
Formal Verification (CS-550)

Viktor Kuncak, EPFL

https://lara.epfl.ch/w/fv

https://lara.epfl.ch/w/fv

Formal Verification

Goal: rigorously prove that computer systems “do what they should do”

“do what they should do” = satisfy a specification

Define a mathematically rigorous notion of a system satisfying a specification

Use combination of automated tools and human effort to construct the proof

We will learn how to use and build tools for computer-aided formal verification

Comparison to Testing
We test computer systems and we should.
In formal verification, we go beyond: build models and prove that the systems work.

(But, I have a really fast fuzz tester!)

Suppose we want to test that addition of two Long integer values is commutative by
trying all possible values, and we can run 10 tests every nanosecond (10GHz rate).
How much time would it take to cover all cases?

Number of tests: 264 ·264 = 2128 > 1038

Seconds: 1028

Days: 1.15 ·1023

Years: 3.15 ·1020

Billions of years: 3.15 ·1011

Wait for the universe to “big bang” ten billion times (and x +(y +z)== (x +y)+z ?)

Comparison to Testing
We test computer systems and we should.
In formal verification, we go beyond: build models and prove that the systems work.

(But, I have a really fast fuzz tester!)

Suppose we want to test that addition of two Long integer values is commutative by
trying all possible values, and we can run 10 tests every nanosecond (10GHz rate).
How much time would it take to cover all cases?

Number of tests: 264 ·264 = 2128 > 1038

Seconds: 1028

Days: 1.15 ·1023

Years: 3.15 ·1020

Billions of years: 3.15 ·1011

Wait for the universe to “big bang” ten billion times (and x +(y +z)== (x +y)+z ?)

Comparison to Testing
We test computer systems and we should.
In formal verification, we go beyond: build models and prove that the systems work.

(But, I have a really fast fuzz tester!)

Suppose we want to test that addition of two Long integer values is commutative by
trying all possible values, and we can run 10 tests every nanosecond (10GHz rate).
How much time would it take to cover all cases?

Number of tests: 264 ·264 = 2128 > 1038

Seconds: 1028

Days: 1.15 ·1023

Years: 3.15 ·1020

Billions of years: 3.15 ·1011

Wait for the universe to “big bang” ten billion times (and x +(y +z)== (x +y)+z ?)

Comparison to Testing
We test computer systems and we should.
In formal verification, we go beyond: build models and prove that the systems work.

(But, I have a really fast fuzz tester!)

Suppose we want to test that addition of two Long integer values is commutative by
trying all possible values, and we can run 10 tests every nanosecond (10GHz rate).
How much time would it take to cover all cases?

Number of tests: 264 ·264 = 2128 > 1038

Seconds: 1028

Days: 1.15 ·1023

Years: 3.15 ·1020

Billions of years: 3.15 ·1011

Wait for the universe to “big bang” ten billion times (and x +(y +z)== (x +y)+z ?)

Comparison to Testing
We test computer systems and we should.
In formal verification, we go beyond: build models and prove that the systems work.

(But, I have a really fast fuzz tester!)

Suppose we want to test that addition of two Long integer values is commutative by
trying all possible values, and we can run 10 tests every nanosecond (10GHz rate).
How much time would it take to cover all cases?

Number of tests: 264 ·264 = 2128 > 1038

Seconds: 1028

Days: 1.15 ·1023

Years: 3.15 ·1020

Billions of years: 3.15 ·1011

Wait for the universe to “big bang” ten billion times (and x +(y +z)== (x +y)+z ?)

Using Software Verifier and Satisfiability Modulo Theory (SMT) Solver

def addCom0(x: Long, y: Long): Unit = {
} ensuring(_ ٦=> x + y ٦== y + x)

> stainless-scalac AddCom.scala

addCom0 postcondition valid U:smt-z3 (0.2 seconds)

Proof Assistant Approach: Prove for n Bits
type Digits = List[Boolean]; val zero = Nil[Boolean]()
def add(x: Digits, y: Digits, carry: Boolean): Digits = {
require(x.length ٦== y.length)
(x,y) match {
case (Nil(), Nil()) ٦=> if (carry) true٦::zero else zero
case (x1٦::xs, y1٦::ys) ٦=> {
val z = x1 ^ y1 ^ carry
val carry1 = (x1 ٦&& y1) ٦|| (x1 ٦&& carry) ٦|| (y1 ٦&& carry)

z ٦:: add(xs, ys, carry1) } } }
def addCom(x: Digits, y: Digits, carry: Boolean): Unit = {
require(x.length ٦== y.length) ٦// proof by induction:
(x,y) match {
case (x1٦::xs, y1٦::ys) ٦=> {
val carry1 = (x1 ٦&& y1) ٦|| (x1 ٦&& carry) ٦|| (y1 ٦&& carry)
addCom(xs, ys, carry1) }
case _ ٦=> () }

} ensuring(_ ٦=> add(x, y, carry) ٦== add(y, x, carry)) ٦// property

Modeling and Semantics

We will see how to verify recursive functions using SMT solvers
But how do we verify
▶ higher-order functions
▶ dynamically allocated data structures (mutable trees, graphs)
▶ distributed systems

We show how we can represent them as functional programs
▶ see already the talk by J Moore “Machines Reasoning about Machines”

Overview of the Course

part application area tools automation
I finite-state systems model checkers, SAT solvers high
II all systems, math proof assistants low but can invoke others
III software verifiers, SMT solvers medium
IV modeling intermediate language verifiers N/A

Impact of Verification: Software Disasters

▶ Ariane 5 rocket maiden flight explosion: http://www.inf.ed.ac.uk/
teaching/courses/seoc/2008_2009/resources/ariane5.pdf
▶ Mars Polar orbiter loss:
https://en.wikipedia.org/wiki/Mars_Polar_Lander ”most likely
cause of the mishap was a software error that incorrectly identified vibrations”
▶ Accidents in various Boeing models (before: 777, in recent year others)
▶ Northeast blackout of 2003:
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
(race condition)
▶ Radio therapy machine Therac-25:
https://en.wikipedia.org/wiki/Therac-25

http://www.inf.ed.ac.uk/teaching/courses/seoc/2008_2009/resources/ariane5.pdf
http://www.inf.ed.ac.uk/teaching/courses/seoc/2008_2009/resources/ariane5.pdf
https://en.wikipedia.org/wiki/Mars_Polar_Lander
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
https://en.wikipedia.org/wiki/Therac-25

Successful Companies and Startups

▶ AbsInt products, many originally from academia:
https://www.absint.com/products.htm
▶ Verified control software of Airbus 340, 380 using ASTRÉE static analyzer
▶ Formally proven correct C compiler CompCert (originally by Xavier Leroy)
▶ worst-case execution time analysis, . . .

▶ Formally verified microkernel seL4 and stack built on top by Data61 (formerly
Nicta), used Isabelle
▶ Coverity static analysis company prevent acuired for USD 380M by Synopsis
▶ Jasper Design Automation acquired by Cadence
▶ Semmle datalog analysis: just acquired by GitHub
▶ Monoidics: acquired by Facebook, running analysis on facebook phone client
▶ Microsoft Static Driver Verifier: shipped in 2000-s as part of driver validation

https://www.absint.com/products.htm

Transition System

They are similar to finite-state machines
Define transition system as (S , I , r ,A):
▶ S - the set containing all states of the system.

If S is finite, we have a finite-state system
▶ I ⊆ S is the set of possible initial states of the system
▶ r ⊆ S ×A×S - transition relation; (s ,a,s ′) ∈ r means:

with the environment signal a, system can move in one step from state s to s ′
▶ we mostly assume that a is the input to the system
▶ in the special case that r : S ×A→ S, we say the system is deterministic

▶ A - set of signals with which the system communicates with the environment
To establish that a system is well behaved we often introduce a set of error states
E ⊆ S that we never want the system to reach, as well as its complement, the set
G ⊆ S of good states.

A Trace of the System M =(S , I , r ,A)

A finite or infinite sequence s0,a0,s1,a1,s2, . . . starting from s0 ∈ I with steps given by r :

s0 s0 ∈ I
↓ a0 a0 ∈A
s1 (s0,a0,s1) ∈ r
↓ a1 a1 ∈A
s2 (s1,a1,s2) ∈ r
. . .

In general, we require (si ,ai ,si+1) ∈ r for all i in the length of the sequence.
If the trace is finite, we assume it ends with a state sn and call n its length.
Traces(M) is the set of all traces of M
Reachable states Reach(M): states sn for which there exists a trace that ends in sn,
Reach(M)= {sn | ∃n.∃(s0,a0,s1,a1, . . . ,sn) ∈Traces(M)}

Algorithm: Explicit-State Reachability Checking

▶ Input: M =(S , I , r ,A) where S is finite, E ⊆ S (error states)
▶ Output: either a (s0,a0,s1,a1, . . . ,sn) ∈Traces(M) where sn ∈E , or

the answer “Safe” if no such trace exists
▶ Idea: graph reachability from nodes in I, following edges in (s ,a,s ′) ∈ r as long as

we have not seen s ′ before
▶ To be able to report the trace, build a directed reachability graph of explored

edges (never create cycles or duplicate nodes)
▶ If no edge in r leads to a previusly unexplored node, we stop

(this must eventually happen because S is finite)

Explicit-State Reachability Checking Algorithm: Graph Search

Graph reachability using a work list
▶ Input: M =(S , I , r ,A) where S is finite, E ⊆ S (error states)
▶ Output: either a (s0,a0,s1,a1, . . . ,sn) ∈Traces(M) where sn ∈E , or

“safe” if no such trace exists
For

efficiency, differentiate three sets of nodes in a graph:
▶ set of all nodes
▶ exlored nodes: whose all successors we have explored
▶ frontier nodes (worklist): we have explored them but not their successors

Key operation: take a frontier node s, add all of its unexplored non-frontier
successors to the frontier, move s to explored.

Exercise 1: Bounded Counter
Consider a system with S = {0,1,2, . . . ,6} that takes signals A= {+,−} with initial
state 0 and counts up by 2 on + and down by 2 on − but never goes below 0 or above
6 (stays in the state if needed). Write down the transition system definition and prove
that the state E = {3} is not reachable using explicit-state reachability algorithm. Draw
the reachability graph.

Simplified Transition Relation and Reachable States
Let M =(S , I , r ,A) be a transition system.
Define r̄ = {(s ,s ′) | ∃a ∈A.(s ,a,s ′) ∈ r}
Note: even if r is deterministic, r̄ can become non-deterministic

Composition of relations: r1 ◦ r2 = {(x ,z) | ∃y .(x ,y) ∈ r1 ∧ (y ,z) ∈ r2}
Iteration (paths of length n): r0

1 =∆= {(x ,x) | x ∈A}, rn+1
1 = r1 ◦ rn

1
Transitive closure of r1:

r ∗1 =
∪
n≥0

rn
1 relates endpoints of all finite paths in graph given by r1

Image of a set under relation: r1[X] = {y | ∃x ∈X .(x ,y) ∈ r1}

Theorem
Reach(M)= (r̄)∗[I] (end points of all finite paths starting in I)

Reachable States Using post
M =(S , I , r ,A)

If X ⊆ S, define post(X)= r̄ [X]

Define post0(X)=X , postn+1(X)= post(postn(X))

Theorem ∪
n≥0

postn(I)=Reach(M)

Proof (by swapping existential quantifiers in definitions of image, composition, and
∪

):

∪
n≥0

postn(I)=
∪
n≥0

r̄ [. . . r̄ [I] . . .] =
∪
n≥0

r̄n[I] =
�∪

n≥0
r̄n
�
[I] = r̄ ∗[I]

Invariant and Inductive Invariant

Invariant P of the system M is any superset of reachable states: Reach(M)⊆P.
▶ P is a property satisfied by all reachable states

(though not all states in P need to be reachable).
▶ In every trace, by definition si ∈Reach(M)⊆P. So the property si ∈P remains

in-variant (does not change) as the system makes a step from i to i +1

Inductive invariant Ind is a set Ind ⊆ S that satisfies the following:
▶ I ⊆ Ind (holds initially)
▶ if s ∈ Ind and (s ,a,s ′) ∈ r , then s ′ ∈ Ind

Exercise: prove that every inductive invariant is an invariant.

For invariant I, Ind is an inductive strengthening of I if Ind is an inductive invariant
and Ind ⊆ I (Ind is an inductive hypothesis that proves Reach(M)⊆ Ind ⊆ I)

Invariants in Bounded Counter

Consider again the bounded counter system M =(S , I , r ,A) with S = {0,1,2, . . . ,6} and
A= {+,−}.
Let G1 = S \ {3}= {0,1,2,4,5,6}
▶ Is G1 an invariant? Prove or disprove.
▶ Is G1 an inductive invariant? Prove or disprove.

Same question for G2 = {4,5,6}
Same question for G3 = {0,2,4,6}
set invariant? inductive invariant?
G1 yes no
G2 no no
G3 yes yes

Checking Inductive Invariants in Stainless
def check(inputs: List[Input]) = {
var remains: List[Input] = inputs
var left = true
var state: Int = 0
(while (left) {
remains match {
case Nil() ٦=> left = false

case input٦::_ ٦=> {
input match {
case Plus if (state <= 4) ٦=> state += 2
case Minus if (state ٦>= 2) ٦=> state -= 2
case _ ٦=> ()

}
remains = remains.tail

}
}

}) invariant (G3.contains(state)) ٦// try with G1, G2, G3
}

