Recitation Session, October 25 2017

Please do not write on this sheet of paper

And do not use laptops during the session

Structural Induction

Ex1. Prove that the following equivalence holds by using inductive reasoning:

alist map f map g === alist map (f andThen g)
Axioms:

1) Nil map f === Nil

2) (x :: xs) map f === f(x) :: (xs map f)

3) (f andThen g)(x) === g(f(x))

Note: Be very precise in your proof:

e Clearly state which axiom you use at each step, and when/if you use the induction
hypothesis.

e Use only 1 axiom/hypothesis at each step, and only once. Applying 2 axioms requires 2
steps.
Underline the part of an equation on which you apply your axiom.
Make sure to state what you want to prove, and what your induction hypothesis is, if any.



Ex2. A more complicated proof (midterm 2016)

We want to implement a function sum(list: List[Int]): Int, which returns the sum of the
elements of a list of Ints. We can easily specify that function as follows:

(1) sum(Nil) ===
(2) sum(x :: xs) === x + sum(xs)

If we naively translate this specification into a Scala implementation, we end up with a uselessly
non-tail recursive function. Besides, doing the recursion ourselves is wasteful. Instead, we

implement it using foldLeft:

def betterSum(list: List[Int]): Int =
list.foldLeft (@) (add)

def add(a: Int, b: Int): Int = a + b

However, that implementation is not trivially correct anymore. We would like to prove that it is
correct for all lists of integers. In other words, we want to prove that

list.foldlLeft(@)(add) === sum(list)
for all lists of integers.

In addition to the specification of sum (1-2), you may use the following axioms:

(3) Nil.foldLeft(z)(f) === z

(4) (x :: xs).foldLeft(z)(f) === xs.foldLeft(f(z, x))(F)
(5) add(a, b) === a + b

(6) a+b===Db+ a

(7) (a+b) +c===a+ (b+c)

(8) a+ 0 === a

Axioms 3-5 follow from the implementations of foldLeft and add. Axioms 6-8 encode
well-known properties of Int.+: commutativity, associativity, and neutral element.

Your task: prove the following lemma by structural induction:
list.foldLeft(z)(add) === z + sum(list)
From that lemma, we can "trivially" (with the help of axioms 6 and 8) derive that betterSum's

implementation is correct by substituting @ for z in the lemma. You are not asked to do that last
bit.



