0 \wedge F \rightsquigarrow 0,1 \wedge F \rightsquigarrow F$, $0 \vee F \rightsquigarrow F, \quad 1 \vee F \rightsquigarrow 1, \quad \neg 0 \rightsquigarrow 1, \neg 1 \rightsquigarrow 0$.
Introduce inferences $\left\{\left((F), F^{\prime}\right) \mid F^{\prime}\right.$ is simplified F. These rules are also sound. Call this Infer_{D}.

Example Derivation

Derivation from $A=\{a \wedge b, \neg b \vee \neg a\}$. Draw the arrows to get a proof DAG
$a \wedge b$

$$
\neg b \vee \neg a
$$

$$
(0 \wedge b) \vee(1 \wedge b) \quad(a \wedge 0) \vee(a \wedge 1)
$$

b

$$
\begin{array}{l|l|}
\hline a & \\
& 0 \vee(\neg 1 \vee \neg a) \\
&
\end{array}
$$

$\neg a$

$$
0
$$

Example Derivation

Derivation from $A=\{a \wedge b, \neg b \vee \neg a\}$. Draw the arrows to get a proof DAG
$a \wedge b$

$$
\neg b \vee \neg a
$$

$$
(0 \wedge b) \vee(1 \wedge b) \quad(a \wedge 0) \vee(a \wedge 1)
$$

b

$$
\begin{array}{|l|}
\hline a \\
\hline
\end{array}
$$

$$
0 \vee(\neg 1 \vee \neg a)
$$

\square
\square
This derivation shows that: $A \vdash 0$

Proving Unsatisfiability

A set A of formulas is satisfiable if there exists e such that, for every $F \in A, \llbracket F \rrbracket_{e}=1$.

- when $A=\left\{F_{1}, \ldots, F_{n}\right\}$ the notion is the same as the satisfiability of $F_{1} \wedge \ldots \wedge F_{n}$

Otherwise, we call the set A unsatisfiable.
Theorem (Refutation Soundness)
If $A \vdash_{\text {Infer }}^{D} 0$ then A is unsatisfiable.
Follows from soundness of Infer_{D}
More interestingly:

Theorem (Refutation Completeness)

If a finite set A is unsatisfiable, then $A \vdash_{\operatorname{lnfer}}^{D} 0$
Proof hint: take conjunction of formulas in A and existentially quantify it to get A^{\prime}.
What is the relationship of the truth of A^{\prime} and the satisfiability of A ? For a conjunction of formulas F, can you express $\exists x . F$ using Infer_{D} ?

Conjunctive Form, Literals, and Clauses

A propositional literal is either a variable (x) or its negation $(\neg x)$.
A clause is a disjunction of literals.
For convenience, we can represent clause as a finite set of literals (because of associativity, commutativity, and idempotence of \vee).

Example: $a \vee \neg b \vee c$ represented as $\{a, \neg b, c\}$
If C is a clause then $\llbracket C \rrbracket_{e}=1$ iff there exists a literal $I \in C$ such that $\llbracket / \rrbracket_{e}=1$. We represent 0 using the empty clause \emptyset.
As for any formulas, a finite set of clauses A can be interpreted as a conjunction. Thus, a set of clauses can be viewed as a formula in conjunctive normal form:

$$
A=\{\{a\},\{b\},\{\neg a, \neg b\}\}
$$

represents the formula

$$
a \wedge b \wedge(\neg a \vee \neg b)
$$

Resolution on Clauses as a Proof System

$a \vee b \vee c$	$d \vee \neg c$	$\{a, b, c\}$
	$\{d, \neg c\}$	
$(a \vee b \vee 0) \vee(d \vee \neg 1))$		
$a \vee b \vee d$		$\{a, b, d\}$

Clausal resolution rule (transitivity of implication, or decision rule for clauses):

resolve two clauses with respect to x

Theorem (Soundness)

Clausal resolution is sound for all clauses C_{1}, C_{2} and propositional variable x, $\left\{C_{1} \cup\{x\}, C_{2} \cup\{\neg x\}\right\} \mid=C_{1} \cup C_{2}$.

Theorem (Refutational Completeness)
A finite set of clauses A is satisfiable if and only if there exists a derivation of the empty clause from A using clausal resolution.

Exercise

Use resolution to prove that the following formula is valid:

$$
\neg(a \wedge b \wedge(\neg a \vee \neg b))
$$

Exercise

Use resolution to prove that the following formula is valid:

$$
\neg(a \wedge b \wedge(\neg a \vee \neg b))
$$

Prove that its negation is unsatisfiable set of clauses:

$$
\{a\} \quad\{b\} \quad\{\neg a, \neg b\}
$$

Exercise

Use resolution to prove that the following formula is valid:

$$
\neg(a \wedge b \wedge(\neg a \vee \neg b))
$$

Prove that its negation is unsatisfiable set of clauses:

$$
\{a\} \quad\{b\} \quad\{\neg a, \neg b\}
$$

$$
\{\neg b\}
$$

Exercise

Use resolution to prove that the following formula is valid:

$$
\neg(a \wedge b \wedge(\neg a \vee \neg b))
$$

Prove that its negation is unsatisfiable set of clauses:

$$
\begin{array}{llll}
\{a\} & & \{b\} & \{\neg a, \neg b\} \\
& & \{\neg b\} & \\
& \emptyset & &
\end{array}
$$

Unit Resolution

A unit clause is a clause that has precisely one literal; it's of the form $\{L\}$ Given a literal L, its dual \bar{L} is defined by $\bar{x}=\neg x, \overline{\bar{x}}=x$.

Unit resolution is a special case of resolution where at least one of the clauses is a unit clause:

$$
\frac{C \quad\{L\}}{C \backslash\{\bar{L}\}}
$$

Soundness: if L is true, then \bar{L} is false, so it can be deleted from a disjunction C.
Subsumption: when applying resolution, if we obtain a clause $C^{\prime} \subseteq C$ that is subset of a previosly derived one, we can delete C so we do not consider it any more. Any use of C can be replaced by use of C^{\prime} with progress towards \emptyset at least as good.

Unit resolution with $\{L\}$ can remove all occurences of L and \bar{L} from our set.

Constructing a Conjunctive Normal Form

How would be transform this formula into a set of clauses:

$$
\neg(((c \wedge a) \vee(\neg c \wedge b)) \longleftrightarrow((c \rightarrow b) \wedge(\neg c \rightarrow b)))
$$

Which equivalences are guaranteed to produce a conjunctive normal form?

$$
\begin{array}{rll}
\neg\left(F_{1} \wedge F_{2}\right) & \leftrightarrow\left(\neg F_{1}\right) \neg\left(\neg F_{2}\right) \\
F_{1} \wedge\left(F_{2} \vee F_{3}\right) & \longleftrightarrow\left(F_{1} \wedge F_{2}\right) \vee\left(F_{1} \vee F_{3}\right) \\
F_{1} \vee\left(F_{2} \wedge F_{3}\right) & \longleftrightarrow & \left(F_{1} \vee F_{2}\right) \wedge\left(F_{1} \vee F_{3}\right)
\end{array}
$$

Constructing a Conjunctive Normal Form

How would be transform this formula into a set of clauses:

$$
\neg(((c \wedge a) \vee(\neg c \wedge b)) \longleftrightarrow((c \rightarrow b) \wedge(\neg c \rightarrow b)))
$$

Which equivalences are guaranteed to produce a conjunctive normal form?

$$
\begin{array}{rll}
\neg\left(F_{1} \wedge F_{2}\right) & \longleftrightarrow\left(\neg F_{1}\right) \neg\left(\neg F_{2}\right) \\
F_{1} \wedge\left(F_{2} \vee F_{3}\right) & \longleftrightarrow\left(F_{1} \wedge F_{2}\right) \vee\left(F_{1} \vee F_{3}\right) \\
F_{1} \vee\left(F_{2} \wedge F_{3}\right) & \longleftrightarrow & \left(F_{1} \vee F_{2}\right) \wedge\left(F_{1} \vee F_{3}\right)
\end{array}
$$

What is the complexity of such transformation in the general case?

Constructing a Conjunctive Normal Form

How would be transform this formula into a set of clauses:

$$
\neg(((c \wedge a) \vee(\neg c \wedge b)) \longleftrightarrow((c \rightarrow b) \wedge(\neg c \rightarrow b)))
$$

Which equivalences are guaranteed to produce a conjunctive normal form?

$$
\begin{array}{rll}
\neg\left(F_{1} \wedge F_{2}\right) & \leftrightarrow\left(\neg F_{1}\right) \neg\left(\neg F_{2}\right) \\
F_{1} \wedge\left(F_{2} \vee F_{3}\right) & \longleftrightarrow\left(F_{1} \wedge F_{2}\right) \vee\left(F_{1} \vee F_{3}\right) \\
F_{1} \vee\left(F_{2} \wedge F_{3}\right) & \longleftrightarrow & \left(F_{1} \vee F_{2}\right) \wedge\left(F_{1} \vee F_{3}\right)
\end{array}
$$

What is the complexity of such transformation in the general case?
Are there efficient algorithms for checking satisfiability of formulas in disjunctive normal form (disjunctions of conjunctions of literals)?
When checking satisfiability, is conversion into conjunctive normal form any better than disjunctive normal form?

Equivalence and Equisatisfiability

Formulas F_{1} and F_{2} are equivalent iff: $F_{1} \models F_{2}$ and $F_{2} \models F_{1}$
Formulas F_{1} and F_{2} are equisatisfiable iff: F_{1} is satisfiable whenever F_{2} is satisfiable.
Equivalent formulas are always equisatisfiable, but converse is not the case in general. For example, formulas a and b are equisatisfiable, because they are both satisfiable.

Consider these two formulas:

$$
\begin{array}{ll}
F_{1}: & (a \wedge b) \vee c \\
F_{2}: & (x \hookrightarrow(a \wedge b)) \wedge(x \vee c)
\end{array}
$$

They are equisatisfiable but not equivalent. For example, given $e=\{(a, 1),(b, 1),(c, 0),(x, 0)\}, \llbracket F_{1} \rrbracket_{e}=1$ whereas $\llbracket F_{2} \rrbracket_{e}=0$. Interestingly, every choice of a, b, c that makes F_{1} true can be extended to make F_{2} true appropriately, if we choose x as $\llbracket a \wedge b \rrbracket_{e}$.

Flatenning as Satisfiability Preserving Transformation

Observation: Let F be a formula, G another formula, and $x \notin F V(F)$ a propositional variable. Let $F[G:=x]$ denote the result of replacing an occurence of formula G inside F with x. Then F is equisatisfiable with

$$
(x=G) \wedge F[G:=x]
$$

(Here, $=$ denotes \leftrightarrow.)
Proof of equisatisfiability: a satisfying assignment for new formula is also a satisfying assignment for the old one. Conversely, since x does not occur in F, if $\llbracket F \rrbracket_{e}=1$, we can change $e(x)$ to be defined as $\llbracket G \rrbracket_{e}$, which will make the new formula true.
(A transformation that produces an equivalent formula: equivalence preserving.)
A transformation that produces an equisatisfiable formula: satisfiability preserving. Flattening is this satisfiability preserving transformation in any formalism that supports equality (here: equivalence): pick a subformula and given it a name by a fresh variable, applying the above observation.
Strategy: apply transformation from smallest non-variable subformulas.

Tseytin's Transformation (see also Calculus of Computation, Section 1.7.3)

Consider formula with $\neg, \wedge, \vee, \rightarrow,=, \oplus$

- Push negation into the propositional variables using De Morgan's laws and switching between \oplus and $=$.
- Repeat: flatten an occurrence of a binary connective whose arguments are literals
- In the resulting conjunction, express each equivalence as a conjunction of clauses:

conjunct	
$x=(a \wedge b)$	clauses
$x=(\neg x, a\},\{\neg x, b\},\{\neg a, \neg b, x\}$	
$x=(a \vee b)$	$\{\neg x, a, b\},\{\neg a, x\},\{\neg b, x\}$
$x=(a \rightarrow b)$	
$x=(a=b)$	
$x=(a \oplus b)$	

Exercise: Complete the missing entries. Are the rules in the last step equivalence preserving or only equisatisfiability preserving? Why is the resulting algorithm polynomial?

Example: Find an Equisatisfiable CNF

$$
\neg(((c \wedge a) \vee(\neg c \wedge b)) \longleftrightarrow((c \rightarrow b) \wedge(\neg c \rightarrow b)))
$$

SAT Solvers

A SAT solver takes as input a set of clauses.
To check satisfiability, convert to equisatisfiable set of clauses in polynomial time using Tseytin's transformation.

To check validity of a formula, take negation, check satisfiability, then negate the answer.

How should we check satisfiability of a set of clauses?

- resolution on clauses, favoring unit resolution and applying subsumption (complete)
Davis and Putnam, 1960
- truth table method: pick one value, then other (fast and space efficient)

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm Sketch

```
def DPLL(S: Set[Clause]) : Bool =
    val S' = subsumption(UnitProp(S))
    if \emptyset}\in\mp@subsup{S}{}{\prime}\mathrm{ then false // unsat
    else if S' has only unit clauses then true // unit clauses give e
    else
        val L = a literal from a clause of S' where {L} & S'
        DPLL(S' U {{L}}) || DPLL(S' \cup {{complement(L)}})
def UnitProp(S: Set[Clause]): Set[Clause] = // Unit Propagation (BCP)
    if C }\inS\mathrm{ , unit }U\inS\mathrm{ , resolve(U,C) }\not=
    then UnitProp((S - {C}) U {resolve(U,C)}) else S
def subsumption(S: Set[Clause]): Set[Clause] =
    if C1,C2 \in S such that C1 \subseteq C2
    then subsumption(S - {C2}) else S
```


SAT Solvers: A Condensed History

- Deductive
- Davis-Putnam 1960 [DP]
- Iterative existential quantification by "resolution"
- Backtrack Search
- Davis, Logemann and Loveland 1962 [DLL]
- Exhaustive search for satisfying assignment
\square Conflict Driven Clause Learning [CDCL]
- GRASP: Integrate a constraint learning procedure, 1996
\square Locality Based Search
- Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and others, 2001 onwards
- Added focus on efficient implementation
\square "Pre-processing"
- Peephole optimization, e.g. miniSAT, 2005

Conflict Driven Learning and

Non-chronological Backtracking

```
x1 + x4
x1 + x3' + x8'
x1 + x8 + x12
x2+x11
x7' + x3' + x9
x7' + x8 + x9'
x7 + x8 + x10'
x7 + x10 + x 12'
```

J. P. Marques-Silva and Karem A. Sakallah, "GRASP: A Search Algorithm for Propositional Satisfiability", IEEE Trans. Computers, C-48, 5:506-521, 1999.

Conflict Driven Learning and

Non-chronological Backtracking

$$
\begin{aligned}
& x 1+x 4 \\
& x 1+x 3^{\prime}+x 8^{\prime} \\
& x 1+x 8+x 12 \\
& x 2+x 11 \\
& x 7^{\prime}+x 3^{\prime}+x 9 \\
& x 7^{\prime}+x 8+x 9^{\prime} \\
& x 7+x 8+x 10^{\prime} \\
& x 7+x 10+x 12^{\prime}
\end{aligned}
$$$x 1=0$

Conflict Driven Learning and

Non-chronological Backtracking

$$
\begin{aligned}
& x 1+x 4 \\
& x 1+x 3^{\prime}+x 8^{\prime} \\
& x 1+x 8+x 12 \\
& x 2+x 11 \\
& x 7^{\prime}+x 3^{\prime}+x 9 \\
& x 7^{\prime}+x 8+x 9^{\prime} \\
& x 7+x 8+x 10^{\prime} \\
& x 7+x 10+x 12 \prime
\end{aligned}
$$

Conflict Driven Learning and

Non-chronological Backtracking

$$
\begin{aligned}
& x 1+x 4 \\
& x 1+x 3^{\prime}+x 8^{\prime} \\
& \mathrm{x} 1+\mathrm{x} 8+\mathrm{x} 12 \\
& x 2+x 11 \\
& x 7^{\prime}+x 3^{\prime}+x 9 \\
& x 7^{\prime}+x 8+x 9{ }^{\prime} \\
& x 7+x 8+x 10^{\prime} \\
& \mathbf{x 7}+\times 10+\times 12^{\prime}
\end{aligned}
$$

$x 1=0$ $x 3=1$

Conflict Driven Learning and

Non-chronological Backtracking

$$
\begin{aligned}
& x 1+x 4 \\
& x 1+x 3^{\prime}+x 8^{\prime} \\
& \mathrm{x} 1+\mathrm{x} 8+\mathrm{x} 12 \\
& x 2+x 11 \\
& x 7^{\prime}+x 3^{\prime}+x 9 \\
& x 7^{\prime}+x 8+x 9{ }^{\prime} \\
& x 7+x 8+x 10 \\
& \mathbf{x 7}+\times 10+\times 12^{\prime}
\end{aligned}
$$

Conflict Driven Learning and

Non-chronological Backtracking

$$
\begin{aligned}
& x 1+x 4 \\
& x 1+x 3^{\prime}+x 8^{\prime} \\
& \mathrm{x} 1+\mathrm{x} 8+\mathrm{x} 12 \\
& x 2+\times 11 \\
& x 7^{\prime}+x 3^{\prime}+x 9 \\
& x 7^{\prime}+x 8+x 9{ }^{\prime} \\
& x 7+x 8+x 10 \\
& \mathrm{x} 7+\times 10+\times 1 \mathbf{2}^{\prime}
\end{aligned}
$$

Conflict Driven Learning and

Non-chronological Backtracking

$$
\begin{aligned}
& x 1+x 4 \\
& x 1+x 3^{\prime}+x 8^{\prime} \\
& \mathrm{x} 1+\mathrm{x} 8+\mathrm{x} 12 \\
& x 2+x 11 \\
& x 7^{\prime}+x 3^{\prime}+x 9 \\
& x 7^{\prime}+x 8+x 9{ }^{\prime} \\
& x 7+x 8+x 10 \text { ' } \\
& \mathrm{x} 7+\times 10+\times 1 \mathbf{2}^{\prime}
\end{aligned}
$$

Conflict Driven Learning and

Non-chronological Backtracking

$$
\begin{aligned}
& \mathrm{x} 1+\mathrm{x} 4 \\
& x 1+x 3^{\prime}+x 8^{\prime} \\
& \mathrm{x} 1+\mathrm{x} 8+\mathrm{x} 12 \\
& x 2+\times 11 \\
& x 7^{\prime}+x 3^{\prime}+x 9 \\
& x 7^{\prime}+x 8+x 9{ }^{\prime} \\
& x 7+x 8+\times 10^{\prime} \\
& \mathrm{x} 7+\times 10+\times 1 \mathbf{2}^{\prime}
\end{aligned}
$$

Conflict Driven Learning and

Non-chronological Backtracking

$$
\begin{aligned}
& \mathrm{x} 1+\mathrm{x} 4 \\
& \mathrm{x} 1+\mathrm{x} 3^{\prime}+\mathrm{x} 8^{\prime} \\
& \mathrm{x} 1+\mathrm{x} 8+\mathrm{x} 12 \\
& \mathrm{x} 2+\mathrm{x} 11 \\
& \mathrm{x} 7^{\prime}+\mathrm{x} 3^{\prime}+\mathrm{x} 9 \\
& \mathrm{x} 7^{\prime}+\mathrm{x} 8+\mathrm{x} 9^{\prime} \\
& \mathrm{x} 7+\mathrm{x} 8+\mathrm{x} 10^{\prime} \\
& \mathrm{x} 7+\mathrm{x} 10+\mathrm{x} 12^{\prime}
\end{aligned}
$$

Conflict Driven Learning and

Non-chronological Backtracking

$$
\begin{aligned}
& \mathrm{x} 1+\mathrm{x} 4 \\
& \mathrm{x} 1+\mathrm{x} 3^{\prime}+\mathrm{x} 8^{\prime} \\
& \mathrm{x} 1+\mathrm{x} 8+\mathrm{x} 12 \\
& \mathrm{x} 2+\mathrm{x} 11 \\
& \mathrm{x} 7^{\prime}+\mathrm{x} 3^{\prime}+\mathrm{x} 9 \\
& \mathrm{x} 7^{\prime}+\mathrm{x} 8+\mathrm{x} 9^{\prime} \\
& \mathrm{x} 7+\times 8+\times 10^{\prime} \\
& \mathrm{x} 7+\times 10+\times 12^{\prime}
\end{aligned}
$$

Conflict Driven Learning and

Non-chronological Backtracking

$$
\begin{aligned}
& \mathrm{x} 1+\mathrm{x} 4 \\
& \mathrm{x} 1+\mathrm{x} 3^{\prime}+\mathrm{x} 8^{\prime} \\
& \mathrm{x} 1+\mathrm{x} 8+\mathrm{x} 12 \\
& \mathrm{x} 2+\mathrm{x} 11 \\
& \mathrm{x} 7^{\prime}+\mathrm{x} 3^{\prime}+\mathrm{x} 9 \\
& \mathrm{x} 7^{\prime}+\mathrm{x} 8+\mathrm{x} 9^{\prime} \\
& \mathrm{x} 7+\mathrm{x} 8+\times 10^{\prime} \\
& \mathrm{x} 7+\mathrm{x} 10+\mathrm{x} 12^{\prime}
\end{aligned}
$$

Conflict Driven Learning and

Non-chronological Backtracking

$$
\begin{aligned}
& \mathrm{x} 1+\mathrm{x} 4 \\
& \mathrm{x} 1+\mathrm{x} 3^{\prime}+\mathrm{x} 8^{\prime} \\
& \mathrm{x} 1+\mathrm{x} 8+\mathrm{x} 12 \\
& \mathrm{x} 2+\mathrm{x} 11 \\
& \mathrm{x} 7^{\prime}+\mathrm{x} 3^{\prime}+\mathrm{x} 9 \\
& \mathrm{x} 7^{\prime}+\mathrm{x} 8+\mathrm{x} 9^{\prime} \\
& \mathrm{x} 7+\times 8+\times 10^{\prime} \\
& \mathrm{x} 7+\times 10+\times 12^{\prime}
\end{aligned}
$$

Conflict Driven Learning and

Non-chronological Backtracking

Conflict Driven Learning and

Non-chronological Backtracking

$$
\begin{aligned}
& \text { x1 + x4 } \\
& \mathrm{x} 1+\mathrm{x} 3^{\prime}+\mathrm{x} 8^{\prime} \\
& \mathrm{x} 1+\mathrm{x} 8+\mathrm{x} 12 \\
& \mathrm{x} 2+\mathrm{x} 11 \\
& \mathrm{x} 7^{\prime}+\mathrm{x} 3^{\prime}+\mathrm{x} 9 \\
& \mathrm{x} 7^{\prime}+\mathrm{x} 8+\mathrm{x9} \\
& \mathrm{x} 7+\mathrm{x} 8+\mathrm{x} 10^{\prime} \\
& \mathrm{x} 7+\times 10+\mathrm{x} 12^{\prime}
\end{aligned}
$$

Backtrack to the decision level of $\times 3=1$

Conflict Driven Learning and

Non-chronological Backtracking

```
x1 + x4
x1 + x3' + x8'
x1 + x8 + x12
x2 + x11
x7' + x3' + x9
x7' + x8 + x9'
x7 + x8 + x10'
x7 + x10 + x 12'
x3'+x7'+x8 \leftarrownew clause
```


Backtrack to the decision level of $\times 3=1$

$$
\text { Assign } \mathbf{x} 7=0
$$

What's the big deal?

Restart

\square Abandon the current search tree and reconstruct a new one
\square The clauses learned prior to the restart are still there after the restart and can help pruning the search space
\square Adds to robustness in the solver

SAT Solvers: A Condensed History

- Deductive
- Davis-Putnam 1960 [DP]
- Iterative existential quantification by "resolution"
- Backtrack Search
- Davis, Logemann and Loveland 1962 [DLL]
- Exhaustive search for satisfying assignment
\square Conflict Driven Clause Learning [CDCL]
- GRASP: Integrate a constraint learning procedure, 1996
\square Locality Based Search
- Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and others, 2001 onwards
- Added focus on efficient implementation
\square "Pre-processing"
- Peephole optimization, e.g. miniSAT, 2005

Success with Chaff

\square First major instance: Tough (Industrial Processor Verification)

- Bounded Model Checking, 14 cycle behavior
\square Statistics
- 1 million variables
- 10 million literals initially
- 200 million literals including added clauses
- 30 million literals finally
- 4 million clauses (initially)
- 200K clauses added
- 1.5 million decisions
- 3 hour run time
M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik. Chaff: Engineering an efficient SAT solver. In Proc., 38th Design Automation Conference (DAC2001), June 2001.

Chaff Contribution 1: Lazy Data Structures 2 Literal Watching for Unit-Propagation

\square Avoid expensive book-keeping for unit-propagation
\square N-literal clause can be unit or conflicting only after $\mathrm{N}-1$ of the literals have been assigned to F

ㅁ $(\mathrm{v} 1+\mathrm{v} 2+\mathrm{v} 3)$: implied cases: $(0+0+v 3)$ or $(0+v 2+0)$ or $(v 1+0+0)$
\square Can completely ignore the first $\mathrm{N}-2$ assignments to this clause
\square Pick two literals in each clause to "watch" and thus can ignore any assignments to the other literals in the clause.

- Example: $(v 1+v 2+v 3+v 4+v 5)$
- $\quad(\mathrm{v} \mathbf{l}=\mathrm{X}+\mathrm{v} 2=\mathrm{X}+\mathrm{v} 3=$? $\{$ i.e. X or 0 or 1$\}+\mathrm{v} 4=?+\mathrm{v} 5=$?)
\square Maintain the invariant: If a clause can become newly implied via any sequence of assignments, then this sequence will include an assignment of one of the watched literals to F

2 Literal Watching

For every clause, two
literals are watched
\square When a variable is assigned true, only need to visit clauses where its watched literal is false (only one polarity)

- Pointers from each literal to all clauses it is watched in
\square In a n clause formula with v variables and m literals
- Total number of pointers is $2 n$
- On average, visit n / v clauses per assignment
- *No updates to watched literals on backtrack*

Decision Heuristics - Conventional Wisdom

\square "Assign most tightly constrained variable" : e.g. DLIS (Dynamic Largest Individual Sum)
\square Simple and intuitive: At each decision simply choose the assignment that satisfies the most unsatisfied clauses.

- Expensive book-keeping operations required
- Must touch *every* clause that contains a literal that has been set to true. Often restricted to initial (not learned) clauses.
- Need to reverse the process for un-assignment.
- Look ahead algorithms even more compute intensive
C. Li, Anbulagan, "Look-ahead versus look-back for satisfiability problems" Proc. of CP, 1997.
\square Take a more "global" view of the problem

Chaff Contribution 2:
 Activity Based Decision Heuristics

\square VSIDS: Variable State Independent Decaying Sum

- Rank variables by literal count in the initial clause database
- Only increment counts as new (learnt) clauses are added
- Periodically, divide all counts by a constant
\square Quasi-static:
- Static because it doesn't depend on variable state
- Not static because it gradually changes as new clauses are added
- Decay causes bias toward *recent* conflicts.
- Has a beneficial interaction with 2 -literal watching

Activity Based Heuristics and Locality Based Search

- By focusing on a sub-space, the covered spaces tend to coalesce
- More opportunities for resolution since most of the variables are common.
- Variable activity based heuristics lead to locality based search

SAT Solvers: A Condensed History

- Deductive
- Davis-Putnam 1960 [DP]
- Iterative existential quantification by "resolution"
- Backtrack Search
- Davis, Logemann and Loveland 1962 [DLL]
- Exhaustive search for satisfying assignment
\square Conflict Driven Clause Learning [CDCL]
- GRASP: Integrate a constraint learning procedure, 1996
- Locality Based Search
- Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and others, 2001 onwards
- Added focus on efficient implementation
\square "Pre-processing"
- Peephole optimization, e.g. miniSAT, 2005

Pre-Processing of CNF Formulas

N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and Clause Elimination, In Proceedings of SAT 2005
\square Use structural information to simplify
\square Subsumption
\square Self-subsumption
\square Substitution

Pre-Processing: Subsumption

\square Clause C_{1} subsumes clause C_{2} if C_{1} implies C_{2}
\square Subsumed clauses can be discarded

$$
(\bar{x}+y) \cdot(\bar{x}-\bar{z}) \cdot(\cdot(\bar{x}+v) \cdot(\bar{y})
$$

Pre-Processing: Self-Subsumption

\square Subsumption after resolution step

Pre-Processing: Substitution

\square Tseitin transformation introduces definition of variable

\square Occurrence of x_{1} can be eliminated by substitution
\square Corresponds to resolution with defining clauses

Concluding Remarks

\square SAT: Significant shift from theoretical interest to practical impact.
\square Quantum leaps between generations of SAT solvers

- Successful application of diverse CS techniques
- Logic (Deduction and Solving), Search, Caching, Randomization, Data structures, efficient algorithms
\square Engineering developments through experimental computer science
\square Presence of drivers results in maximum progress.
- Electronic design automation - primary driver and main beneficiary
- Software verification- the next frontier
\square Opens attack on even harder problems
- SMT, Max-SAT, QBF...

Sharad Malik and Lintao Zhang. 2009. Boolean satisfiability from theoretical hardness to practical success. Commun. ACM 52, 8 (August 2009), 76-82.

References

- [GJ79] Michael R. Garey and David S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, W. H. Freeman and Company, San Francisco, 1979
- [T68] G. Tseitin, On the complexity of derivation in propositional calculus. In Studies in Constructive Mathematics and Mathematical Logic, Part 2 (1968)
- [DP 60] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the ACM, 7:201-215, 1960
$\square \quad$ [DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theoremproving. Communications of the ACM, 5:394-397, 1962
\square [SS99] J. P. Marques-Silva and Karem A. Sakallah, "GRASP: A Search Algorithm for Propositional Satisfiability", IEEE Trans. Computers, C-48, 5:506-521, 1999.
- [BS97] R. J. Bayardo Jr. and R. C. Schrag "Using CSP look-back techniques to solve real world SAT instances." Proc. AAAI, pp. 203-208, 1997
- [BSOO] Luís Baptista and João Marques-Silva, "Using Randomization and Learning to Solve Hard Real-World Instances of Satisfiability," In Principles and Practice of Constraint Programming - CP 2000, 2000.

References

\square [H07] J. Huang, "The effect of restarts on the efficiency of clause learning," Proceedings of the Twentieth International Joint Conference on Automated Reasoning, 2007

- [MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik. Chaff: Engineering and efficient sat solver. In Proc., 38th Design Automation Conference (DAC2001), June 2001.
$\square \quad$ [ZS96] H. Zhang, M. Stickel, "An efficient algorithm for unit-propagation" In Proceedings of the Fourth International Symposium on Artificial Intelligence and Mathematics, 1996
\square [ESO3] N. Een and N. Sorensson. An extensible SAT solver. In SAT-2003
- [B02] F. Bacchus "Exploring the Computational Tradeoff of more Reasoning and Less Searching", Proc. 5th Int. Symp. Theory and Applications of Satisfiability Testing, pp. 7-16, 2002.
- [GNO2] E.Goldberg and Y.Novikov. BerkMin: a fast and robust SAT-solver. In Proc., DATE-2002, pages 142-1 49, 2002.

References

\square [RO4] L. Ryan, Efficient algorithms for clause-learning SAT solvers, M. Sc. Thesis, Simon Fraser University, 2002.
[EBO5] N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and Clause Elimination, In Proceedings of SAT 2005

- [ZM03] L. Zhang and S. Malik, Validating SAT solvers using an independent resolution-based checker: practical implementations and other applications, In Proceedings of Design Automation and Test in Europe, 2003.
$\square \quad$ [LSB07] M. Lewis, T. Schubert, B. Becker, Multithreaded SAT Solving, In Proceedings of the 2007 Conference on Asia South Pacific Design Automation
\square [HJSO8] Youssef Hamadi, Said Jabbour, and Lakhdar Sais, ManySat: solver description, Microsoft Research-TR-2008-83
- [B86] R. E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation, IEEE Transactions on Computers, vol.C-35, no.8, pp.677-691, Aug. 1986
- [ZM09] Sharad Malik and Lintao Zhang. 2009. Boolean satisfiability from theoretical hardness to practical success. Commun. ACM 52, 8 (August 2009), 7682.

