
Exercise: Snack Dispenser
Snack dispenser has 6 levels with 4 slots each. Each slot can hold 10 items. Each item
costs 2 CHF. The only way to operate a machine is to insert 1 CHF coin into
temporary storage (one step), which must be done two times, then select the
refreshment (in one step), which immediately dispenses the snack or cancels and
returns coins if none is available in the slot, or if the stable coin storage is full. The
machine can hold up to 500 CHF in its stable coin storage. It starts full with items but
with no coins. Describe this transition system and estimate the cardinality of the set of
all of its states. Can the stable storage ever hold 99 coins? 100 coints? 490 coins?'

&

$

%

10 10 10 10
10 10 10 10
10 10 10 10
10 10 10 10
10 10 10 10
10 10 10 10 0 coins

states: 104·6 ·501 ·2= 1024 ·1002> 1027

coins: 0→ 2→ . . .→ 98→ 100→ 240 ·2= 480

Exercise: Snack Dispenser
Snack dispenser has 6 levels with 4 slots each. Each slot can hold 10 items. Each item
costs 2 CHF. The only way to operate a machine is to insert 1 CHF coin into
temporary storage (one step), which must be done two times, then select the
refreshment (in one step), which immediately dispenses the snack or cancels and
returns coins if none is available in the slot, or if the stable coin storage is full. The
machine can hold up to 500 CHF in its stable coin storage. It starts full with items but
with no coins. Describe this transition system and estimate the cardinality of the set of
all of its states. Can the stable storage ever hold 99 coins? 100 coints? 490 coins?'

&

$

%

10 10 10 10
10 10 10 10
10 10 10 10
10 10 10 10
10 10 10 10
10 10 10 10 0 coins

states: 104·6 ·501 ·2= 1024 ·1002> 1027

coins: 0→ 2→ . . .→ 98→ 100→ 240 ·2= 480

Exercise: Snack Dispenser
Snack dispenser has 6 levels with 4 slots each. Each slot can hold 10 items. Each item
costs 2 CHF. The only way to operate a machine is to insert 1 CHF coin into
temporary storage (one step), which must be done two times, then select the
refreshment (in one step), which immediately dispenses the snack or cancels and
returns coins if none is available in the slot, or if the stable coin storage is full. The
machine can hold up to 500 CHF in its stable coin storage. It starts full with items but
with no coins. Describe this transition system and estimate the cardinality of the set of
all of its states. Can the stable storage ever hold 99 coins? 100 coints? 490 coins?'

&

$

%

10 10 10 10
10 10 10 10
10 10 10 10
10 10 10 10
10 10 10 10
10 10 10 10 0 coins

states: 104·6 ·501 ·2= 1024 ·1002> 1027

coins: 0→ 2→ . . .→ 98→ 100→ 240 ·2= 480

Sets of States (Reachable, Invariants) are Too Large to Store Explicitly

Approach: use formulas and data structure to represent them compactly

For finite state systems: use propositional formulas.

Two important algorithms:
▶ bounded model checking using SAT solvers
▶ (reachability) model checking using binary decision diagrams (BDDs)

These algorithms play important role in model checking hardware designs and are basis
for tools and more complex algorithms.

Encoding Finite Transition Systems with Bits: Sequential Circuit
Consider a deterministic finite-state transition system: M =(S , I , r ,A)
If we pick n≥ log2 |S | and m≥ log2 |A|, we can represent the finite-state transition
system using boolean functions:
▶ each element of S as s̄ ∈ {0,1}n, so S = {0,1}n
▶ each element of A as ā ∈ {0,1}m, so A= {0,1}m
▶ initial states I ⊆ S by the characteristic function {0,1}n→{0,1}
▶ deterministic transition relation r ⊆ S ×A×S as function (S ×A)→ S, that is,
{0,1}n×{0,1}m→{0,1}n

s̄ ∈ {0,1}n r

ā ∈ {0,1}m

(For non-deterministic systems, we represent r as (S ×A×S)→{0,1})

Example: Blinking Lights

▶ S = {0,1} (1 = “light on”)
▶ A= {0,1} (1 = “toggle light”)
▶ I(s)= (s = 0)
▶ r(s ,a)= s ⊕a

{0,1} ⊕

{0,1}

Example trace:

0 ⊕

1

1 ⊕

0

1 ⊕

1

0 ⊕

1

1

Example: Accumulator with Add and Clear Commands

▶ S = {0,1}n (value of accumulator)
▶ A= {0,1}n×{0,1} (number to add, clear signal)
▶ I(s)= (s = 0n)

▶ r(s ,(i ,c))= if (c) then 0 else s +n i
(+n is addition modulo 2n)

{0,1}n r

{0,1}n×{0,1}

Example trace:

0000 r

1011,0

1011 r

0001,0

1100 r

0101,1

0000

Encoding Finite Transition Systems with Bits: Sequential Circuit
Consider a deterministic finite-state transition system: M =(S , I , r ,A)
If we pick n≥ log2 |S | and m≥ log2 |A|, we can represent the finite-state transition
system using boolean functions:
▶ each element of S as s̄ ∈ {0,1}n, so S = {0,1}n
▶ each element of A as ā ∈ {0,1}m, so A= {0,1}m
▶ initial states I ⊆ S by the characteristic function {0,1}n→{0,1}
▶ deterministic transition relation r ⊆ S ×A×S as function (S ×A×S)→ S, that is,
{0,1}n×{0,1}m→{0,1}n

s̄ ∈ {0,1}n r

ā ∈ {0,1}m

How to represent boolean functions, like r , efficiently?

Boolean Function Representation: Table
Let r : {0,1}n×{0,1}m→{0,1}n
List each of the {0,1}n+m inputs and specify the result
When s ,a ∈ {0,1}4 and represent addition of 4-bit non-negative integers modulo 16:

s a r(s ,a)
0000 0000 0000
0000 0001 0001
0000 0010 0010

· · ·
0001 0000 0001
0001 0001 0010

· · ·
1111 1111 1110

24+4 = 256 columns

In general, we cannot do better than truth table (there are that many different
functions), but truth table always has bad representation size, even for functions like
+4.

Boolean Function Representation: Formulas

Let r ⊆ {0,1}n×{0,1}m×{0,1}n
We represent the condition

((s1, . . . ,sn),(a1, . . . ,am),(s ′1, . . . ,s ′m)) ∈ r

by writing a propositional formula with variables s1, . . . ,sn, a1, . . . ,am, s ′1, . . . ,s ′m that is
true precisely when the tuple belongs to r .
If p is a propositional variable and v ∈ {0,1} then we define pv by p1 = p and p0 =¬p.
We can always represent r by a propositional formula in disjunctive normal form:

∨
((v1,...,vn),(u1,...,um),(v ′1,...,v ′n))∈r

� ∧
1≤i≤n

svi
i ∧
∧

1≤i≤m
aui

i ∧
∧

1≤i≤n
(s ′i)v ′i
�

so we do not lose on generality. Moreover, for many boolean functions, we can write
down smaller formulas.

Boolean Function Representation: Circuits
Formulas correspond to trees: variables are leaves, operations internal nodes.
More efficient representation that exploits sharing: directed acyclic graphs (DAGs).
We can view DAGs as formulas with auxiliary variable definitions.
Example for simple (ripple-carry) n-bit adder:
▶ input numbers: s1 . . .sn and a1 . . .an
▶ output: s ′1 . . .s ′n

The formula with auxiliary variables c1, . . . ,cn+1:

c1 = 0∧
n∧

i=1
(s ′i = si ⊕ai ⊕ ci)∧ (ci+1 =(si ∧ai)∨ (si ∧ ci)∨ (ai ∧ ci))

We can implement such definitions in hardware: route an output of one gate to
multiple other gates.
To get back a tree: substitute all auxiliary variables ci , but we get much bigger
formula. Or, existentially quantify all auxiliary variables.

Observation about Eliminating Variables

Let F ,G be propositional formulas and c a propositional variable
Let F [c :=G] denote the result of replacing in F each occurrence of c by G :

c[c :=G] = G
(F1 ∧F2)[c :=G] = F1[c :=G]∧F2[c :=G]
(F1 ∨F2)[c :=G] = F1[c :=G]∨F2[c :=G]

(¬F1)[c :=G] = ¬(F1[c :=G])

We also generalize to simultaneous replacement of many variables, F [c̄ := Ḡ]
Then following formulas are equivalent (have same truth for all free variables):
▶ F [c :=G]

▶ ∃c .((c =G)∧F)
▶ ∀c .((c =G)→ F)

Note: free variables are the variables occurring in the formula minus quantified ones (c)

Recap: Free Variables for Quantified Boolean Formulas
Quantified boolan formulas (QBF) are build from propositional variables and constants
0,1 using ∧,∨,¬,→,↔,∃,∀
(We also write = for↔.) A boolean formula is a QBF without quantifiers ∀,∃.
Definition of free variables of a formula:

FV (v) = {v} when v is a propositional variable
FV (F1 ∧F2) = FV (F1)∪FV (F2)
FV (F1 ∨F2) = FV (F1)∪FV (F2)

FV (F1→ F2) = FV (F1)∪FV (F2)
FV (¬F1) = FV (F1)

FV (∃v .F1) = FV (F1) \ {v}
FV (∀v .F1) = FV (F1) \ {v}

An environment e maps propositional variables to {0,1} (sometimes written {⊥,⊤})
For vector of n boolean variables p̄ =(p1, . . . ,pn) and v̄ =(v1, . . . ,vn) ∈ {0,1}n, we
denote [p̄ 7→ v̄] the environment e given by e(pi)= vi for 1≤ i ≤ n.
We write e |= F to denote that F is true in environment e.

Recap: Validity, Satisfiability, Equivalence
Definition: Formula F is satisfiable, iff there exists e such that e |= F . Otherwise it is
called unsatisfiable.
A SAT solver is a program that, given boolean formula F , either gives one satisfying
assignment e such that e |= F (if such e exists), or else returns unsat (implying that
no satisfying assignment exists).

Definition: Formula F is valid, iff for all e, e |= F .

Observation: F is valid iff ¬F is unsatisfiable.

Definition: Formulas F and G are equivalent iff for every e that defines all variables in
FV (F)∪FV (G), we have: e |= F iff e |=G .

Observation: F and G are equivalent iff F↔G is valid.

∃p.F is equivalent to P[p := 0]∨P[p := 1] whereas ∀p.F to P[p := 0]∧P[p := 1]

Formula Representation of Sequential Circuits
We represent sequential circuit as C =(s̄ , Init ,R , x̄ , ā) where:
▶ s̄ =(s1, . . . ,sn) is the vector of state variables
▶ Init is a boolean formula with FV (Init)⊆ {s1, . . . ,sn}
▶ ā=(a1, . . . ,sm) is the vector of input variables
▶ x̄ =(x1, . . . ,xk) is the vector of auxiliary variables (for R)
▶ R is a boolean formula called transition formula, for which

FV (R)⊆ {s1, . . . ,sn,a1, . . . ,am,x1, . . . ,xk ,s ′1, . . . ,s ′n}
Transition system for C is (S , I , r ,A) where S = {0,1}n, A= {0,1}m,
▶ I = {v̄ ∈ {0,1}n | [s̄ 7→ v̄] |= Init}
▶ r = {(v̄ , ū, v̄ ′) ∈ {0,1}n+m+n | [(s̄ , ā, s̄ ′) 7→ (v̄ , ū, v̄ ′)] |= ∃x̄ .R}

Auxiliary variables x̄ are treated as existentially quantified, can use conjucts
xi =E(s̄ , ā, x̄) to express intermediate values.

Checking Inductive Invariant using SAT Queries
Given sequential circuit representation C =(s̄ , Init ,R , x̄ , ā) and a formala Inv with
FV (Inv)⊆ {s1, . . . ,sn}, how do we check that Inv is an inductive invariant?

Let us write negations of “Init ⊆ Inv” and “Inv • r ⊆ Inv”
▶ An initial state is not included in invariant:

Init ∧¬Inv

▶ There is a state satisfying invariant, leading to a state that breaks invariant:

Inv︸︷︷︸
s̄

∧ R︸︷︷︸
s̄ ,ā,x̄ ,s̄ ′

∧¬Inv [s̄ := s̄ ′]︸ ︷︷ ︸
s̄ ′

Note that ā, x̄ variables are also existentially quantified, as they should be.

We can check if a formula is an inductive invariant using two queries to a SAT solver
and making sure that they both return unsat.

Checking Inductive Invariant using SAT Queries
Given sequential circuit representation C =(s̄ , Init ,R , x̄ , ā) and a formala Inv with
FV (Inv)⊆ {s1, . . . ,sn}, how do we check that Inv is an inductive invariant?
Let us write negations of “Init ⊆ Inv” and “Inv • r ⊆ Inv”
▶ An initial state is not included in invariant:

Init ∧¬Inv

▶ There is a state satisfying invariant, leading to a state that breaks invariant:

Inv︸︷︷︸
s̄

∧ R︸︷︷︸
s̄ ,ā,x̄ ,s̄ ′

∧¬Inv [s̄ := s̄ ′]︸ ︷︷ ︸
s̄ ′

Note that ā, x̄ variables are also existentially quantified, as they should be.

We can check if a formula is an inductive invariant using two queries to a SAT solver
and making sure that they both return unsat.

Checking Inductive Invariant using SAT Queries
Given sequential circuit representation C =(s̄ , Init ,R , x̄ , ā) and a formala Inv with
FV (Inv)⊆ {s1, . . . ,sn}, how do we check that Inv is an inductive invariant?
Let us write negations of “Init ⊆ Inv” and “Inv • r ⊆ Inv”
▶ An initial state is not included in invariant:

Init ∧¬Inv

▶ There is a state satisfying invariant, leading to a state that breaks invariant:

Inv︸︷︷︸
s̄

∧ R︸︷︷︸
s̄ ,ā,x̄ ,s̄ ′

∧¬Inv [s̄ := s̄ ′]︸ ︷︷ ︸
s̄ ′

Note that ā, x̄ variables are also existentially quantified, as they should be.

We can check if a formula is an inductive invariant using two queries to a SAT solver
and making sure that they both return unsat.

Bounded Model Checking for Reachability
We construct a propositional formula Tj such that formula is satisfiable if and only if
there exist a trace of length j starting from initial state that satisfies error formula E
where FV (E)⊆ {s1, . . . ,sn}.
s̄ i denotes state variables in step i .
āi denotes inputs in step i .

s̄0 R0

ā0

s̄1 R1

ā1

· · · s j Rj

āj

s̄ j+1

Tj ≡ Init[s̄ := s̄0] ∧
� j−1∧

i=0
Ri

�
∧ E [s̄ := s̄ j]

where Ri is our transition formula, with variables renamed:
Ri ≡ R[(s̄ , ā, x̄ , s̄ ′) := (s̄ i , āi , x̄ i , s̄ i+1)]

Write These Conditions Using (Quantified) Boolean Formulas

1. Does a property P hold in all states reachable in at most k steps?
2. Is there a simple path (no repeated states) of length j from state satisfying F1 to

a state satisfying F2?
3. Is the system input enabled in every state: no matter what the input is, there

exists a possible next state?
4. Can the system reach in j steps a state where, for some inputs, it cannot make a

step?
5. Is a given formula invariant (not necessarily inductive)?
6. Is it possible that some sequence of inputs of the system make it loop forever?

Work Sheet 1

Work Sheet 2

Work Sheet 3

Work Sheet 4

Work Sheet 5

Work Sheet 6

Work Sheet 7

Work Sheet 8

Work Sheet 9

Work Sheet 10

