Encoding Finite Transition Systems with Bits: Sequential Circuit

Consider a deterministic finite-state transition system: M=(S,/,r, A)
If we pick n>log,|S| and m>log,|A|, we can represent the finite-state transition
system using boolean functions:

» each element of S as 5€{0,1}", so S={0,1}"
» each element of A as a€{0,1}™, so A={0,1}"
> initial states / € S by the characteristic function {0,1}" — {0, 1}

> deterministic transition relation r CSx Ax S as function (Sx A) — S, that is,

{0,1}" x {0,1}" — {0,1}"
3€{0,1}™

5e€{0,1}" —| r

7

(For non-deterministic systems, we represent r as (Sx Ax S)—{0,1})

Example: Blinking Lights

{0,1}
» S={0,1} (1 = “light on")
> A={0,1} (1 = “toggle light") l
> I(s)=(s=0)

{0,1} ——| o

> r(s,a)=soa

Example trace:
1 0 1

| A |

0 @ 1 @ 1 &

Example: Accumulator with Add and Clear Commands

» S={0,1}" (value of accumulator)

» A={0,1}"x{0,1} (number to add, clear signal)

> 1(s) = (s=0")
» r(s,(i,c))=if (c) then O else s+, i
(+, is addition modulo 27)

Example trace:

0000 —>

|

1011,0

r

—> 1011

0001,0

|

1100

{0,1}" x {0, 1}

{0,1}" —>

7

0101,1

|

l

r

0000

Encoding Finite Transition Systems with Bits: Sequential Circuit

Consider a deterministic finite-state transition system: M=(S,/,r, A)
If we pick n>log,|S| and m>log,|A|, we can represent the finite-state transition
system using boolean functions:

» each element of S as s5€{0,1}", so S§={0,1}"

» each element of A as a€{0,1}"™, so A={0,1}"

> initial states / €S by the characteristic function {0,1}" — {0, 1}

> deterministic transition relation r € Sx Ax S as function (SxAxS)— S, that is,

{0,1}" x {0,1}™ — {0, 1}"

ae{0,1}™

l How to represent boolean functions, like r, efficiently?
5€{0,1}" —| r

N7

Boolean Function Representation: Circuits

Formulas correspond to trees: variables are leaves, operations internal nodes.

More efficient representation that exploits sharing: directed acyclic graphs (DAGs).
We can view DAGs as formulas with auxiliary variable definitions.

Example for simple (ripple-carry) n-bit adder:

» input numbers: s;...s, and a;...a,

/

> output: sj...s/

The formula with auxiliary variables ¢y, ..., cpy1:

n
c1=0A /\(S;ZS,'@Q,'@C,')/\(CH_]_ = (S,‘/\E),’)V(S,'/\C,')V(Q,'/\C,’))
i=1
We can implement such definitions in hardware: route an output of one gate to
multiple other gates.

To get back a tree: substitute all auxiliary variables ¢;, but we get much bigger
formula. Or, existentially quantify all auxiliary variables.

Observation about Eliminating Variables

Let F, G be propositional formulas and ¢ a propositional variable
Let F[c:= G| denote the result of replacing in F each occurrence of ¢ by G:

cle:=G] = G
(FLAR)[c:=G] = Filc:=G]AR[c:=G]
(FLVFR)[c:=G] = Fc:=G|VFR[c:=G]

(=F)[c:=G] = =(Filc:=G])

We also generalize to simultaneous replacement of many variables, F[c:= C_;]
Then following formulas are equivalent (have same truth for all free variables):

> Flc:=G]
» Jc.((c=G)AF)
» VYe.((c=G)—F)

Note: free variables are the variables occurring in the formula minus quantified ones (¢c)

Recap: Free Variables for Quantified Boolean Formulas

Quantified boolan formulas (QBF) are build from propositional variables and constants
0,1 using A, V,7,—,—,3,V

(We also write = for «—.) A boolean formula is a QBF without quantifiers V,3.
Definition of free variables of a formula:

FV(v) = {v} when v is a propositional variable
FV(FinF) = FV(F)UFV(F)
FV(FVF) = FV(R)UFV(F)
FV(Fi—F) = FV(F)UFV(F)
FV(=F) = FV(F)
FV(3v.Fy) = FV(F)\{v}
FV(Vv.F1) = FV(F)\{v}

An environment e maps propositional variables to {0,1} (sometimes written {1, T})
For vector of n boolean variables p=(py,...,p,) and v=(vq,...,v,) €{0,1}", we
denote [p— V] the environment e given by e(p;) =v; for 1<i<n.

We write e |= F to denote that F is true in environment e.

Recap: Validity, Satisfiability, Equivalence
Definition: Formula F is satisfiable, iff there exists e such that e|=F. Otherwise it is
called unsatisfiable.
A SAT solver is a program that, given boolean formula F, either gives one satisfying
assignment e such that e |= F (if such e exists), or else returns unsat (implying that
no satisfying assignment exists).
Definition: Formula F is valid, iff for all e, e|=F.

Observation: F is valid iff =F is unsatisfiable.

Definition: Formulas F and G are equivalent iff for every e that defines all variables in
FV(F)UFV(G), we have: e|=F iff e|= G.

Observation: F and G are equivalent iff F « G is valid.

dp.F is equivalent to P[p:=0]V P[p:= 1] whereas Vp.F to P[p:=0]AP[p:=1]

Formula Representation of Sequential Circuits

=

represent sequential circuit as C = (5, Init, R,X,3) where:
5=(sy,...,5n) is the vector of state variables

Init is a boolean formula with FV/(Init) C{sy,...,s,}
a={(ay,...,Sm) is the vector of input variables

X =(xq,...,Xxx) is the vector of auxiliary variables (for R)

vV VY VY VY

R is a boolean formula called transition formula, for which
/ /
FV(R) C{St1,-s»Sn a1s+»@my X1y s Xks Spr---r S}

Transition system for C is (S,/,r,A) where S=1{0,1}", A=1{0,1}",

> I={ve{0,1}7|[5— v] = Init}

> r={(v,5,v")€{0, 1} | [(5,3,5) — (V,0, V)] = 3x.R}
Auxiliary variables X are treated as existentially quantified, can use conjucts
x; = E(5,3,x) to express intermediate values.

Checking Inductive Invariant using SAT Queries

Given sequential circuit representation C = (5, Init,R,x,3) and a formala Inv with
FV(Inv) C{sy,...,s,}, how do we check that /nv is an inductive invariant?
Let us write negations of “Init C Inv" and “Inver C Inv"

» An initial state is not included in invariant:
Init A—=lnv
» There is a state satisfying invariant, leading to a state that breaks invariant:

Inv. A R _A=lnv[s:=5]
S~~~
5 33x§ e

Note that a,x variables are also existentially quantified, as they should be.

We can check if a formula is an inductive invariant using two queries to a SAT solver
and making sure that they both return unsat.

Bounded Model Checking for Reachability

We construct a propositional formula T; such that formula is satisfiable if and only if
there exist a trace of length j starting from initial state that satisfies error formula £
where FV(E) C{sy,...,s,}.

5/ denotes state variables in step i.

3’ denotes inputs in step i.

30 3! 3
30 Ro 3l Ry - R; Sitl
-1 ,
T, = Init[s:=5°] A (/\ R,-) A E[5:=¥]
i=0

where R; is our transition formula, with variables renamed:

R; = R[(5,3,%,5):=(5,3,%x",5)]

Write These Conditions Using (Quantified) Boolean Formulas (1/2)

1. Does a property P hold in all states reachable in at most k steps?
Solution: Define R; = R; V5 =511 The following formula is valid if and only if
the property P holds in all states reachable in at most k steps:
k—1
vs0,...,5%30,..., 3 %0, kL (lnit[E::.'sO] A /\R,-) — P[5:=3"]
i=0
2. Is there a simple path (no repeated states) of length j from state satisfying F; to
a state satisfying F>?
Solution: First, define the predicate Same over states 5 and 3’ which holds when
§ and & are equal: Same=\]_,5x — 53,
Then, we say there exists a path from a state satisfying F; to a state satisfying
F5, such that no two states are the same:
j—1
350,...,9,3%..., 71,0, %L F[5:=37] A (/\ R,-) A F5:=F]A
i=0
/\ —Same[5s :=51,5 :=3"]

0<i1<ih<j

Write These Conditions Using (Quantified) Boolean Formulas (2/2)

3. Is the system input enabled in every state: no matter what the input is, there
exists a possible next state?

Solution:
Vs. IE where IE=V3. 3%x,5. R

4. Can the system reach in j steps a state where, for some inputs, it cannot make a
step?
Solution: First, define a formula over 5 that holds for states reachable in k steps.

k—1

Reach, =33°,...,5%,3°%,...,3 1,0, ...,.x* L. Init[s .= 30| A (R,-) A Same[s’ := 3]
i=0

Then, the formula we want is:

Js. Reachj/\ﬁIE

