Functional Programming

Midterm Solution
Friday, November 6 2015

Exercise 1: List functions (10 points)

You are asked to implement the following List functions using only the specified List API methods.

Please refer to the appendix on the last page as a reminder for the behavior of the given List API methods.

(a) Implement scanLeft using only foldLeft and :: (cons).

def reverse[A](xs: List[A]) = xs.foldLeft(List[A]())((r,c) => c :: r)

def scanLeft[A, B >: Al (xs: List[A])(z: B)(op: (B, B) => B): List[B] =
reverse(xs.foldLeft((z, List(z))){
case ((acc, acclist), curr) =>
val res = op(acc,curr)
(res, res :: acclist)

}..2)

//Here is a sample usage:

def add(acc: String, elem: String) = {
println("Called \"add\" with acc=" + acc + " and elem=" + elem + ".")
acc + elem

}
val xs = List("A", "B", "C")
scanLeft(xs) ("z") (add)

//It produces the following output:

//Called "add" with acc=z and elem=A.
//Called "add" with acc=zA and elem=B.
//Called "add" with acc=zAB and elem=C.
//res0: List[String] = List(z, zA, zAB, zABC)

(b) Implement flatMap using only foldRight and :: (cons).
def flatMap[A,B](xs: List[A])(f: A => List[B]): List[B] =

xs.foldRight (List[B] ()) ((outCurr, outAcc) =>
f (outCurr) . foldRight (outAcc) ((inCurr, inAcc) => inCurr :: inAcc))

//Here s a sample usage:
val fruits = List("apple", "banana", "orange")

flatMap (fruits) (_.toUpperCase.toList)

//It produces the following output:
//res0: List[Char] = List(4A, P, P, L, E, B, A, N, 4, N, 4, O, R, 4, N, G, E)

Exercise 2: Subtyping (10 points)
Given the following hierarchy of classes:

trait Producer[+A]
trait Consumer[-A]
trait Factory[+A, -B] extends Producer[A] with Consumer [B]

Recall that + means covariance and - means contravariance.

Consider also the following typing relationships for W, V, X and Y:

o o
<<
A A
= =

Fill in the subtyping relation between the types below using symbols:

e <: in case T1 is a subtype of T2;
e >: in case T1 is a supertype of T2;
e X in case T1 is neither a supertype nor a supertype of T2.

Solution
Producer [X] >: Producer[Y]
Producer [Consumer [X]] <: Producer[Consumer [Y]]
Factory[Producer[X], X] >< Factory[FactorylY, Y], Y]
FactorylY, Y] => Producer[V] <: FactorylY, X] => Producer[W]
List [Factory[Y, Y]] >< List[Consumer[X]]

Exercise 3: Structural Induction (10 points)

Question recap

We want to prove that:
list.foldLeft(z) (add) === z + sum(list)
Using the following axioms:

(1) sum(Nil) ===

(2) sum(x :: xs) === x + sum(xs)
(3) Nil.foldLeft(z) (f) === z
(4) (x :: xs).foldLeft(z)(f) === xs.foldLeft(f(z, x))(f)
(5) add(a, b) === a + b
(6) a+b===Db+a
(7) (@a+b) +c===a+ (b+c)
(8) a+0===a
Proof

We prove the above lemma by structural induction over list.
Case list is Nil

We want to prove that

Nil.foldLeft(z) (add) === z + sum(Nil)

This case is a base case. There is no induction hypothesis. The proof is:

Nil.foldLeft(z) (add) =7= z + sum(Nil)

[(3)
z =7= z + sum(Nil)
[(1)
z =?=z + 0
1 (8)

z =7= z
which concludes the proof.
Case 1list is x :: xs
This case is not a base case. Our induction hypothesis is that the lemma holds for 1ist === xs (which is a
constituent of x :: xs, and is therefore smaller, making this induction well-founded).

Assuming that (induction hypothesis):

xs.foldLeft(z) (add) === z + sum(xs)

we want to prove that:

(x :: xs).foldLeft(z) (add) === z + sum(x :: xs)

The proof is:

(x :: xs).foldLeft(z)(add) =7= z + sum(x :: xs)

[(4
xs.foldLeft(add(z, x))(add) =7= z + sum(x :: xs)
[l (5)
xs.foldLeft(z + x) (add) =7= z + sum(x xs)
|| (induction hypothesis)
(z + x) + sum(xs) =7=z + sum(x :: x8)
[(2)
(z + x) + sum(xs) =7=z + (x + sum(xs))

[l (7) (right-to-left)
(z + x) + sum(xs) =7= (z + x) + sum(xs)

which concludes the proof.

Exercise 4: Graph Reachability (10 points)

1. You are asked to compute the set of all nodes reachable in exactly n steps from a set of initial nodes.

def reachable(n: Int, init: Set[Node], edges: List[Edge]): Set[Node] = n match {
case 0 => init
case _ =>
val next = init.flatMap(node => edges.filter(_.from == node) .map(_.to))
reachable(n - 1, next, edges)

2. Compute all cycles of size 3 using the above function.

def cycles3(nodes: Set[Node], edges: List[Edge]): Set[Node] =
nodes.filter(node => reachable(3, Set(node), edges).contains(node))

