Satisfiability Checking for Propositional Logic

Viktor Kuncak, EPFL

https://lara.epfl.ch/w/fv

Propositional (Boolean) Logic

Propositional logic is a language for representing Boolean functions £ : {0,1}" — {0,1}.

» sometimes we write L for 0 and T for 1

Grammar of formulas:

P:=x|0|1|PAP|-P|P®P|P—P|P—P

where x denotes variables (identifiers). Corresponding Scala trees:

sealed abstract class Expr

case
case
case
case
case

class
class
class
class
class

Var(id: Identifier) extends Expr
BooleanLiteral(b: Boolean) extends Expr
And(el: Expr, e2: Expr) extends Expr
Or(el: Expr, e2: Expr) extends Expr
Not(e: Expr) extends Expr

Environment and Truth of a Formula
An environment e is a partial map from propositional variables to {0,1}
For vector of n boolean variables p = (py,...,p,) and v=(vq,...,v,) €{0,1}", we
denote [p— V] the environment e given by e(p;) =v; for 1<i<n.
We write e |=F, and define [F]l. =1, to denote that F is true in environment e,
otherwise define [F].=0
Let e={(a,1),(b,1),(c,0)} and F be aA(—=bVc). Then:

[an(=bVc)]. = e(a)A(—e(b)Ve(c)) = 1A(=1V0) = 0

The general definition is recursive:

[[X]]e = e(X)
[0le = 0
[1le = 1
[[Fl/\F21]e = [[Fl]]e/\HF2]]e

[-Fle = -0FAd.

Note: A and = on left and right are different things

Truth of a Formula in Scala

The interpret method in Expr.scala of Labs 02:

def interpret(env: Map[Identifier, Boolean]): Boolean = this match {
case Var(id) = env(id)

case BooleanLiteral(b) = b

case Equal(el, e2) = el.interpret(env) = e2.interpret(env)

case Implies(el, e2) = !el.interpret(env) || e2.interpret(env)
case And(el, e2) = el.interpret(env) & e2.interpret(env)

case Or(el, e2) = el.interpret(env) || e2.interpret(env)

case Xor(el, e2) = el.interpret(env) ™ e2.interpret(env)

case Not(e) = !e.interpret(env)

Satisfiability Problem

Formula F is satisfiable, iff there exists e such that [F].=1.

Otherwise we call F unsatisfiable: when there does not exist e such that [F].=1,
that is, for all e, [F].=0.

Example: let F be aA(—bVc). Then F is satisfiable, with e.g. e={(a,1),(b,0),(c,0)}
Its negation of —F, is also satisfiable, with e.g. e=1{(a,0),(b,0),(c,0)}

SAT is a problem: given a propositional formula, determine whether it is satisfiable.

The problem is decidable because given F we can compute its variables FV/(F) and it
suffices to look at the 2" environments for n= FV/(F). The problem is NP-complete,
but useful heristics exist.

A SAT solver is a program that, given boolean formula F, either:
> returns sat, and, optionally, returns one environment e such that [F].=1, or

> returns unsat and, optionally, returns a proof that no satisfying assignment exists

Formal Proof System

We will consider a some set of logical formulas Z (e.g. propositional logic)
Definition
An proof system is (Z,Infer) where Infer C Z* x Z a decidable set of inference steps.

> a set is decidable iff there is a program to check if an element belongs to it

» given a set S, notation S* denotes all finite sequences with elements from S

We schematically write an inference step ((P4,..., P,), C) € Infer by

P...P,
c

and we say that from Ps,..., P, (premises) we derive C (conclusion).

An inference step is called an axiom instance when n=0 (it has no premises).
Given a proof system (Z,Infer), a proof is a finite sequence of inference steps such
that, for every inference step, each premise is a conclusion of a previous step.

Proof in a Proof System

Definition

Given (Z,Infer) where Infer C.Z* x Z a proof in (Z,Infer) is a finite sequence of
inference steps S,...,S,, € Infer such that, for each S; where 0 </ < m, for each
premise P; of S; there exists 0 < k </ such that P; is the conclusion of Sy.

S ((0Pp.), G)

Given the definition of the proof, we can replace each premise P; with the index k
where P; was the conclusion of S (P;=Conc(S))

A proof is then a sequence of elements of ({0,1,...}*,7) where each S; is of the form
(ki,..., kp, C) for 0< ky,..., k, <i and (Conc(Sk,),...,Conc(Sy), C) € Infer.

Proofs as Dags
We can view proofs as directed acyclic graphs.

Given a proof as a sequence of steps ({0,1,...}*,F), for each (ky,..., k,, C) in the
sequence we introduce a node labelled by C, and directed labelled edges
(Conc(Sk;), j, €) for all premises ky, ..., kp.

To check such proof, for each node, follow all of its incoming edges backwards in the
order of their indices to find the premises, then check that the inference step is in Infer.

A Minimal Propositional Logic Proof System

Formulas & defined by F::=x|0|F—F

Shorthand:

~F=F—0

Inference rules: Infer = P, U P3UMP where: (W: Hilbert system)
P, = {((), F—(G—F))| F,GeZ}
Py = {((), (F=(G—-H)-(F—G)—(F—H)))IF,GHeT}
MP = {((F—-G,F), G)| F,GeZ}

Elements of Py, Py, P3 are all axioms. These are infinite sets, but are given a schematic
way and there is an algorithm to check if a given formula satisfies each of the schemas.

Exercise: draw a DAG representing proof of a— a where a is a propositional variable.

An Example Proof

Hint: use P; for F=a, G=Ea—a, H=a

An Example Proof

Hint: use P; for F=a, G=Ea—a, H=a
Apply MP to the above instance of P3 and an instance of P,, then to another instance
of P2.

Derivation is a Proof from Assumptions

Definition
Given (Z,Infer), Infer €. Z7* x 7 and a set of assumptions AC .7, a derivation from
A'in (Z,Infer) is a proof in (Z,Infer’) where:

Infer’ = Inferu{((), F) | F € A}

Thus, assumptions from A are treated just as axioms.

Definition

We say that F €7 is provable from assumptions A, denoted Al F iff there exists a
derivation from A in Infer that contains an inference step whose conclusion is F.

We write b r F to denote that there exists a proof in Infer containing F as a
conslusion (same as OF e, F).

Consequence and Soundness in Propositional Logic

Given a set AC.Z where & are in propositional logic, and C € &, we say that C is a
semantic consequence of A, denoted A |= C iff for every environment e that defines
all variables in FV(C)U| Jpca FV(P), if [Ple =1 for all P€ A, then then [C]. =1.

Definition
Given (.Z,Infer) where .Z are propositional, step ((P;...P,), C) €Infer is sound iff
{P1,...,P,} |= C. Proof system Infer is sound if every inference step is sound.

For axioms, this definition reduces to saying that C is true for all interpretations, i.e.,
that C is a valid formula (tautology).

Theorem

Let (Z, Infer) where F are propositional logic formulas. If every inference rule in Infer
is sound, then Aty F implies Al=F.

Proof is immediate by induction on the length of the formal proof.

Consequence: Fsr F implies F is a tautology.

A Proof System with Decision and Simplification

Propositional formulas F and G are semantically equivalent if F|=G and G|=F.

Case analysis proof rule ((F,G), F[x:=0]V G[x:=1])| F, G € Z,x—variable}:

F G
Flx:=0]V G[x:=1]

Proof of soundness: consider an environment e (that defines x as well as
FV(F)UFV(G)), and assume [F].=1 and [G].=1.

> If e(x) =0, then [F[x:=0]]c =[Fl.=1.

> If e(x) =1, then [G[x:=1]].=[G].=1.

Simplification rules that preserve equivalence can be applied: OAF ~0, 1AF~ F,
OVF~F, 1IVF~1, =0~1, —21~0.

Introduce inferences {((F),F’) | F’ is simplified F}. These rules are also sound. Call
this Inferp.

Example Derivation

Derivation from A={aA b, 7bV—a}. Draw the arrows to get a proof DAG

(OAb)V(LADL)| |(an0)Vv(anl)

(] 2]

0V (-1v-a)

Example Derivation

Derivation from A={aA b, 7bV—a}. Draw the arrows to get a proof DAG

(OAb)V(LADL)| |(an0)Vv(anl)

(] 2]

0V (-1v-a)

[0]

This derivation shows that: AF0

Proving Unsatisfiability

A set A of formulas is satisfiable if there exists e such that, for every F€ A, [Fl.=1.
» when A={F4,..., F,} the notion is the same as the satisfiability of F{ A...AF,

Otherwise, we call the set A unsatisfiable.

Theorem (Refutation Soundness)
If At infer, O then A is unsatisfiable.

Follows from soundness of Inferp

More interestingly:

Theorem (Refutation Completeness)
If a finite set A is unsatisfiable, then At g, O

Proof hint: take conjunction of formulas in A and existentially quantify it to get A’.
What is the relationship of the truth of A’ and the satisfiability of A? For a
conjunction of formulas F, can you express dx.F using Inferp?

Conjunctive Form, Literals, and Clauses

A propositional literal is either a variable (x) or its negation (—x).
A clause is a disjunction of literals.

For convenience, we can represent clause as a finite set of literals
(because of associativity, commutativity, and idempotence of V).

Example: aV-bV c represented as {a,—b, c}

If Cis a clause then [C]. =1 iff there exists a literal / € C such that [/].=1. We
represent 0 using the empty clause 0.

As for any formulas, a finite set of clauses A can be interpreted as a conjunction.
Thus, a set of clauses can be viewed as a formula in conjunctive normal form:

A={{a}, {b}, {na,—b}}

represents the formula
aAbA(naV-b)

Resolution on Clauses as a Proof System

avbVvc dV-c {a, b,c} {d,~c}

(avbv0O)Vv(dv-l))

aVde {a;byd}

Clausal resolution rule (transitivity of implication, or decision rule for clauses):

CLUix} GUi-x}
GuG

resolve two clauses with respect to x

Theorem (Soundness)

Clausal resolution is sound for all clauses Cy, C; and propositional variable x,
{Guix} QUi EGUG.

Theorem (Refutational Completeness)

A finite set of clauses A is satisfiable if and only if there exists a derivation of the
empty clause from A using clausal resolution.

Exercise

Use resolution to prove that the following formula is valid:

=(aAbA(maVv-b))

Exercise

Use resolution to prove that the following formula is valid:
~(aAbA(—aV-b))

Prove that its negation is unsatisfiable set of clauses:
{a} {b} {—a, b}

Exercise

Use resolution to prove that the following formula is valid:
~(aAbA(naV-b))
Prove that its negation is unsatisfiable set of clauses:

{a} {b} {—a, b}

{—b}

Exercise

Use resolution to prove that the following formula is valid:
~(aAbA(naV-b))
Prove that its negation is unsatisfiable set of clauses:

{a} {b} {—a, b}

{—b}

Unit Resolution

A unit clause is a clause that has precisely one literal; it's of the form {L}
Given a literal L, its dual L is defined by X =-x, =x = x.

Unit resolution is a special case of resolution where at least one of the clauses is a unit
clause:

C {L}
C\{L}
Soundness: if L is true, then L is false, so it can be deleted from a disjunction C.
Subsumption: when applying resolution, if we obtain a clause C’ C C that is subset of

a previosly derived one, we can delete C so we do not consider it any more. Any use of
C can be replaced by use of C’ with progress towards) at least as good.

Unit resolution with {L} can remove all occurences of L and L from our set.

Constructing a Conjunctive Normal Form

How would be transform this formula into a set of clauses:
~(((crna)v(mcAb)) = ((c—b)A(=c— b))
Which equivalences are guaranteed to produce a conjunctive normal form?

(FiAF) — (=F)(=F)
Fl/\(FQVF3) «— (Fl/\FQ)V(F1VF3)
FiV(FaAFR) — (FVRE)A(FLVF)

Constructing a Conjunctive Normal Form

How would be transform this formula into a set of clauses:
~(((cAa)Vv(mcAb)) — ((c—= b)A(-c— b))
Which equivalences are guaranteed to produce a conjunctive normal form?
(FiAF) — (=F)(=F)
Fl/\(FQVF3) A (Fl/\FQ)V(F1VF3)
F1V(F2/\F3) — (F1VF2)/\(F1\/F3)

What is the complexity of such transformation in the general case?

Constructing a Conjunctive Normal Form

How would be transform this formula into a set of clauses:
~(((crna)v(mcAb)) = ((c—b)A(=c— b))
Which equivalences are guaranteed to produce a conjunctive normal form?

(FiAF) — (=F)(=F)
Fl/\(FQVF3) — (Fl/\FQ)V(F1VF3)
F1V(F2/\F3) > (F1VF2)/\(F1\/F3)

What is the complexity of such transformation in the general case?

Are there efficient algorithms for checking satisfiability of formulas in disjunctive
normal form (disjunctions of conjunctions of literals)?

When checking satisfiability, is conversion into conjunctive normal form any better
than disjunctive normal form?

Equivalence and Equisatisfiability
Formulas F; and F, are equivalent iff: F{|=F, and F,|=F;
Formulas F; and F, are equisatisfiable iff: F; is satisfiable whenever F, is satisfiable.

Equivalent formulas are always equisatisfiable, but converse is not the case in general.
For example, formulas a and b are equisatisfiable, because they are both satisfiable.

Consider these two formulas:

> Fi: (aAb)Ve

> Fy: (xe—(aAnb)) A (xVe)
They are equisatisfiable but not equivalent. For example, given
e={(a,1),(b,1),(c,0),(x,0)}, [F1]e =1 whereas [F,]o =0. Interestingly, every choice
of a, b, c that makes F; true can be extended to make F, true appropriately, if we
choose x as [aA b]..

Flatenning as Satisfiability Preserving Transformation
Observation: Let F be a formula, G another formula, and x ¢ FV(F) a propositional
variable. Let F[G := x] denote the result of replacing an occurence of formula G inside
F with x. Then F is equisatisfiable with

(x=G)AF[G:=x]

(Here, = denotes «.)

Proof of equisatisfiability: a satisfying assignment for new formula is also a satisfying
assignment for the old one. Conversely, since x does not occur in F, if [Fl.=1, we
can change e(x) to be defined as [GJ, which will make the new formula true.

(A transformation that produces an equivalent formula: equivalence preserving.)

A transformation that produces an equisatisfiable formula: satisfiability preserving.
Flattening is this satisfiability preserving transformation in any formalism that supports
equality (here: equivalence): pick a subformula and given it a name by a fresh variable,
applying the above observation.

Strategy: apply transformation from smallest non-variable subformulas.

Tseytin's Transformation (see also Calculus of Computation, Section 1.7.3)
Consider formula with 7, A, V,—, =, ®

» Push negation into the propositional variables using De Morgan's laws and
switching between @ and =.
> Repeat: flatten an occurrence of a binary connective whose arguments are literals

» In the resulting conjunction, express each equivalence as a conjunction of clauses:

conjunct clauses
x = (anb) | {=x,a}{~x, b}, {—a—b,x}
x = (avhb) | {—x,a b}, {-a x} {-b,x}
x = (a=b)
x = (a=b)
x = (a®b)

Exercise: Complete the missing entries. Are the rules in the last step equivalence
preserving or only equisatisfiability preserving? Why is the resulting algorithm
polynomial?

Example: Find an Equisatisfiable CNF

~(((cra)v(mcAb)) = ((c = b)A(mc— b))

SAT Solvers

A SAT solver takes as input a set of clauses.

To check satisfiability, convert to equisatisfiable set of clauses in polynomial time using
Tseytin's transformation.

To check validity of a formula, take negation, check satisfiability, then negate the
answer.

How should we check satisfiability of a set of clauses?

> resolution on clauses, favoring unit resolution and applying subsumption
(complete)
Davis and Putnam, 1960

> truth table method: pick one value, then other (fast and space efficient)

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm Sketch

def DPLL(S: Set[Clause]) : Bool =
val S' = subsumption(UnitProp(S))
if § € S' then false
else if S' has only unit clauses then true
else
val L = a literal from a clause of S' where L ¢ S'
DPLL(S" u L) |l DPLL(S' u complement(L))

def UnitProp(S: Set[Clause]): Set[Clause] = // Unit Propagation (BCP)
if C € S, unit U €5, resolve(U,C) ¢ S
then UnitProp((S - C) u {resolve(U,C)}) else S

def subsumption(S: Set[Clause]): Set[Clause] =
if C1,C2 € S such that C1 ¢ C2

then subsumption(S - {C2}) else S

First Approach: Resolution

av-bvf -aV-cvdV-e

First Approach: Resolution

@qbvf qcvdvqe

First Approach: Resolution

(ay-bvf (ma)-cvdv-e
N /

-bvfv-cvdV-e

First Approach: Resolution

(ay-bvf (ma)-cvdv-e
N /

-bvfv-cvdV-e

* Resolution eliminates one variable by
producing a new clause (resolvent) from
complementary ones.

Resolution

(@avb)A(aVv-b)A(-aVc)A(-aV-c)

Resolution

(a (a V/\ (raVc)A(-aV-c)

Resolution

‘/\(a V‘/\ (raVc)A(-aV-c)
\/

aA(-aVc)A(-aV-c)

Resolution

(a (a V/\ (raVc)A(-aV-c)

a4

Resolution

(a (a V/\ (raVc)A(-aV-c)

a4

N/

CA-C

Resolution

(a (a V/\ (raVc)A(-aV-c)

N/~

OO

N/
ce

(Part of) Davis Putnam Algorithm

(Also: when a variable appears in only one
polarity, remove all clauses containing it.)

M. Davis, H. Putnam, A computing procedure for
quantification theory, JACM, 1960.

Problem: space explosion!

DP is proof-oriented. Current algorithms are
model-oriented.

Backtracking Search

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Backtracking Search

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Backtracking Search

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Backtracking Search

(bVv-c) o
A(-aVv bV c)
A(-aV-b)!

Backtracking Search

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Backtracking Search

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Backtracking Search

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Backtracking Search

(bv-c)! o
A(-aVv bV c)
A(-aV-b)

Backtracking Search

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Backtracking Search

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Backtracking Search

(bVv-c) o
A(-aV bV c)!
A(-aV-b)

Backtracking Search

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Backtracking Search

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Backtracking Search

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Backtracking Search

(bV-c) °
A(-aV bV c) . \ﬂa
A(-aV-b)

Backtracking Search

(bV-c) °
A(-aV bV c) . \ﬁa
A(-aV-b)

Backtracking Search

(bV-c) °
A(-aV bV c) . \ﬁa
A(-aV-b)

Boolean Constraint Propagation

* “When all but one literal are falsified, it becomes implied.”

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Boolean Constraint Propagation

* “When all but one literal are falsified, it becomes implied.”

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Boolean Constraint Propagation

* “When all but one literal are falsified, it becomes implied.”

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Boolean Constraint Propagation

* “When all but one literal are falsified, it becomes implied.”

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Boolean Constraint Propagation

* “When all but one literal are falsified, it becomes implied.”

(bV-c) °
A(-aVv bV c)
A(-aV-b)

Boolean Constraint Propagation

* “When all but one literal are falsified, it becomes implied.”

(bV-c) °
A(-aV bV c) . \ﬁa
A(-aV-b)

Boolean Constraint Propagation

* “When all but one literal are falsified, it becomes implied.”

(bV-c) °
A(-aV bV c) . \ﬁa
A(-aV-b)

Boolean Constraint Propagation

* “When all but one literal are falsified, it becomes implied.”

(bV-c) °
A(-aV bV c) . \ﬁa
A(-aV-b)

Two-watched-literal Scheme for BCP

BCP can cut the search tree dramatically...

..but checking each clause for potential
implications is expensive.

Observation: as long as at least two literals in
a clause are “not false”, that clause does not
imply any new literal.

Idea: for each clause, try to maintain that
invariant.

Cutting Deeper: Learning

* Idea: compute new clauses that are logically
implied, and that may trigger more BCP.

* Use an implication graph. When a conflict is
derived, look for a small explanation.

(a v d)
A (@ V-cV=h)
A(@a V hv-m)
A (b Vv k)
A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

Learning

(a v d)
A (@ V-cV=h)
A(@a V hv-m)
A (b Vv k)
A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

Learning

-a

(a V

A (@ V-cV=h)
A(@a V hv-m)
A (b Vv k)

A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

Learning

-a

(a V

A (@ V-cV=h)
A(@a V hv-m)
A (b Vv k)

A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

Learning

(a V

A (@ V-cV=h)
A(@a V hv-m)
A (b Vv k)

A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

 /

e

Learning

(a v

A (@ V-cV=h)
A(@a V hv-m)
A (b Vv k)

A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

 /

e

Learning

(a v

A (@ V-cV=h)
A(@a V hv-m)
A (b Vv k)

A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

°
Ny

C
® ®

Learning

(a v

Aa V-c

A(@a V hv-m)
A (b Vv k)

A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

°
Ny

C
® ®

Learning

(a v

Aa V-c

A(@a V hv-m)
A (b Vv k)

A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

°
=/
&—-h
°

Learning

¢, —-h

(a v

Aa V-c
Afa VvV h
A (b Vv k)
A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

°
=/
&—-h
°

Learning

¢, —-h

(a v

Aa V-c
Afa VvV h
A (b Vv k)
A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

Learning

(a v

Aa V-c
Afa VvV h
A (b Vv k)
A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

Learning

(a v

Aa V-c
Afa VvV h
A (b Vv k)
A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

Learning

)
-a,d
)
¢, -h, -m
(]
-b
)

(a v

Aa V-c

Afa VvV h

A (b VvV
A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

Learning

)
-a,d
)
¢, -h, -m
(]
-b
)

(a v

Aa V-c

Afa VvV h

A (b VvV
A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

Learning

-b k

O——eo

(a v

Aa V-c

Afa VvV h

A (b VvV
A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

Learning

-b k

O——eo

(a v

Aa V-c

Afa VvV h

A (b VvV
A(-gV-cV i
A (-gV h V=i
A (g V hVv-j)
A(g VvV jV-m)

Learning

-b k

O——eo

(a v

Aa V-c

Afa VvV h

A (b VvV

A (-gV -C
A(-gV h V=i
A (g V hVv-j)
Alg VvV jV-m)

Learning

-b k

O—— @

(a V

Aa V-c

Afa V h

A (b VvV

A (-gV -C
A(-gV h V=i
A (g V hVv-j)
Alg VvV jV-m)

Learning

d i

[] ()
-a / c //'7 -b k
e (% o— @

&F

o=

] &

(a V

A (a V-c
Afa V h
A (b VvV

A (-gV -C ”
A (-gV h ﬁ)
Alg V hv-j

A(g V j V-m)

g/.c//. -

O——eo

Learning

k

(a V

A (a V-c
Afa V h
A (b VvV

A (-gV -C ”
A (-gV h ﬁ)
Alg V hv-j

A(g V j V-m)

oS T
&;h O\

I\

m
e

-

Learning

-b k

O——eo

Learning

/' bk
O—— @

(]
-a,d
(]
-b, k
(]
g _'il i
()

Learning

/' bk
O—— @

-(c A g A =h)

Learning

", ®
//'7 -b k
< 8/ o—eo

. ~(c A g A -h)

...and backtrack to c, then assert -g !

Learning

* Learning has a dramatically positive impact.

* Learning also makes restarts possible:

— Idea: after some number of literal assignments,
drop the assignment stack and restart from zero.

— Goal: avoid locally difficult subtrees.

— Clauses encode previous knowledge and make
new search faster.

Picking Variable Assignments

* Potential strategies:
— Fixed ordering,
— Frequency based,
— “Maximal impact”.

Picking Variable Assignments

* Potential strategies:
— Fixed ordering,
— Frequency based,
— “Maximal impact”.

* Overall favorite are activity-based heuristics:
— Pick variables that you have seen a lot in conflicts.
— Decay weights to favor recent conflicts.
— Cheap to compute/update.

More Engineering...

» SAT dirty little secret: the enormous impact of
preprocessing.

— Problems are generated automatically
(“compiled”); many redundancies, symmetry, etc.

— Preprocessors look for subsumed clauses,
equivalent clauses, etc.

— Typically, run with timeout, then DPLL search.

More Engineering...

» SAT dirty little secret: the enormous impact of
preprocessing.

— Problems are generated automatically
(“compiled”); many redundancies, symmetry, etc.

— Preprocessors look for subsumed clauses,
equivalent clauses, etc.

— Typically, run with timeout, then DPLL search.

e Parallel SAT

— State-of-the-art is to run instances with different
parameters in parallel.

Beyond SAT

e SMT solvers

—Idea: use a SAT solver for the propositional
structure, and theory solvers for conjunction of
literals.

* QBF
— SAT with quantifiers. PSPACE complete.

