Recitation Session Solutions, October 18 2017

Ex 1.
List[Banana] List[Fruit]
List[A] List[B]
Banana => Juice Fruit => Juice
Banana => Juice Banana => Liquid
A=>C B =>D
List[Banana => Liquid] List[Fruit => Juice]
List[A => D] List[B => C]
(Fruit => Juice) => Liquid (Banana => Liquid) => Liquid
(B=>C)=>D (A =>D) =>D
Fruit => (Juice => Liquid) Banana => (Liquid => Liquid)
B => (C => D) A => (D => D)
Ex 2.

def deriv(e: Expr, v: String): Expr

case Number(_) => Number(9)
case Var(name) => if (name ==

e match {

v) Number(l) else Number(®)

case Sum(left, right) => Sum(deriv(left, v), deriv(right, v))

case Prod(left, right) =>

Sum(Prod(deriv(left, v), right), Prod(left, deriv(right, v)))




Ex 3

def simplify(expr: Expr): Expr = expr match {
case Number(_ ) =>
expr
case Var( ) =>
expr
case Sum(a, b) =>
(simplify(a), simplify(b)) match {
case (Number(x), Number(y)) => Number(x + y)
case (Number(@), y) =>vy
case (x, Number(@)) => x
case (x, y) => if (x == y) Prod(Number(2), x) else Sum(x, y)
}
case Prod(a, b) =>
(simplify(a), simplify(b)) match {
case (Number(x), Number(y)) => Number(x * y)
case (Number(@), _) => Number(®)
case (_, Number(@)) => Number(9)
case (Number(l), y) =>vy
case (x, Number(1l)) => x
case (X, y) => Prod(x, y)

Note that this is a pretty open question. The above solution is still incapable of simplifying
Sum(Number(1l), Sum(Var(“x”), Number(2))) into Sum(Number(3), Var(“x”)), whichis
disappointing. Can you imagine ways to improve it?

Idea for further exercise:
Implement a simplify function which will completely simplify all expressions given to it.

Hint: Instead of trying to add more special cases in the above function, try to convert the
expression into some kind of normalized form. For instance, this normalized form could be a
sum of products (of numbers and variables), represented as a list of lists of expressions. Then,
you could apply simplifications on this normalized form. Finally, you would have to reconstruct a
single expression out of it.



