
Encoding Finite Transition Systems with Bits: Sequential Circuit
Consider a deterministic finite-state transition system: M =(S , I , r ,A)
If we pick n≥ log2 |S | and m≥ log2 |A|, we can represent the finite-state transition
system using boolean functions:
▶ each element of S as s̄ ∈ {0,1}n, so S = {0,1}n
▶ each element of A as ā ∈ {0,1}m, so A= {0,1}m
▶ initial states I ⊆ S by the characteristic function {0,1}n→{0,1}
▶ deterministic transition relation r ⊆ S ×A×S as function (S ×A)→ S, that is,
{0,1}n×{0,1}m→{0,1}n

s̄ ∈ {0,1}n r

ā ∈ {0,1}m

(For non-deterministic systems, we represent r as (S ×A×S)→{0,1})

Example: Blinking Lights

▶ S = {0,1} (1 = “light on”)
▶ A= {0,1} (1 = “toggle light”)
▶ I(s)= (s = 0)
▶ r(s ,a)= s ⊕a

{0,1} ⊕

{0,1}

Example trace:

0 ⊕

1

1 ⊕

0

1 ⊕

1

0 ⊕

1

1

Example: Accumulator with Add and Clear Commands

▶ S = {0,1}n (value of accumulator)
▶ A= {0,1}n×{0,1} (number to add, clear signal)
▶ I(s)= (s = 0n)

▶ r(s ,(i ,c))= if (c) then 0 else s +n i
(+n is addition modulo 2n)

{0,1}n r

{0,1}n×{0,1}

Example trace:

0000 r

1011,0

1011 r

0001,0

1100 r

0101,1

0000

Encoding Finite Transition Systems with Bits: Sequential Circuit
Consider a deterministic finite-state transition system: M =(S , I , r ,A)
If we pick n≥ log2 |S | and m≥ log2 |A|, we can represent the finite-state transition
system using boolean functions:
▶ each element of S as s̄ ∈ {0,1}n, so S = {0,1}n
▶ each element of A as ā ∈ {0,1}m, so A= {0,1}m
▶ initial states I ⊆ S by the characteristic function {0,1}n→{0,1}
▶ deterministic transition relation r ⊆ S ×A×S as function (S ×A×S)→ S, that is,
{0,1}n×{0,1}m→{0,1}n

s̄ ∈ {0,1}n r

ā ∈ {0,1}m

How to represent boolean functions, like r , efficiently?

Boolean Function Representation: Circuits
Formulas correspond to trees: variables are leaves, operations internal nodes.
More efficient representation that exploits sharing: directed acyclic graphs (DAGs).
We can view DAGs as formulas with auxiliary variable definitions.
Example for simple (ripple-carry) n-bit adder:
▶ input numbers: s1 . . .sn and a1 . . .an
▶ output: s ′1 . . .s ′n

The formula with auxiliary variables c1, . . . ,cn+1:

c1 = 0∧
n∧

i=1
(s ′i = si ⊕ai ⊕ ci)∧ (ci+1 =(si ∧ai)∨ (si ∧ ci)∨ (ai ∧ ci))

We can implement such definitions in hardware: route an output of one gate to
multiple other gates.
To get back a tree: substitute all auxiliary variables ci , but we get much bigger
formula. Or, existentially quantify all auxiliary variables.

Observation about Eliminating Variables

Let F ,G be propositional formulas and c a propositional variable
Let F [c :=G] denote the result of replacing in F each occurrence of c by G :

c[c :=G] = G
(F1 ∧F2)[c :=G] = F1[c :=G]∧F2[c :=G]
(F1 ∨F2)[c :=G] = F1[c :=G]∨F2[c :=G]

(¬F1)[c :=G] = ¬(F1[c :=G])

We also generalize to simultaneous replacement of many variables, F [c̄ := Ḡ]
Then following formulas are equivalent (have same truth for all free variables):
▶ F [c :=G]

▶ ∃c .((c =G)∧F)
▶ ∀c .((c =G)→ F)

Note: free variables are the variables occurring in the formula minus quantified ones (c)

Recap: Free Variables for Quantified Boolean Formulas
Quantified boolan formulas (QBF) are build from propositional variables and constants
0,1 using ∧,∨,¬,→,↔,∃,∀
(We also write = for↔.) A boolean formula is a QBF without quantifiers ∀,∃.
Definition of free variables of a formula:

FV (v) = {v} when v is a propositional variable
FV (F1 ∧F2) = FV (F1)∪FV (F2)
FV (F1 ∨F2) = FV (F1)∪FV (F2)

FV (F1→ F2) = FV (F1)∪FV (F2)
FV (¬F1) = FV (F1)

FV (∃v .F1) = FV (F1) \ {v}
FV (∀v .F1) = FV (F1) \ {v}

An environment e maps propositional variables to {0,1} (sometimes written {⊥,>})
For vector of n boolean variables p̄ =(p1, . . . ,pn) and v̄ =(v1, . . . ,vn) ∈ {0,1}n, we
denote [p̄ 7→ v̄] the environment e given by e(pi)= vi for 1≤ i ≤ n.
We write e |= F to denote that F is true in environment e.

Recap: Validity, Satisfiability, Equivalence
Definition: Formula F is satisfiable, iff there exists e such that e |= F . Otherwise it is
called unsatisfiable.
A SAT solver is a program that, given boolean formula F , either gives one satisfying
assignment e such that e |= F (if such e exists), or else returns unsat (implying that
no satisfying assignment exists).

Definition: Formula F is valid, iff for all e, e |= F .

Observation: F is valid iff ¬F is unsatisfiable.

Definition: Formulas F and G are equivalent iff for every e that defines all variables in
FV (F)∪FV (G), we have: e |= F iff e |=G .

Observation: F and G are equivalent iff F↔G is valid.

∃p.F is equivalent to P[p := 0]∨P[p := 1] whereas ∀p.F to P[p := 0]∧P[p := 1]

Formula Representation of Sequential Circuits
We represent sequential circuit as C =(s̄ , Init ,R , x̄ , ā) where:
▶ s̄ =(s1, . . . ,sn) is the vector of state variables
▶ Init is a boolean formula with FV (Init)⊆ {s1, . . . ,sn}
▶ ā=(a1, . . . ,sm) is the vector of input variables
▶ x̄ =(x1, . . . ,xk) is the vector of auxiliary variables (for R)
▶ R is a boolean formula called transition formula, for which

FV (R)⊆ {s1, . . . ,sn,a1, . . . ,am,x1, . . . ,xk ,s ′1, . . . ,s ′n}
Transition system for C is (S , I , r ,A) where S = {0,1}n, A= {0,1}m,
▶ I = {v̄ ∈ {0,1}n | [s̄ 7→ v̄] |= Init}
▶ r = {(v̄ , ū, v̄ ′) ∈ {0,1}n+m+n | [(s̄ , ā, s̄ ′) 7→ (v̄ , ū, v̄ ′)] |= ∃x̄ .R}

Auxiliary variables x̄ are treated as existentially quantified, can use conjucts
xi =E(s̄ , ā, x̄) to express intermediate values.

Checking Inductive Invariant using SAT Queries
Given sequential circuit representation C =(s̄ , Init ,R , x̄ , ā) and a formala Inv with
FV (Inv)⊆ {s1, . . . ,sn}, how do we check that Inv is an inductive invariant?
Let us write negations of “Init ⊆ Inv” and “Inv • r ⊆ Inv”
▶ An initial state is not included in invariant:

Init ∧¬Inv

▶ There is a state satisfying invariant, leading to a state that breaks invariant:

Inv︸︷︷︸
s̄

∧ R︸︷︷︸
s̄ ,ā,x̄ ,s̄ ′

∧¬Inv [s̄ := s̄ ′]︸ ︷︷ ︸
s̄ ′

Note that ā, x̄ variables are also existentially quantified, as they should be.

We can check if a formula is an inductive invariant using two queries to a SAT solver
and making sure that they both return unsat.

Bounded Model Checking for Reachability
We construct a propositional formula Tj such that formula is satisfiable if and only if
there exist a trace of length j starting from initial state that satisfies error formula E
where FV (E)⊆ {s1, . . . ,sn}.
s̄ i denotes state variables in step i .
āi denotes inputs in step i .

s̄0 R0

ā0

s̄1 R1

ā1

· · · s j Rj

āj

s̄ j+1

Tj ≡ Init[s̄ := s̄0] ∧
� j−1∧

i=0
Ri

�
∧ E [s̄ := s̄ j]

where Ri is our transition formula, with variables renamed:
Ri ≡ R[(s̄ , ā, x̄ , s̄ ′) := (s̄ i , āi , x̄ i , s̄ i+1)]

Write These Conditions Using (Quantified) Boolean Formulas (1/2)
1. Does a property P hold in all states reachable in at most k steps?

Solution: Define R̄i ≡ Ri ∨ s̄ i = s̄ i+1. The following formula is valid if and only if
the property P holds in all states reachable in at most k steps:

∀s̄0, . . . , s̄k , ā0, . . . , āk−1, x̄0, . . . , x̄k−1.

�
Init[s̄ := s̄0] ∧

k−1∧
i=0

R̄i

�
→ P[s̄ := s̄k]

2. Is there a simple path (no repeated states) of length j from state satisfying F1 to
a state satisfying F2?
Solution: First, define the predicate Same over states s̄ and s̄ ′ which holds when
s̄ and s̄ ′ are equal: Same≡∧nk=0 s̄k↔ s̄ ′k
Then, we say there exists a path from a state satisfying F1 to a state satisfying
F2, such that no two states are the same:

∃s̄0, . . . , s̄ j , ā0, . . . , āj−1, x̄0, . . . , x̄ j−1. F1[s̄ := s̄0] ∧
� j−1∧

i=0
Ri

�
∧ F2[s̄ := s̄ j]∧∧

0≤i1<i2≤j
¬Same[s̄ := s̄ i1 , s̄ ′ := s̄ i2]

Write These Conditions Using (Quantified) Boolean Formulas (2/2)

3. Is the system input enabled in every state: no matter what the input is, there
exists a possible next state?
Solution:

∀s̄ . IE where IE≡∀ā. ∃x̄ , s̄ ′. R

4. Can the system reach in j steps a state where, for some inputs, it cannot make a
step?
Solution: First, define a formula over s̄ that holds for states reachable in k steps.

Reachk ≡ ∃s̄0, . . . , s̄k , ā0, . . . , āk−1, x̄0, . . . , x̄k−1. Init[s̄ := s̄0] ∧
�k−1∧

i=0
Ri

�
∧ Same[s̄ ′ := s̄k]

Then, the formula we want is:

∃s̄ . Reachj ∧¬IE

